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Coulomb excitation of multiphonon levels of the giant dipole resonance
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A closed expression is obtained for the cross-section for Coulomb excitation of levels of the giant dipole
resonance of given angular momentum and phonon number. Applications are made to the Goldhaber-Teller and
Steinwedel-Jensen descriptions of the resonance at relativistic bombarding energies.
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The giant dipole resonance (GDR) is one of the best
studied collective modes of nuclear excitation. It has been
modeled, macroscopically, as a bulk oscillation of neutrons
relative to protons [1] or as local isovector fluctuations
of neutron and proton fluids [2]. It can also be modeled,
microscopically, in terms of isovector linear combinations of
particle-hole excitations of the nuclear ground state ([3–5]).
It has been studied experimentally using reactions induced
by γ rays, light ions, and the sharp pulses of electromag-
netic radiation associated with projectile nuclei moving at
relativistic speeds, i.e., relativistic Coulomb excitation. In
this Brief Report, we will consider relativistic Coulomb
excitation of GDR states which are described by macroscopic
models.

In many situations, the de Broglie wavelength for the rela-
tive motion of the projectile and target in a Coulomb excitation
experiment is small compared to the linear dimensions that
characterize the system. Then a semiclassical approach can be
used, in which this relative motion is described in terms of a
classical orbit, whereas the internal changes of the projectile
and target are described using quantum mechanics. We are
interested in a situation in which the target is excited to the
states associated with the GDR. A useful first approximation
to an oscillatory situation, such as the GDR, is to assume that
the restoring forces are proportional to the displacement from
equilibrium. With this approximation, the GDR is dynamically
equivalent to an isotropic three-dimensional harmonic oscilla-
tor. This assumption leads to the familiar harmonic oscillator
spectrum, in which eigenstates are characterized by phonon
number, total angular momentum, and angular-momentum z

component. If the oscillator picture were exact, all the (N +
1)(N + 2)/2 eigenstates with N phonons would be degenerate
in energy. Deviations from the oscillator picture would lift this
degeneracy, but if the deviations were spherically symmetric
we would still have the 2� + 1-fold degeneracy of the angular-
momentum eigenstates with � = N,N − 2, N − 4, . . . , 0
or 1.

The coupling between the electromagnetic pulse due to
the projectile and the internal oscillating degrees of freedom
associated with the GDR of the target can usefully be
approximated by an expression that is linear in these oscillating
degrees of freedom. If this approximation is made, an exact
solution can be found for the Schrödinger equation that

describes the time evolution of the target [6,7]. Formulae
have been published in the literature for the total excitation
probability of all GDR states of given phonon number, when
the relative motion of the target and projectile is along a
specified orbit. In this Brief Report, we decompose this total
excitation probability into the contributions of phonon states
of given total angular momentum. For example, we show how
to find the excitation probabilities of four-phonon states of
angular momentum 0, 2, or 4, whereas the previously pub-
lished formula yielded only the total four-phonon excitation
probability.

These GDR phonon states of specified angular momentum
are not clearly resolved in the excitation spectra. Indeed,
superposed on the multiphonon GDR states are collective
excitations of other characters, such as giant quadrupole and
giant octupole excitations (see, e.g., Ref. [3]). Thus we cannot
check our predictions for excitation cross sections of GDR
states of given angular momentum against any currently avail-
able data. However, it is possible that future measurements
of angular distributions of the decay products of GDR states
will give information about the angular momenta of these
states. For example, the γ rays emitted by the � = 0 member
of the two-phonon sextuplet will have a spherically symmetric
angular distribution, whereas the five � = 2 members will emit
γ rays with quadrupole and hexadecapole distributions. In
situations such as this, it will be important to be able to predict
the excitation cross sections of N -phonon states of specified
angular momentum.

The perturbed target wave function is expressed as the usual
time-dependent linear combination of unperturbed target wave
functions ψα

�(t) =
∑

α

aα(t)e− i
h̄
εα tψα, (1)

where εα is the unperturbed target eigenvalue associated with
ψα . The intial conditions appropriate to a typical nuclear
reaction are aα(−∞) = δα,0, corresponding to the requirement
that the target be in its ground state at the start of the process.
The probability that the reaction leaves the target in the final
state ψα is then |aα(∞)|2.

