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Nonrelativistic approaches derived from point-coupling relativistic models
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We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on
new normalized spinor wave functions after small component reduction. These expansions give us energy
density functionals that can be compared to their relativistic counterparts. We show that the agreement
between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on
the incompressibility of each model. We also show that the particular case A = B = 0 (Walecka model) leads to
the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme,
up to order ρ3, leads to parametrizations for which σ = 1.
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In nonrelativistic many-nucleon systems, point-coupling
interactions have been successfully used for decades through
Skyrme models to obtain finite-nuclei spectra and nuclear
matter bulk properties [1–5]. Curiously, the Skyrme-Hartree-
Fock (SHF) treatment shows similarities to the Kohn-Sham
density functional theory [6,7], as pointed out by Brack [8].
A study along this line, raising many interesting and still
unanswered questions regarding density functional theory and
its application to many-nucleon systems, based on effective
field theory, was done by Furnstahl [9]. The issues of whether
the SHF model includes the driven physical contributions for
nuclear matter and whether the nucleon-nucleon correlations
may be considered small in this context are still under
discussion.

Nonlinear relativistic point-coupling (NLPC) models have
been applied by Nikolaus et al. [10] to extract nuclear
ground-state observables, with results comparable in quality to
those obtained by the usual nonlinear Walecka model [3,11]. In
particular, the nonrelativistic limit of Boguta-Bodmer models
has been investigated [12].

The construction of relativistic NLPC models from the
usual relativistic nonlinear models, after choosing the heavy-
meson mass limit properly, has already been addressed [13,14].

In common, the SHF and NLPC models have density
functionals that are parameterized directly by fitting the
unknown constants to nuclear ground-state data. With this
strategy, the microscopic role of the nucleon-nucleon (NN )
interaction that underlies the density functional is obscured.
The success of these functionals leads to the investigation of
the nonlinear density dependence of the nonlinear Walecka
and NLPC models [13]. Following the nonrelativistic limit
prescription proposed in Ref. [15], the authors also obtain
the nonrelativistic limit of the NLPC model and suggest a
modification of the SHF model with a density-dependent
spin-orbit potential. A better understanding of point-coupling
models becomes of interest when one addresses the important
theoretical challenge of constructing a universal nuclear
effective density functional [16].
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Infinite nuclear matter, as well as finite-nucleus properties,
can be described reasonably well within the scope of point-
coupling models. We have studied NLPC models described by
the following Lagrangian density:

LNLPC = ψ̄(iγ µ∂µ − M)ψ − 1

2
G2

V (ψ̄γ µψ)2

+ 1

2
G2

s (ψ̄ψ)2 + A

3
(ψ̄ψ)3 + B

4
(ψ̄ψ)4, (1)

where only the isovector-scalar and isovector-vector interac-
tions are present. In a mean-field approach, the energy density
functional at zero temperature for infinite nuclear matter is
given by
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The vector and scalar densities are

ρ = 2
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∫ kF

0
k2dk,

(4)
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0

M∗
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where kF is the Fermi momentum. The set of Eqs. (2)–(4) has
to be solved self-consistently. The scalar and vector potentials
are given by

S = −G2
s ρs − Aρ2

s − Bρ3
s and V = G2

V ρ. (5)

Equation (3), M∗ = M + S, defines the effective mass of the
model—or Dirac mass, in the language of Ref. [17]. This
definition is purely relativistic: the scalar field S shifts the bare
nucleon mass M and the vector field V shifts the energy of the
Dirac equation in such a way that the energy dispersion relation

reads E − V =
√

k2 + M∗2. This definition is, however, not
unique and this point is addressed in Ref. [17], where a very
rich discussion about the multiple possibilities of the effective
mass concept is presented. Some discussion of this issue is in
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order, as the nonrelativistic definition is different and makes
sense only after the nonrelativistic limit is chosen. Still at
the relativistic level, the procedure of finding the effective
mass from the definition of a real optical potential as the
difference between the total (E) and the kinetic energies of a
nucleon traveling in nuclear matter with momentum k, Uopt =
E − √

k2 + M2, is well accepted. By using this definition
[18,19], Uopt = E − [(E − V )2 − S(2M + S)]2. The nonrel-
ativistic limit, up to order (k/M)2, is Uopt = (M∗/M)(S +
V ) + [1 − (M∗/M)](E − M). So, the nonrelativistic slope of
Uopt versus E − M gives the nucleon effective mass. But this
nonrelativistic limit still has some “relativistic” content, as the
small component of the Dirac equation was not completely
removed; this is done next. Moreover, the definition of the
effective mass M∗ is obtained from the single-particle energy
ε(k), through M∗ = k[∂ε(k)/∂k]−1.

