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Electric dipole moments (EDM) of ionic atoms
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Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM)
from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation
effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to
measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction
factor of 1/Z for the ionic system with one electron stripped off.
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I. Introduction. It is well known that the electric dipole
moments (EDM) of the point nucleus can be completely
canceled out because of Schiff’s theorem [1,2]. In addition,
the EDM of the nucleus with the finite size effects can be also
canceled out by electron screening [3,4]. In electron screening,
the second-order perturbation calculation is canceled out
by the third-order perturbation estimation because of the
difference in perturbative interactions between the nucleus
and the electrons. That is, like in perturbation theory, the
EDM interaction is always the first order in the EDM coupling
constant, and in third-order perturbation calculations electron
screening can become as large as the second-order effects of
the nucleon EDM; therefore they can cancel each other out.
This suggests that there is no way to measure any nucleon
EDM in the neutral atomic systems.

However, there may well be some claim that nuclear EDM
can be extracted from Schiff moments [5,6] using theoretical
EDM calculations [7]. As we explain later, the physics of the
Schiff moments originates from the EDM interactions between
nucleons and atomic electrons, and the EDM energy can be
obtained from the intermediate atomic excitation. However,
the nucleon EDM from the Schiff moments vanishes when the
nuclear state is in the s state, and if it is in the p state, the
nuclear EDM dA is suppressed as dA � 10−6dn. Therefore,
it is practically impossible to extract any nuclear EDM from
Schiff moments.

Here, we first show that the nucleon EDM arising from any
kind of nuclear EDM interactions is completely canceled out.
In fact, the nuclear operator

Z∑
i

eRi · Eext (1.1)

can be canceled out completely by∑
n

〈�Nψ0|
∑
i,j

e2(rj · Ri)

r3
j

|�0ψn〉 1

E0 − En

×〈�0ψn|
∑

i

er i · Eext|�0ψ0〉 + h.c. = −
Z∑
i

eRi · Eext,

(1.2)
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where �0 (�N ) denote the nuclear ground (excited) states and
ψ0 (ψn) denote the atomic ground (excited) states, respectively,
and hereafter, we denote |�Nψn〉 ≡ |N, n〉. This is similar to
the Schiff screening in which the nucleon EDM operator [2]

A∑
i

di
N · Eext (1.3)

can be canceled out completely by∑
n

〈0, 0|
∑
i,j

dN
i · ∇j

e

rj

|0, n〉 1

E0 − En

×〈0, n|
∑

i

er i · Eext|0, 0〉 + h.c. = −
A∑
i

dN
i · Eext.

(1.4)

This means that any nuclear operators that couple to the
external electric field Eext should be canceled out by electron
screening, and therefore there is no chance to observe the
nuclear EDM in the neutral atomic system.

To observe nuclear EDM, we propose measuring EDM in
ionic systems in which one electron is stripped off. In this case,
the nucleon EDM with finite size effects can be measured with
a reduction factor of 1/Z. Still, there is a good chance that
nuclear EDM can be measured from the atomic system. The
measurement of nuclear EDM in ionic systems is important,
and the experimental proposal to measure EDM in ionic
systems in storage rings may be interesting and promising [8].
Also, the experimental efforts to observe nuclear EDM in ionic
systems must be related to the control of the ions in terms of
the ion trap technique [9], and it should be a doable task.

This article is organized as follows. In Sec. II, we briefly
discuss how the nucleon EDM in a neutral atomic system is
shielded by electrons. In Sec. III, we discuss Schiff moments,
and in Sec. IV, we evaluate the EDM of ionic systems in which
one electron is stripped off.

II. Complete electron screening in a neutral atomic system.
When experimental measurements of the EDM in neutral
atomic systems are carried out, we should extract the nucleon
EDM from the observed atomic EDM in order to compare it
with the neutron EDM measurement. Theoretically, it seems
to be quite possible that the nucleon EDM of a neutral atomic
system is completely shielded by electrons in atoms and,
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therefore, any neutral atomic EDM cannot be observed. Later
in this article, we see this in more detail. First, we discuss how
the nucleon EDM of a neutral atomic system can be shielded by
electrons. Before going to the discussion of electron shielding,
we briefly describe the finite size effects of the atomic EDM;
the detailed calculation can be found in Ref. [10].

