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Microscopic cluster model study of 3He + p scattering
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We calculate the 3He + p scattering phase shifts for the S and P waves in a microscopic cluster model, in
which the description of the 3He wave function is extended from a simple (0s)3 model to a three-body model.
We employ two different nucleon-nucleon interactions, the Minnesota (MN) and AV8′ potentials, to investigate
the role of the d + 2p channel in the low-energy phase shifts. The role of the d + 2p channel in the P -wave
phase shifts is very sensitive to the choice of the potential. The d + 2p channel is indispensable in reproducing
the resonant phase shifts in the AV8′ potential while it plays a minor role in the MN potential. On the contrary,
the role of this channel in the S-wave nonresonant phase shifts is negligible in both potentials.
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For studies of structure and reactions of light nuclei, the
cluster model is known to be one of the successful models [1].
A microscopic cluster model such as the resonating group
method (RGM) [1] employs two ingredients. The first is to
assume that the nucleus is composed of several clusters, where
the traditional calculations employ the simple 0h̄ω cluster
wave functions or the superposition of such wave functions.
The second is to employ an effective nucleon-nucleon (N -N )
interaction such as the Minnesota (MN) potential [2].

The intrinsic wave function of the s-shell cluster is usually
approximated with the 0s harmonic-oscillator (h.o.) function,
whereas the cluster relative motion is solved accurately.
Corresponding to the simplified cluster wave functions, only
the central, LS, and Coulomb terms of the N -N interaction is
usually employed, and the effects of the tensor force and the
short-range repulsion that are present in a realistic interaction
are presumed to be renormalized in the central force of the
effective interaction. Some calculations employ other types
of effective N -N interaction, including the tensor force [3,4].
However, because the cluster wave function was kept a simple
0s h.o. function, its contribution was considered only for the
cluster relative motion.

It is well known that the ground state of 4He, for example,
has a large admixture of the D-wave component attributable
to the tensor force, amounting to Pd ≈ 14% for the AV8′
potential [5–7]. It was discussed that this D-wave component
plays an important role in reproducing the quadrupole moment
of the ground state of 6Li [4]. The D-wave component with
(L, S) = (2, 3/2) in the ground state of 3He is 8.5% for the
AV8′ potential [7].
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To understand more deeply the structure and reactions of
light nuclei, it is important to develop the microscopic cluster
model that employs the more realistic cluster wave functions.
The RGM calculation starting from the realistic N -N inter-
action and the corresponding cluster wave functions built up
by the ab initio no-core shell model was already developed in
Ref. [8]. The purpose of the present article is to develop such
calculations in which the cluster wave functions are given
by the Gaussian basis functions selected by the stochastic
variational method (SVM) [9,10] and to see the effects on the
3He + p S- and P -wave elastic scatterings. The 3He cluster
wave function is extended from the (0s)3 h.o. function to
the p + p + n three-body wave function. We have tested this
extended model with two different N -N interactions: One is
a conventional effective interaction, the MN potential, and the
other is a realistic interaction, the AV8′ potential.

Four P -wave broad resonances with spin and parity 2−,
1−, 0−, and 1− are observed in the low-incident-energy
region of 4−7 MeV in the 3He + p scattering [11], but no
resonant behavior is observed in the two S-wave phase shifts
with 0+ and 1+. The 3N + N scattering was previously
investigated by various approaches with both realistic [12–15]
and effective interactions [3]. The phase shifts, analyzing
powers, and cross sections of both 3He + p and 3H + n elastic
scatterings were calculated with the RGM in Ref. [15]. In the
present article, we will clarify the role of the d + 2p channel
in the 3He + p phase shifts by comparing the results by the
two different N -N interactions.