In a Coulomb excitation reaction, the perturbation expe-
rienced by the target is the electromagnetic field due to the
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passing projectile. Its matrix elements are [8]

〈ψβ |V (t)|ψα〉

=
∫ [

ϕret
C

(r, t)ρβα(r) − 1

c
Aret

C
(r, t) · Jβα(r)

]
d3r. (2)

Here ϕret
C

(r, t) and Aret
C

(r, t) are, respectively, the scalar and
vector potentials associated with the electromagnetic field
created by the charged projectile. The properties of the target
states ψα and ψβ are expressed in Eq. (2) by the transition
charge density ρβα(r) and current density Jβα(r).

In this Brief Report we will be concerned with situations
in which the target Hamiltonian is that of an isotropic three-
dimensional harmonic oscillator with reduced mass M and
natural frequency ω. The labels of the unperturbed states can
be taken to be the triplet of quantum numbers (nx, ny, nz),
specifying the numbers of oscillator quanta in the x, y, and z

directions. Furthermore, we will be working in the regime in
which the interaction matrix elements (2) can be approximated
by〈

ψnx,ny ,nz

∣∣V (t)
∣∣ψn′

x ,n
′
y ,n

′
z

〉
= −

∫
d3Rψ∗

nx,ny ,nz
(R)[F(t) · R + G(t) · P]ψn′

x ,n
′
y ,n

′
z
(R)

(3)

where R(=X, Y,Z) represents the degrees of freedom under-
going harmonic oscillations and P represents the conjugate
momenta.

The time-dependent Schrodinger equation for the ψα , with
the perturbation given by Eq. (3), can be solved exactly [6,7].
The result is that the probability of populating the final target
state ψnx,ny ,nz

is

Pnx,ny ,nz
= ∣∣anx,ny ,nz

(∞)
∣∣2

= (|αx |2)nx (|αy |2)ny (|αz|2)nz

nx!ny!nz!
e−(|αx |2+|αy |2+|αz|2) (4)

in which the αj are defined by

αj = i

∫ ∞

−∞
dt ′

[
Fj (t ′)√
2Mh̄ω

+ i

√
Mω

2h̄
Gj (t ′)

]
eiωt ′ . (5)

Note that this “Poisson distribution” result involves “on-shell”
Fourier transforms of Fj (t),Gj (t). These quantities are gauge
invariant.

The Cartesian result in Eq. (4) is well known [6]. However
specifying the unperturbed eigenstates in terms of nx, ny, nz

is not as convenient as using principal and angular-momentum
quantum numbers n, �,m. The advantage of using n, �,m is
that a spherically symmetric deviation from a perfect harmonic
oscillator Hamiltonian will not mix the states labeled by
different (�,m), nor will it split the 2� + 1 states with different
m values and the same �. However, the quantum numbers
nx, ny, nz are useful only for a perfect oscillator. Since we
cannot expect perfection in a harmonic description of the
GDR, but we can expect spherical symmetry, it would be
advantageous to use oscillator eigenstates characterized by
n, �,m rather than nx, ny, nz.

It is shown in Ref. [9] that the excitation probabilities of all
states of given n, � is:

Pn,� ≡
�∑

m=−�

|〈n�m|�(∞)〉|2

= 2� + 1

(2n)!!(2n + 2� + 1)!!
|(αx)2 + (αy)2 + (αz)

2|2n+�

× e−(|αx |2+|αy |2+|αz|2) × P�

( |αx |2 + |αy |2 + |αz|2
|(αx)2 + (αy)2 + (αz)2|

)
,

(6)

where P� is a Legendre polynomial. This formula is our main
result.

In relativistic Coulomb excitation [10], the projectile linear
momentum is very large compared to the transverse impulse
the projectile receives as it moves past the target. Then the
trajectory of the projectile can be approximated by a straight
line, along which the projectile moves with constant speed
v, and ϕret

C
(r, t), Aret(r, t) are the Lienard-Wiechert potentials

[11]. We choose our axes so that the trajectory is parallel
to the z axis in the y-z plane. With this choice, αx = 0,
αy is real and αz is pure imaginary. This is because the
influence of the projectile in the z direction is opposite at
±t , whereas its influence in the y direction is the same at ±t .
This different time behavior leads to different behavior under
complex conjugation of the Fourier transforms that determine
αy, αz. It is clear that the opposite signs of (αy)2 and (αz)2 play
an important role in the magnitude of Eq. (6).