A. Hamiltonian of atomic systems. We first write the
Hamiltonian of the total atomic and nuclear systems. The
unperturbed Hamiltonian H0 of the neutral atomic system can
be written

H0 =
Z∑

i=1

⎡
⎣ pi

2

2m
−

Z∑
j=1

e2

|r i − Rj |

⎤
⎦ + 1

2

Z∑
i �=j

e2

|r i − rj |

+
A∑

i=1

P2
i

2M
+ 1

2

A∑
i �=j

VNN (Ri , Rj ) + 1

2

Z∑
i �=j

e2

|Ri − Rj | ,

(2.1)

where r i and pi denote the coordinate and the momentum of
the electron, respectively, while Ri and P i denote the nuclear
variable and the momentum, respectively. The perturbed
Hamiltonian coming from the nucleon EDM is written as

HEDM = −
Z∑

i=1

A∑
j=1

edj

N · (r i − Rj )

|r i − Rj |3

−
A∑

i=1

Z∑
j �=i

edi
N · (Ri − Rj )

|Ri − Rj |3

−
A∑

i=1

di
N · Eext + e

Z∑
i=1

(r i − Ri) · Eext, (2.2)

where the summation over Z in the nucleus means that it
should be taken over protons. The EDM of the nucleon can be
expressed in terms of the nucleon isospin as

di
N = 1

2

[(
1 + τ z

i

)
dpσ i + (

1 − τ z
i

)
dnσ

i
]
. (2.3)

B. Nuclear EDM from nuclear excitation. The second-order
EDM energy due to the intermediate nuclear excitations,
keeping the atomic state in the ground state, can be written
as [10–12]

�E
(2)
fs = −

∑
N

e2

EN − E0
〈0, 0|

A∑
i=1

τ z
i Ri · Eext|N, 0〉

×〈N, 0|
A∑

i �=j

1

2
di

N ·
(
1 + τ z

j

)
(Ri − Rj )

|Ri − Rj |3 |0, 0〉 + h.c.,

(2.4)

where E0 and EN denote the ground-state energy and the
excitation energy of the nuclear states, respectively.

C. Third-order EDM energy. In the evaluation of the
third-order perturbation EDM energy, we should consider the
Hamiltonian of the finite size effects [3], which is written as

H
(fs)
0 = −

Z∑
i,j=1

e2(r i · Rj )

r3
i

. (2.5)

In this case, we can calculate the third-order perturbation
energy of the EDM Hamiltonian where the two intermediate
states |�N 〉 and |ψn〉 are considered and obtain

�E
(3)
fs = −

∑
N,n

2e2

(EN − E0)(En − E0)
〈0, 0|

Z∑
i=1

r i · Eext|0, n〉

×〈0, n|
Z∑

i=1

Z∑
j=1

e2(r i · Rj )

r3
i

|N, 0〉

×〈N, 0|
A∑

i �=j

1

2
di

N ·
(
1 + τ z

j

)
(Ri − Rj )

|Ri − Rj |3 |0, 0〉 + h.c.

(2.6)

This can be calculated to be

�E
(3)
fs =

∑
N

e2

EN − E0
〈0, 0|

A∑
i=1

τ z
i Ri · Eext|N, 0〉

×〈N, 0|
A∑

i �=j

1

2
di

N ·
(
1 + τ z

j

)
(Ri − Rj )

|Ri − Rj |3 |0, 0〉 + h.c.,

(2.7)

which is just the same as the second-order perturbation energy
of the EDM Hamiltonian of Eq. (2.4) with the opposite sign.
Therefore, the second-order finite size effect that arises from
the nuclear excitation is completely canceled out by the third-
order effects.

Here, we note that the relativistic effects of nucleon
EDM [13] free from Schiff shielding are also canceled out
completely by electron screening as discussed in Ref. [4].