Following Ref. [15], we perform the nonrelativistic limit
of the NLPC models by rewriting the small component (χ ) of
the fermion field ψ in terms of the large one (φ) in the Dirac
equation:

(σ · kBσ · k + M + S + V )φ = Eφ, (6)

with

B = B0
1

1 + (ε − S − V )B0
� B0 + B2

0 (S + V − ε),
(7)

B0 = 1

2(M + S).

In the equation above, the expansion parameter is x = (ε −
S − V )B0 = (E − M − S − V )B0. However, if we use the
dispersion relation for the model, E − V =

√
k2 + (M + S)2,

we have x = (
√

1 + z2 − 1)/2, where z2 = k2/(M + S)2. For
the relativistic models we consider in this paper, x < 0.1 up
to about 1.5 times the nuclear matter saturation density ρo, in
the worst-case scenario.

This procedure reduces Eq. (6) to the Schrödinger equation:

Ĥ classϕclass = εϕclass, (8)

where ϕclass = Î 1/2φ,

Ĥ class = Î−1/2
[
σ · kB0σ · k + S + V

+ σ · kB2
0 (S + V )σ · k

]
Î−1/2, (9)

and

Î = 1 + σ · kB2
0σ · k

= 1 + z2

4
= 1 + x(x + 1). (10)

To write Ĥ class as an explicit sum of a kinetic and potential
energy, we proceed by expanding the operators Î−1/2 and
Î−1, up to order v2, or equivalently (k/M)2, using z2/4 as
the expansion parameter, which should therefore be small
for the expansion to be reliable. If we require, for instance,
z2/4 < 0.1, then x < 0.09, which restricts the density range to
ρ/ρo � 1.4.

These expansions lead to the vector and scalar densities,

ρ = φ†φ + χ †χ = |ϕclass|2,
(11)

ρs = φ†φ − χ †χ = ρ(1 − z2/2),

and to the single-particle energy Ĥ class, which now reads
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= k2
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+ (
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s

)
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+ 2B2
0k2ρ

(
G2

s + 2Aρ + 3Bρ2). (13)

Because our aim with the nonrelativistic expansion is to
compare the energy density functional with Skyrme models,
we chose to use the approximation M + S = M in Eq. (13).
With this procedure and using the continuous limit in H class,
we have

ENR = c1ρ
2 + c2ρ
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4 + c4(ρ)

3

40

(
3π2

2

)2/3

ρ8/3

+ 3

10M

(
3π2

2

)2/3

ρ5/3, (14)

with

c1 = G2
V − G2

s , c2 = −A, c3 = −B,
(15)

c4(ρ) = 4

M2

(
G2

s + 2Aρ + 3Bρ2
)
.

Note that Eq. (14) shows a ρ dependence up to, at least, order
14/3, owing to c4(ρ).

Differently from Eq. (3), the nucleon effective mass will
now be defined by its standard nonrelativistic form [4] as
follows:

M∗ = k

[
∂H class

∂k

]−1

= M

[
1 + Mc4(ρ)ρ

4

]−1

, (16)

where, again, we have used M + S = M in Eq. (13).
An important question here is: What results do we get from

Eq. (14) if we keep the values of the coupling constants that
are required by the relativistic models in order to reproduce
the results for observables at the saturation point?

To answer this question we proceed to compare the ground-
state observables at the saturation density, obtained through
Eqs. (2) and (14), using the original coupling constants G2

V ,
G2

s , A, and B, for the NL2-PC as an example. The result
is disappointing, as, for the binding energy, saturation density,
and incompressibility (K), we find, via Eq. (14), −52.94 MeV,
0.160 fm−3, and 1059.35 MeV, to be compared with the
original values −17.03 MeV, 0.146 fm−3, and 399.20 MeV,
respectively, found via Eq. (2). This disagreement is also
shown for other relativistic point-coupling models. We have
asked ourselves whether this poor agreement was because of
the approximation M + S = M; however, even if we include
the S term, the approximation, albeit improving a little,
remains poor. This strongly suggests that higher-order terms
are needed, but as our main purpose here is to compare the
nonrelativistic limit of the NLPC models, at the energy density
functional level, with the well-known Skyrme parametriza-
tions, we decided to keep only terms of order v2 in Ĥ class.