We have employed the microscopic cluster model as
formulated by the RGM [1]. In this method, all the nucleons
are treated explicitly and they are assumed to be arranged in
several clusters. The wave function consisting of two clusters
(A + B) is given as
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where �
A,i
IA,πA

and �
B,j

IB,πB
are the intrinsic wave functions of

the clusters A and B, and their spins, IA and IB , are coupled
to the channel spin I as indicated by the square brackets. The
symbol NA (NB) stands for the number of the basis set for
the cluster intrinsic wave function of the cluster A (B). The
first state with i (j ) = 1 is the ground state and the states
with i (j ) � 2 denote the so-called “pseudostates,” which are
constructed by the diagonalization of the Hamiltonian for
each cluster. These pseudostates are the discretized continuum
states and are necessary to take into account the distortion
effects of the scattering clusters [16]. The ground states of 3He
and d are bound states but that of the 2p (diproton) cluster
is a virtual state. The cluster relative motion function χ�(ρ)
with the partial wave � is specified by the cluster relative
distance coordinate ρ. The partial waves � are taken up to
� = 3 at the present calculation. The total wave function
in Eq. (1) is properly antisymmetrized as indicated by the
intercluster antisymmetrizer A. It contains no center-of-mass
wave function and has good total angular momentum JM and
parity π .

The combination of clusters included are (A,B) = (3He, p)
and (d, 2p). Furthermore, we should mention that we take
into account not only a simple [3He + p] + [d + 2p] coupled
channel but also the other possible inelastic channels. In
other words, the different spin-parity states of 3He and their
pseudostates are included in the 3He + p channels. Also, for
the d + 2p channel, an excited state of the deuteron d∗(0+)
and the pseudostates of d (d∗) and 2p clusters are included.
These pseudostates, when they are included in the phase-shift
calculation, are expected to take account of the distortion of
the clusters of the entrance channel [16].

The intrinsic wave functions of 3He used in Eq. (1) are
given by the p + p + n three-body calculation,
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The subscript λA stands for a set of the labels
{SA, TA, LA, �1, �2, ν1, ν2} and Ci

λA
are the coefficients of

the ith eigenstate obtained by diagonalizing the p + p + n

Hamiltonian. The Gaussian basis function ��i
(νi, ρi) are given

in Eqs. (4) and (5) of Ref. [17] and ρ1, ρ2 are the Jacobi
coordinates in the p + p + n system with �1, �2 denoting the
corresponding orbital angular momenta. The function χSA,TA

is the spin and isospin part of 3He with SA and TA being
the total spin and total isospin, respectively. The total angular
momentum and parity (IπA

A ) of 3He is taken into account up to
5/2± with the restriction of �1, �2 � 2 and SA = 1/2 or 3/2
and TA = 1/2.

The deuteron wave function has a form similar to that of
Eq. (2),
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where I
πA

A = 1+ with SA = 1, TA = 0, and LA = 0 or 2. We
also consider the excited deuteron clusters which have I

πA

A =
0+ with SA = 0, TA = 1, and LA = 0. The 2p clusters are

given similarly to Eq. (3) with I
πB

B = 0+ (SB = 0, TB = 1,
LB = 0), which is nothing but the isobaric analog state of the
excited deuteron mentioned previously. The spatial parts of
the cluster wave functions are given in terms of a combination
of Gaussian basis functions with different values of ν1.

The wave functions given in Eqs. (1)–(3) are obtained
by solving the respective A(=2 ∼ 4) nucleons Schrödinger
equation with the Hamiltonian

H =
A∑

i=1

Ti − Tc.m. +
A∑

i<j

Vij , (4)

where Ti is the kinetic energy of the ith nucleon, Tc.m. is the
kinetic energy of the center-of-mass motion, and Vij is the
nucleon-nucleon interaction.