D. T-violating nucleon-nucleon interaction. The phe-
nomenological nucleon-nucleon interactions [14,15] that vi-
olate the T invariance, such as

V PT
π (r12) = 1

2M

gπḡπ

4π
(τ 1 · τ 2)(σ 1 − σ 2)∇1

e−mπ r12

r12
, (2.8)

can generate the second-order EDM energy as

�E
(2)
PT = −

∑
N

e2

EN − E0
〈0, 0|

Z∑
i=1

eRi · Eext|N, 0〉

×〈N, 0|
A∑

i>j

V PT
π (rij )|0, 0〉 + h.c. (2.9)

However, this EDM energy can be canceled out completely by
the third-order perturbation theory as shown in Eq. (1.1) in the
Introduction.

III. Schiff moments. Schiff moments come from the EDM
interaction between nucleons and electrons, and the interaction
can be written as

HeN
EDM = −

Z∑
i=1

A∑
j=1

edj

N · (r i − Rj )

|r i − Rj |3 . (3.1)

This interaction can be rewritten as

HeN
EDM =

Z∑
i=1

e〈dN 〉 · ∇i

∫
ρ(R)

|r i − R|d
3R, (3.2)
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which is just the interaction used in the Schiff moment
calculations [5–7].

A. Finite size effect with atomic excitations. Now, we can
carry out the microscopic calculation of the Schiff moments
and consider the second-order perturbation energy with the
finite size effects of the nucleus, and the EDM energy becomes

�E
(2)
SM = −

∑
n

2eEext

En − E0
〈0|HeN

EDM|n〉〈n|
Z∑

i=1

zi |0〉, (3.3)

where the nuclear state is kept in the ground state. Further,
HeN

EDM can be rewritten as

HeN
EDM =

Z∑
i=1

⎡
⎣r i ·

A∑
j=1

dj

NSjiR
2
j

⎤
⎦ e

r5
i

, (3.4)

with Sji defined as Sji = 5
2 − 15

2 cos2 θji . Now, we can

calculate the expectation value of the dj

NSji using a simple
shell-model wave function, and as is well known, the spin
expectation value of the shell-model calculation is normally
larger than the one obtained by the realistic calculations.

B. Nuclear s and p states. Now we consider the s state case

�0 = |s 1
2
〉 ⊗ |0〉, (3.5)

where the state |0〉 denotes the core state of the nucleus with a
spin and parity of 0+. In this case, we find〈∑

j

dj

NSji

〉
= 0. (3.6)

Therefore, there is no contribution from the s-state nucleus to
the EDM of Schiff moments.

Next, we consider the p-state case,

�0 = |p 1
2
〉 ⊗ |0〉, (3.7)

and we can evaluate the expectation value as〈∑
j

dj

NSji

〉
= − 4

15
dN . (3.8)

In this case, we can make a rough estimation of the nuclear
EDM dA as

dA � 2ea0

�E
× 4dNR2

0

15
× e

a5
0

Zeffa0 � 2.4 × 10−6dN, (3.9)

where we employed R0 � 7 fm and a0 � 10−8 cm. Also,
the value of �E is taken to be �E � �EHF � 1 eV, where
�EHF denotes the prediction of the Hartree-Fock calculation.
Further, the effective number Zeff of electrons that contribute
to the E1 excitation is taken to be Zeff � 30. The estimation
is optimistic for medium heavy atoms and nuclei of Z around
50, and therefore this gives the largest possible value of the
nuclear EDM of the Schiff moments. However, despite the
overestimation, we can see that the suppression factor is indeed
severely small.

IV. Nucleon EDM in ionic systems. As we saw, it is almost
impossible to extract the nucleon EDM from neutral atomic
systems due to electron screening. However, we see below

that the nucleon EDM with finite size effects can be extracted
from ionic systems in which one electron is stripped off. In
this case, we can prove that the nucleon EDM of ionic systems
becomes 1/Z times the calculated nucleon EDM of the finite
size effects. This means that electron screening occurs for
the same numbers of electrons and protons and, therefore,
if one electron is absent, then the electron screening is
incomplete.