To avoid the aforementioned disagreement, and to compare
nonrelativistic models that have at least the same saturation
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properties as their relativistic original counterparts, we must
refit the parameters in Eq. (14). Now we present the energy
density functional of the Skyrme models [4,21] for infinite
nuclear matter,

ESkyrme = 3t0

8
ρ2 + t3

16
ρσ+2 + t

3

40

(
3π2

2

)2/3

ρ8/3

+ 3

10M

(
3π2

2

)2/3

ρ5/3, (17)

with t = [3t1 + t2(5 + 4x2)]/2.
By inspecting Eqs. (14) and (17), we can see Eq. (14) as

a generalized Skyme energy density and then highlight two
interesting cases.

(i) A = B = 0: This particular case reduces the NLPC
model to the linear point-coupling one that is fully
equivalent to the Walecka model [14,22,23]. This leads
the energy density functional given in Eq. (14) to
the Skyrme parametrizations, in σ = 0 or t3 = 0 (SV
model). Because both the SV parametrization and the
relativistic Walecka model do not contain three-body
force effects, it is consistent that in the present case, the
nonrelativistic limit of the former also does not show
this phenomenology. The specific ZR2 parametrization
[24], for which σ = 2/3, is also generated in this
particular case.

(ii) Truncation scheme: Truncating Eq. (14) up to order ρ3,
that is, dropping the term c3ρ

4 and making c4(ρ) =
4G2

s /M
2, one can obtain the Skyrme models for which

σ = 1 and t �= 0. Actually, σ = 1 encompasses a large
set of Skyrme models, such as, for example, SI-SVI,
which are claimed to be “natural” [25]. In that sense
models in this class and with this truncation need only
cubic NLPC contributions to be generated. In this way,
they can be viewed as a natural consequence of the
nonrelativistic expansion presented here.

The refitting of c1 and c4 in case (i) and c1, c2, and c4 in case
(ii) leads each to the corresponding Skyrme model constants,
t0, t3, and t .

Now, without any truncation, and using A �= 0 and B �= 0 in
Eq. (14), we analyze, via comparison, how the equation of state
obtained from the nonrelativistic limit of the point-coupling
models works. We do this in the following two steps.

(1) Relativistic NLPC models and their nonrelativistic limit:
Here we essentially compare Eq. (2) and Eq. (14), select-
ing a class of representative point-coupling versions [14]
of the well-known nonlinear Boguta-Bodmer models,
namely, NLB [26], NLSH [27], NL2 [15], NL1 [15],
NLZ2 [13], and NL3 [28]. As previously discussed, to
compare both models we refit the parameters in Eq.
(14) in order to impose on the nonrelativistic equation
of state the reproduction of the values obtained in
their relativistic versions for some physical quantities
(incompressibility, saturation density, binding energy,
and nucleon effective mass) in the saturation regime.

(2) Full generalized Skyrme models and standard Skyrme
models: The comparison now is done between Eq. (14)
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FIG. 1. (Color online) E/A as a function of ρ/ρo. (a, b) The
first three solid curves were obtained by Eq. (2); the last three, by
Eq. (17). All dashed curves were obtained by Eq. (14).

and Eq. (17). We chose the following Skyrme
parametrizations: PRC45 [24], SIII [25], SV [25], SGI
[29], SkMP [30], and SLy230a [4]. Naturally, here the
parameters G2

V , G2
s , A, and B are also found as described

previously.

The results for the binding energy as a function of ρ/ρo for
the two cases are shown in Fig. 1. Both Fig. 1(a) and Fig. 1(b)
show that the nonrelativistic limit, Eq. (14), works well up to
densities ρ close to the saturation density ρo. In Fig. 1(a)
we group the models that we consider to present a good
agreement between the exact models and the nonrelativistic
limit, even beyond ρ = ρo. In Fig. 1(b) we group the models
in which the nonrelativistic limit does not work well for
ρ > ρo. In both panels we can see that the incompressibility
seems to control the agreement between the exact models and
their nonrelativistic limit. The higher the incompressibility,
the better is the nonrelativistic approach to describe nuclear
matter.

We have enlarged the set of point-coupling and Skyrme
models to verify whether the findings in Fig. 1 remain valid
(not shown). Indeed, the quality of the nonrelativist limit for
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ρ > ρo continued to be completely determined by the value
of K in the same way that we discussed before. Therefore,
we conclude that K seems to be a robust quantity with which
to predict whether the nonrelativistic limit of a relativistic
point-coupling model taken up to order v2 will give good

results as regards its comparison both with the original models
and with the Skyrme parametrizations.
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