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Appearance of hyperons in neutron stars
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By employing a recently constructed hyperon-nucleon potential the equation of state of β-equilibrated and
charge neutral nucleonic matter is calculated. The hyperon-nucleon potential is a low-momentum potential
which is obtained within a renormalization group framework. Based on the Hartree-Fock approximation at zero
temperature the densities at which hyperons appear in neutron stars are estimated. For several different bare
hyperon-nucleon potentials and a wide range of nuclear matter parameters it is found that hyperons in neutron
stars are always present. These findings have profound consequences for the mass and radius of neutron stars.
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I. INTRODUCTION

Neutron stars (NS) are compact objects with interior
densities of several times normal nuclear density. The precise
and detailed structure and composition of the inner core of a
NS is not known at present. Several possibilities such as mixed
phases of quark and nuclear matter, kaon, or pion condensates
or color superconducting quark phases are under debate.

In the present work the influence of hyperons with
strangeness S = −1 (�,�−, �0, and �+) on the composition
and structure of a NS is investigated. In this context the central
and essential quantity to be analyzed is the equation of state
(EOS). The EOS determines various NS observables such as
the mass range or the mass-radius relation of the star. The
composition and structure of neutron and also of protoneutron
stars have been investigated in detail with a wide range of EOS
for dense nuclear matter [1,2]. The emergence of hyperons
for increasing nucleon densities has been suggested in the
pioneering work of Ref. [3]. Since then the impact of hyperons
on dense matter has been studied extensively with different
approaches, see, e.g., Refs. [1,4–9]. Unfortunately, the details
of the hyperon-nucleon (YN ) interaction and even more of
the hyperon-hyperon (YY ) interaction are known only poorly.
The limited amount of available experimental data enables the
construction of many different potentials. For example, the
Nijmegen group has proposed six different potentials which
all describe the low-energy data such as phase shifts equally
well; see, e.g., Ref. [10].

We wish to explore the differences between the available
YN interactions and their influences on the appearance of
hyperons in neutron stars. For this purpose the hyperon YN

threshold densities are calculated. Since the �0 and �+
hyperons are heavier than the � and �− hyperons they
typically appear later. Hence, we will focus on the � and
�− hyperons in the following.

The article is organized as follows: In Sec. III the EOS of
dense matter including hyperons are calculated. For the pure
nucleonic part of the EOS a parametrization is used. A central
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quantity which enters the EOS is the single-particle potential.
The derivation of the single-particle potential for hyperons is
given in Sec. II. The requirements which are necessary for
equilibrium are discussed in subsection IV A and the results
are collected in subsection IV B. The next section Sec. V shows
the calculations of neutron stars with and without hyperons.
Finally, the work is summarized and conclusions are drawn in
Sec. VI.

II. SINGLE-PARTICLE POTENTIALS

Single-particle potentials are a useful and important tool
to determine the density at which hyperons begin to appear
in baryonic matter. They can be obtained from an effective
low-momentum YN potential Vlow k [11,12] in the Hartree-
Fock approximation. Details concerning the derivation of the
YN single-particle potentials in this approximation can be
found in Ref. [13]. With these single-particle potentials the
chemical potentials and particle energies in β-equilibrated
matter can be calculated. This allows us to compute the
threshold densities for the appearance of a given hyperon
species and to establish the concentrations of all particles in
dense matter at a given density. In the process we will also
determine the EOS for the mixture of leptons and baryons
(electrostatic interactions are neglected because their energies
are orders of magnitude smaller than the other interaction
energies).

Our many-body scheme employs several “bare” YN in-
teractions as input for the Vlow k calculation: the original
Nijmegen soft-core model NSC89 [14], a series of new
soft-core Nijmegen models NSC97a-f [10], a recent model
proposed by the Jülich group J04 [15], and chiral effective
field theory (χEFT) [16]. The first three models are formulated
in the conventional meson-exchange (OBE) framework, while
the χEFT is based on chiral perturbation theory (for recent
reviews see, e.g., Refs. [17–19]). In the χEFT approach a
cutoff �χEFT enters which we fix to �χEFT = 600 MeV and
label the results obtained by χEFT600.

In general, the effective low-momentum YN interaction, the
Vlow k for hyperons, is obtained by solving a renormalization
group equation. The starting point for the construction of
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the Vlow k is the half-on-shell T matrix. An effective low-
momentum Tlow k matrix is then obtained from a nonrelativistic
Lippmann-Schwinger equation in momentum space by intro-
ducing a momentum cutoff � in the kernel. Simultaneously,
the bare potential is replaced with the corresponding low-
momentum potential Vlow k,

T α′α
low k,y ′y(q ′, q; q2)

= V α′α
low k,y ′y(q ′, q)

+ 2

π

∑
β,z

P

∫ �

0
dl l2

V
α′β

low k,y ′z(q
′, l)T βα

low k,zy(l, q; q2)

Ey(q) − Ez(l)
.