A. EDM in ionic systems. To see this effect explicitly,
we calculate the third-order EDM energy with one electron
stripped off as

�E
(3)
fs = −

∑
N,n

2e2

(EN − E0)(En − E0)
〈0, 0|

Z−1∑
i=1

r i · Eext|0, n〉

×〈0, n|
Z−1∑
i ′=1

Z∑
j=1

e2(r i ′ · Rj )

r3
i ′

|N, 0〉〈N, 0|
A∑

k �=�

1

2
dk

N

· (1 + τ z
� ) (Rk − R�)

|Rk − R�|3 |0, 0〉 + h.c. (4.1)

Here, we first evaluate the electron part:

∑
n

1

En − E0
〈0, 0|

Z−1∑
i=1

r i · Eext|0, n〉

×〈0, n|
Z−1∑
i ′=1

Z∑
j=1

e2(r i ′ · Rj )

r3
i ′

|N, 0〉

= Z − 1

Z
〈0|

Z∑
j=1

Rj · Eext|N〉.

Therefore, we can express the third-order perturbation energy
in terms of the second-order EDM energy as

�E
(3)
fs = −Z − 1

Z
�E

(2)
fs . (4.2)

Thus, the cancellation is not complete, and after the electron
screening, the nuclear EDM survives. However, it is reduced
by a factor of 1/Z,

�E
(2)
fs + �E

(3)
fs = 1

Z
�E

(2)
fs . (4.3)

B. EDM measurements in storage rings. There is a proposal
to measure the EDM of ions in storage rings [8]. This type of
experiment should become very important in the future, though
we cannot make any useful comments at present since there are
no solid observations of EDM of ionic systems. The problem is
of course related to the accuracy of the measurements whether
the EDM measurement of ions can be better than that the
neutron EDM experiment, and at the present stage one cannot
claim that the EDM of ions can be measured very accurately.
However, we believe that both of the experiments should
be done in parallel in view of the importance of the EDM
measurements.

C. Ion trap method. There may be a possibility to measure
the EDM of ions by making use of the ion trap technique
that has been greatly developed in recent years. In this case,
however, it may be difficult to put a strong electric field on the
ionic system since it is already trapped by the electric fields in
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the ion trap method. This is in contrast to the magnetic moment
measurement where the interaction energy is proportional to
the magnetic field [9].

Because there are some important experiments on the
hyperfine structure measurement in terms of the ion trap
technique, there may be similar experiments possible for
the EDM measurements. This will be a difficult task,

but it should be done in some way or other in the
future.

The author is grateful to Professor K. Asahi, Professor
T. Fujita, and Dr. A. Yoshimi for their helpful discussions
and comments. This work is supported in part by the Japan
Society for the Promotion of Science.

[1] L. I. Schiff, Phys. Rev. 132, 2194 (1963).
[2] C.-P. Liu, M. J. Ramsey-Musolf, W. C. Haxton, R. G. E.

Timmermans, and A. E. L. Dieperink, Phys. Rev. C 76, 035503
(2007).

[3] V. F. Dmitriev, I. B. Khriplovich, and R. A. Sen’kov,
arXiv:hep-ph/0504063.

[4] C.-P. Liu and J. Engel, Phys. Rev. C 76, 028501
(2007).

[5] O. P. Sushkov, V. V. Flambaum, and I. B. Khriplovich, Sov.
Phys. JETP 60, 873 (1984).

[6] V. V. Flambaum, I. B. Khriplovich, and O. P. Sushkov, Nucl.
Phys. A 449, 750 (1986).

[7] I. B. Khriplovich and S. K. Lamoreaux, CP Violation Without
Strangeness (Springer, New York, 1997).

[8] Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev.
Lett. 96, 214802 (2006).

[9] K. Okada et al., Phys. Rev. Lett. 101, 212502 (2008).
[10] S. Oshima, T. Fujita, and T. Asaga, arXiv:nucl-th/0412071.
[11] S. Oshima, T. Nihei, and T. Fujita, J. Phys. Soc. Jpn. 74, 2480

(2005).
[12] S. Oshima, T. Fujita, and T. Asaga, Phys. Rev. C 75, 035501

(2007).
[13] T. Asaga, T. Fujita, and M. Hiramoto, Prog. Theor. Phys. 106,

1223 (2001).
[14] I. Stetcua, C.-P. Liu, J. L. Friar, A. C. Hayes, and P. Navratil,

Phys. Lett. B 665, 168 (2008).
[15] W. C. Haxton and E. M. Henley, Phys. Rev. Lett. 51, 1937

(1983).

038501-4