The cluster relative motion χ�(ρ) in Eq. (1) is solved with
the microscopic R-matrix method (MRM) [18], in which
the configuration space for the relative motion between the
clusters is divided into two regions, inner and outer, by
a channel radius. The relative wave function in the inner
region is approximated with a superposition of Gaussian basis
functions ��(ν, ρ) with various range parameters ν [17]. The
same set of Gaussian basis functions is employed for all
the channels. The range parameters are taken in the range
of 0.1 fm < b(=1/

√
ν) < 15 fm. And the number of ν and

the channel radius are determined by the convergence of the
calculated phase-shift. To avoid the numerical instability in
the MRM calculation, the range parameters in Eqs. (2) and
(3) for the cluster intrinsic motion are taken in the range
of bi(= 1/

√
νi) < 5 fm. The relative wave function in the

inner region is connected, at the channel radius, smoothly
to the asymptotic form of the relative wave function, which is
expressed in terms of the Coulomb functions and the scattering
S-matrix to be determined.

The MN potential with u = 0.98 is employed as the
effective N -N interaction. This interaction can reproduce
scattering lengths and effective ranges for the two-nucleons
S-wave state and fairly well reproduces the binding energies
of d, 3H, and 4He [7]. With the spin-orbit term of Reichstein
and Tang (set IV) [19], this potential can reproduce low-energy
α + n phase shifts for the S and P waves [20].

Figures 1 and 2 display the P - and S-wave elastic scattering
phase shifts obtained with the MN potential. The 3He cluster
wave function is given by the 15 basis functions that are
selected by the SVM. The obtained 3He energy is −7.70 MeV
and the root mean square (rms) radius is 1.73 fm. The deuteron
wave function is given by four Gaussian basis sets where
the Gaussian parameters ν1 in Eq. (3) are 1.297, 0.552,
0.198, and 0.040 fm−2. The obtained deuteron energy is
−2.10 MeV and the rms radius is 1.63 fm, compared to the
fully converged values, −2.20 MeV and 1.95 fm, respectively
[7]. The basis set for the 0+ states of the pn and pp clusters
are chosen as the same basis functions within a bound-state
approximation. The calculated phase shifts with the 3He + p

single channel are shown by the solid lines, and those including
additionally the d + 2p channel are shown by the dashed lines.
In this calculation, the 3He, d, and 2p clusters have only the
S-wave component. We see that the d + 2p channel increases
the P -wave phase shifts at most 10◦ and gives the negligible
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FIG. 1. The 3He + p P -wave elastic scattering phase shifts of
(a) 0−, (b) 1−(I = 0), (c) 1−(I = 1), and (d) 2− states calculated with
the MN potential. Here I is the channel spin. The solid and dashed
lines denote the results of the 3He(1/2+) + p and [3He(1/2+) +
p] + [d(0+, 1+) + 2p(0+)] configurations, respectively. The crosses
denote the experimental data [21] and the error bars of the data are
omitted.

contribution on the S-wave phase shifts. Thus, we conclude
that the d + 2p channel plays a minor role on both the resonant
P -wave phase shifts and the nonresonant S-wave phase shifts
as far as the conventional effective N -N interaction is used in
the cluster model calculation.

We should mention that the conventional microscopic
cluster model usually employs a simple 0s h.o. wave function
for the 3H, 3He, and 4He clusters. When the (0s)3 h.o. wave
function is employed for the 3He cluster in the 3He + p

calculation, the d + 2p channel gives a considerable contri-
bution on not only the P -wave but also the S-wave phase
shifts. These significant differences are attributable to the fact
that the 3He + p and d + 2p channels have a large overlap
at the short distance of the cluster separation. The inclusion
of the d + 2p channel plays the role of the distortion effect in
the 3He cluster and improves the 3He wave function indirectly.
However, once the improved wave function of the 3He cluster
is employed, the d + 2p channel is strongly suppressed, as
seen in Figs. 1 and 2.