(1)

The on-shell energy is denoted by q2 while q ′, q are relative
momenta between a hyperon and nucleon. The labels y, y ′, z
indicate the particle channels, and α, α′, β denote the partial
waves, e.g., α = LSJ where L is the angular momentum, J

the total momentum, and S the spin. In Eq. (1) the energies in
the denominator are given by

Ey(q) = My + q2

2µy

, (2)

with the reduced mass µy = MY MN/My , where My is the
total mass of the hyperon-nucleon system, My = MY + MN .
Finally, the effective low-momentum Vlow k is defined by the
requirement that the T matrices are equivalent for all momenta
below the cutoff �. Details for several bare YN potentials
within the RG framework can be found in Refs. [11,12].

From the different effective Vlow k interactions we cal-
culate the single-particle potential Ub(p) of a baryon b ∈
{p, n,�,�−, �0, �+, �−, �0} with three-momentum p =
| �p|. In general, it is defined as the diagonal part in spin and
flavor space of the proper self-energy for the corresponding
single-particle Green’s function. In the Hartree-Fock (HF)
approximation for a uniform system it represents the first-order
interaction energy of the baryon with the filled Fermi sea. It
is evaluated as the diagonal elements of the low-momentum
potential matrix, V α

y (q), where an evident short-hand labeling
for the diagonal elements has been introduced [cf. Eq. (1)].
Note, that the relative momentum is given by q = ∣∣ �p − �p′∣∣
and the particle channel index is given by y = bb′. In
the HF approximation the single-particle potential has two
contributions: the (direct) Hartree- and the (exchange) Fock-
term [20]

Ub(p)=
∑
�p′αb′

(
V α

y (q)
∣∣
direct

+ (−1)L+S V α
y (q)

∣∣
exchange

)
. (3)

In this expression the diagonal elements of the nucleon-
nucleon (NN ) interaction is also included. In principle, an
effective low-momentum potential for the NN interaction is
also known but we will use for the NN sector a parametric
Ansatz to be discussed later [see Eq. (9)].

The density dependence for several � potentials at rest in
symmetric nuclear matter (no hyperons present) is shown in
Fig. 1. The square represents the generally excepted empirical
depth of U�(p = 0) ≈ −30 MeV. While most of the poten-
tials used can reproduce this value, the Jülich potential (J04)
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FIG. 1. Density dependence of � single-particle potentials for
various hyperon-nucleon interactions in symmetric nuclear matter.

yields a stronger binding while the old Nijmegen potential
(NSC89) underestimates the binding. All other potentials agree
up to the saturation density. However, with increasing density,
the differences grow, leading to different bindings at rest. This
will have consequences for the predictions of the � hyperon
concentration in dense nuclear matter. A comparison with
other works (Refs. [10,21,22]) shows some differences but
mostly yields similar results.

Figure 2 shows the density dependence of several �−
potentials at rest in symmetric nuclear matter similar to
Fig. 1. No agreement of the various U�− potentials over the
density range considered is seen. Compared with a G-matrix
calculation a stronger binding for the �− single-particle
potential is obtained. In Ref. [13] further details concerning
the hyperon single-particle potentials can be found.

For constructing the total energy/particle one has to distin-
guish which part of the total single-particle potential comes
from the in-medium nucleon interaction and which from the

-100

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0  1  2  3  4  5  6

U
Σ- (p

=
0)

 [M
eV

]

ρB[ρ0]

NSC97a
NSC97c
NSC97f
NSC89

J04
χEFT600

FIG. 2. Same as in Fig. 1 but for the �− hyperon.
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hyperons. For this purpose, the single-particle potential can be
split into a nucleonic and hyperonic contribution

Ub(p) = UN
b (p) + UY

b (p), (4)

where the first one, UN
b (p), denotes the baryon interacting

with a nucleon and the second one, UY
b (p), means the baryon

interaction with a hyperon. Note, that the baryon can either be a
nucleon or a hyperon. Accordingly, the nucleonic contribution
is calculated from Eq. (3) via

UN
b (p)=

∑
�p′α

b′=p,n

[
V α

y (q)
∣∣
direct

+ (−1)L+S V α
y (q)

∣∣
exchange

]
(5)

and analogously for the hyperonic contribution.