In general, αx, αy , and αz will be functions of the impact
parameter, b, which characterizes the projectile orbit. There-
fore Pn,� will also be a function of b. The excitation cross
section involves an integral over impact parameter,

σn,� = 2π

∫ ∞

bmin

Pn,�(b)bdb. (7)

The lower limit, bmin, is of the order of the sum of the radii of the
projectile and target nuclei. Because the electromagnetic pulse
due to the projectile becomes more adiabatic as b increases,
Pn,�(b) decreases strongly for large b, and the upper limit of
the integral in Eq. (7) can be safely taken to be of the order of
a few hundred Fermi.

The Goldhaber-Teller model of the GDR postulates a
bulk oscillation of the protons relative to the neutrons. The
amplitude of the oscillation is determined by the parameter
ν ≡ Mω/h̄, where M is the reduced mass associated with the
relative oscillation of the proton and neutron mass centers and
h̄ω is the characteristic energy of the oscillation. For the GDR,
the oscillation energy is approximately [12]

h̄ω � 79A−1/3 MeV.

Thus

ν = NZ

A
mp

ω

h̄
= NZ

A
mpc

2 h̄ω

(h̄c)2

� NZ

A
× 939 MeV× 79A−1/3 MeV

(197.3 MeV fm)2
� 1.91

NZ

A4/3
fm−2.
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The amplitude of the oscillation of the proton mass center is
then

N

A
× 1√

ν
� 0.724

A1/3

√
N

Z
fm. (8)

If this distance is small compared to the distance over which
the charge density changes by an appreciable fraction of itself,
such as the thickness of the nuclear surface, then the linear
approximation (3) is applicable, with

F(t) = N

A

∫
d3rϕret

C
(r, t)∇rρ(r) (9a)

G(t) = v

Zmpc

∫
d3rAret

C
(r, t)ρ(r)ẑ. (9b)

Here ρ(r) is the charge density of the protons, with r locating
points relative to the proton mass center. To estimate the
validity of the approximation (9), let us consider the particular
example of a 40Ca target. Then Eq. (8) yields �0.212 fm for
the amplitude of the oscillation of the proton mass center.
Since the proton charge density is approximately constant
from its center out to the surface region, whose thickness is
approximately 1 fm, we see that the amplitude of the GDR
oscillation is indeed small compared to the distance over
which the charge density changes by an appreciable fraction of
itself.

If Eqs. (5) and (9) are used together with the Lienard-
Wiechert potentials, then the αx, αy, αz needed in Eq. (6) can
be shown [9] to be

αx = 0 (10a)

αy = −iπ

√
16Nω

mpZAh̄

Zpe
2

γ v2
K1

(
ωb

γ v

)∫ ∞

0
j0

(ω

c
r
)

ρ(r)r2dr

(10b)

αz = π

√
32Nω

mpZAh̄

Zpe
2

γ 2v2
K0

(
ωb

γ v

) ∫ ∞

0
j0

(ω

c
r
)

ρ(r)r2dr.

(10c)

We have assumed that the proton charge distribution is
spherically symmetric.

The Steinwedel-Jensen model of the giant dipole excitation
[2] postulates that the protons and neutrons oscillate relative
to each other, not in the bulk relative motion of the Goldhaber-
Teller model [1] but in local isovector fluctuations. For small
fluctuations, we find that

F(t) = −eNZ

A2
n0

∫
d3rϕret

c (r, t)
j1

(
ω
u
r
)

r
r (11a)

G(t) = v

Mc2

eNZ

A2
n0

( u

ω

)2
∫

d3rϕret
c (r, t)∇

(
j1

(
ω
u
r
)

r
r

)
,

(11b)

where n0 is the equilibrium nucleon number density and u

is the fluctuation propagation speed, related to the symmetry

energy parameter as (�23 MeV) by

u =
√

8as

mp

NZ

A2
. (12)

From Eqs. (5) and (11) we calculate [9]

αx = 0 (13a)