A similar suppression by the improvement of the cluster
wave function was noted in understanding the neutron-halo
structure of 6He in the α + n + n cluster model. As was shown
in Refs. [20,22], the use of the simple (0s)4 h.o. function for the
α particle led to the conclusion that the t + t channel is really
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FIG. 2. The 3He + p S-wave elastic scattering phase shifts of
(a) 0+ and (b) 1+ states calculated with the MN potential.
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FIG. 3. The 3He + p P -wave elastic scattering phase shifts of
(a) 0−, (b) 1−(I = 0), (c) 1−(I = 1), and (d) 2− states calculated
with the AV8′ potential. The lines denote the results obtained
including the following configurations: solid, 3He(1/2+) + p; dot-
ted, 3He(1/2±, 3/2±, 5/2±) + p; dash-dotted, [3He(1/2+) + p] +
[d(0+, 1+) + 2p(0+)]; dash-dot-dotted [3He(1/2±, 3/2±, 5/2±) +
p] + [d(0+, 1+) + 2p(0+)]. The crosses denote the experimental
data [21] and the error bars of the data are omitted.

important in gaining the binding energy of 6He. However, if the
simple (0s)4 h.o. wave function is replaced with the better one
calculated in the 3N + N two-body model, the effect of the
t + t channel is reduced to a large extent. We have to perform
the multiconfiguration calculation, paying due attention to the
cluster intrinsic function to evaluate properly the contribution
by the other configurations such as the d + 2p channel
in 4Li.

Figures 3 and 4 display the P - and S-wave phase shifts with
the AV8′ potential. The 3He cluster wave function is given by
the 15 basis functions selected by the SVM and this wave
function gives the 3He energy as −6.27 MeV and the rms
radius as 1.73 fm. The states other than Jπ = 1/2+ are given
by 10 basis functions within a bound-state approximation. The
deuteron wave function is given by six Gaussian basis sets with
ν1 = 2.86, 0.277, and 0.040 fm−2 for the S wave and 1.46,
0.470, and 0.123 fm−2 for the D wave. The obtained deuteron
energy is −2.03 MeV and the rms radius is 1.70 fm. These three
S-wave basis sets are employed for the 0+ states of the pn and
pp clusters within a bound-state approximation. The preceding
ground-state properties are compared to the converged results
[7]: −7.10 MeV and 1.78 fm for 3He, −2.24 MeV and
1.96 fm for d. We have to limit the number of basis sets
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FIG. 4. The 3He + p S-wave elastic scattering phase shifts of
(a) 0+ and (b) 1+ states calculated with the AV8′ potential.
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for 3He and d clusters to perform the full channel MRM
calculation.

Plotted lines in these figures are the phase shifts calculated
in the single channel (solid), those including other spin-parity
states of 3He (dotted), those including the d + 2p channel
(dash-dotted), and those including all of these channels (dash-
dot-dotted). With the AV8′ potential, we can see the significant
contribution of the d + 2p channel on the P -wave phase shifts.
The role of this channel is larger than that of the excited states
of 3He, which give only a small contribution when the d + 2p

channel is already taken into account. These are quite different
from the MN potential case. In contrast to the P -wave phase
shifts, the S-wave phase shifts are reasonably well reproduced
by the single-channel calculation and these are are quite similar
to the results with the MN potential. We verified that this basis
truncation does not change our conclusion by comparing to
an extended basis calculation. The extended basis uses 30 and
8 Gaussians for 3He and d, respectively, leading to the result
close to the converged energy and rms radius. Both basis sets
give almost the same phase shifts in the single [3He(1/2+) +
p] calculation. The phase shift difference between both sets

is less than 5◦ in the coupled [3He(1/2+) + p] + [d + 2p]
calculation. Therefore, the basis truncation does not change
our present conclusion.

In conclusion, the 3He + p single-channel calculation with
the effective N -N interaction can sufficiently reproduce not
only the P -wave phase shifts but also the S-wave phase
shifts. On the contrary, the single-channel calculation with
the realistic N -N interaction fails to reproduce the P -wave
resonant phase shifts and we should take into account the
various configurations while the nonresonant S-wave phase
shifts can be fairly well reproduced by the single channel.
Recently, the α + N phase shifts have been calculated with
the realistic N -N interaction [8,23,24]. It is interesting to
investigate the role of the additional t + d or some distorted
configurations on the resonant P -wave phase shifts to evaluate
correctly the contribution of the three-body force.

This work presents research results of Bilateral Joint
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