αy = −i
8πNZ

A2

Zpe
2n0

h̄γ v

√
h̄

2Mω
K1

(
ωb

γ v

) [
c

v

∫ R

0
r2dr

× j1

(
ω

u
r

)
j1

(
ω

c
r

)
− u

v

∫ R

0
r2drj2

(
ω

u
r

)
j2

(
ω

c
r

)]
(13b)

αz = −8πNZ

A2

Zpe
2n0

h̄v

√
h̄

2Mω
K0

(
ωb

γ v

)[
1

3

uv

c2

∫ R

0

× j0

(
ω

u
r

)
j0

(
ω

c
r

)
r2dr − c

v

∫ R

0
r2drj1

(
ω

u
r

)
j1

(ω

c
r
)

+ 2

3

u

v

(
1 + 1

2γ 2

)∫ R

0
r2drj2

(
ω

u
r

)
j2

(
ω

c
r

)]
. (13c)

Inspection of both Eqs. (10) and (13) shows that as the
bombarding energy increases, αy approaches a finite limit and
αz approaches zero. The geometry of the collision also requires
that αx = 0. In this situation, the argument of the Legendre
polynomial in Eq. (6) approaches |αy |2/|(αy)2| = 1, and the
excitation probability of a state of specified n, � reduces to the
simpler form

Pn,�

γ→∞−→ 2� + 1

(2n)!!(2n + 2� + 1)!!
(|αy |2)2n+�e−|αy |2 . (14)

Figure 1 illustrates the bombarding-energy dependences of
αy and αz in the two models. The reaction involves 208Pb
projectiles and a 40Ca target. The approach of αy to a constant
limiting value, while αz strongly decreases, is evident. It is
also clear from Fig. 1 that all the cross sections predicted by
the Goldhaber-Teller and Steinwedel-Jensen models will be
very similar, since all the cross sections are determined by the
two parameters αy and αz. We get a further simplification of
Eq. (14) if we restrict our attention to levels with a given total
number of quanta N = 2n + �. Then we can deduce that

P N−�
2 ,�

P N−�−2
2 ,�+2

γ→∞−→ (2� + 1)(N + � + 3)

(2� + 5)(N − �)
γ→∞−→

σN−�
2 ,�

σ N−�−2
2 ,�+2

.

(15)

The second relation holds because the ratio is independent of
αy and therefore independent of b. According to Eq. (7), if the
ratio of excitation probabilities is independent of b, that ratio
will also be the cross-section ratio. In the particular case of

two-phonon levels, Eq. (15) yields σ1,0/σ0,2
γ→∞−→ 1/2. This is

in agreement with the calculation of Bertulani and Baur [6].
Figure 2 shows the bombarding energy dependence of the

excitation cross section for levels with four or fewer GDR
phonons in a 40Ca target, when the projectile is 208Pb. The
calculation was done using the Goldhaber-Teller description
of the GDR. As was shown above, the predictions based on
the Steinwedel-Jensen description would be similar.
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FIG. 1. Comparison of calculations of (αy, αz) using the
Goldhaber-Teller and Steinwedel-Jensen models of the GDR.
(a) b = 12 fm; (b) b = 45 fm.

FIG. 2. Excitation cross sections for various (n, �) levels of the
GDR in 40Ca, due to Coulomb excitation by 208Pb projectiles. Levels
with the same number of phonons are indicated by the same type
of line. These calculations are done using the Goldhaber-Teller
description of the GDR.

At bombarding energies per nucleon near 10 GeV, Fig. 2
exhibits cross-section ratios consistent with Eq. (15). At lower
bombarding energies per nucleon, say below 1 GeV, the
cross-section ratios are shown by Fig. 2 to be quite different.
Changing the bombarding energy has a significant effect on the
ratio of transverse and longitudinal impulses received by the
target. It follows from Eq. (6) that this can effect the ratios of
excitation probabilities of states of different angular momenta.
Indeed, we see that as the bombarding energy per nucleon
increases from 1 to 2 GeV, the N = 2 and N = 3 levels that
are most strongly excited change from � = N to � = N − 2.
This behavior suggests that some interesting changes in the
angular distribution of decay products might be observed as
the bombarding energy moves through this region.
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