III. EQUATION OF STATE

By means of the single-particle potential the total energy per
particle, E/A, can be easily calculated. It is given by the total
energy of a baryon of mass Mb and its kinetic and potential
energy Ub(p) divided by the total baryon number density ρB :

E/A = 2

ρB

∑
b

∫ kFb

0

d3p

(2π )3

[
Mb + p2

2Mb

+ 1

2
Ub(p)

]
. (6)

The potential Ub(p) describes the average field which acts on
these baryons due to their interaction with the medium. The
baryon Fermi momentum kFb

is given by

k3
Fb

= 3π2xbρB (7)

with the baryon fraction ratio xb = ρb/ρB for baryon b.
It is well-known that nonrelativistic many-body calcula-

tions, based on purely two-body forces, fail to reproduce the
properties of nuclear matter at saturation density. This is also
the case in the present work. In order to proceed we replace
the purely nucleonic contributions (without the influence
of the hyperons) by an analytic parametrization developed
by Heiselberg and Hjort-Jensen [23]. This replacement makes
the study of hyperons more robust since the NN sector can be
controlled more easily.

From Eq. (6) the purely nucleonic contribution to the energy
per particle reads

ENN/AN = 2

ρN

∑
N

∫ kFN

0

d3p

(2π )3

[
MN + p2

2MN

+ 1

2
UN

N (p)

]
,

(8)

where the single-particle potential UN
N (p) only contains the

nucleonic contribution, cf. Eq. (5). However, instead of
using the Hartree-Fock expression we employ the following
parametrization

ENN/AN = MN − E0u
u − 2 − δ

1 + uδ
+ S0u

γ (1 − 2xp)2, (9)

where u = ρN/ρ0 denotes the ratio of the total nucleonic
density ρN = (xp + xn)ρB to the nuclear saturation density
ρ0 = 0.16 fm−3. The corresponding proton and neutron frac-
tion are denoted by xp and xn. The parameters E0, δ, S0 are

related to properties of nuclear matter at saturation density,
i.e., E0 is the binding energy per nucleon at saturation density
while S0 and δ are connected to the symmetry energy and
incompressibility, respectively.

As mentioned in the previous section, cf. Eq. (4), we
can separate the potential contribution of nucleons into one
coming from the interaction with other nucleons UN

N (p) and
one coming from the interaction with hyperons UY

N (p). The
latter does not contribute to the purely nucleonic EOS when we
consider symmetric matter only. However, in the next section,
when we investigate hyperons such terms are considered.

The parametrization (9) is fitted to the energy per particle in
symmetric matter obtained from variational calculations with
the Argonne V18 nucleon-nucleon interaction including three-
body forces and relativistic boost corrections [24]. The best
fit parameters are E0 = −15.8 MeV, S0 = 32 MeV, γ = 0.6,
and δ = 0.2. The EOS from Ref. [24] is considered one of the
most reliable ones. In this way possible uncertainties coming
from the nucleonic EOS are minimized.

The symmetry energy in dense matter is defined as

at = 1

8

∂2E/A

∂x2
p

∣∣∣∣∣
ρB=ρ0

. (10)

Since there are no hyperons at saturation density we can use
Eq. (9) directly to obtain at = S0. The incompressibility is
given by

K0 = 9ρ2 ∂2E/A

∂ρ2

∣∣∣∣
ρB=ρ0

(11)

from which we obtain the relation K0 = −18E0/(1 + δ).
To study the impact of the softness of the EOS and the

effects of the symmetry energy we vary K0 and at in a broader
interval. From experimental constraints the values for K0 range
between 200 MeV and 300 MeV and those for at between 28
and 36 MeV, see Ref. [25] and references therein. We vary K0

and at within these limits to study the effects of both parameters
on the appearance and concentrations of hyperons in dense
matter. While they do not influence the particle concentrations
directly, they modify the composition of the matter indirectly
by changing the available energy. In this way the point at
which hyperons will appear is affected. Results for various
values of K0 are shown in Fig. 3 (in symmetric matter the
energy per particle is only sensitive to the incompressibility).
In all cases the saturation point is at E/A = −16 MeV. The
parameter range allows us to classify the nucleonic EOS as a
stiffer (K0 = 300 MeV) or a softer (K0 = 200 MeV) one.

In addition, K0 directly influences the maximum allowed
mass of a neutron star. By increasing K0 the energy of the
system is increased and, as a consequence, more and more
hyperons can be produced. This in turn will decrease the
allowed maximum mass of a neutron star. Such a nontrivial
connection creates a conundrum: If we use a stiffer nucleonic
EOS by increasing K0 we then allow for higher hyperon
concentrations which softens the total EOS.

By means of Eq. (8) we can split the total energy per particle,
Eq. (6), into a purely nucleonic part and a remainder E′/A via

E/A = ρN

ρB

ENN

/
A + E′/A (12)
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FIG. 3. Parametric EOS in symmetric nuclear matter as obtained
from the parametrization of Ref. [23].

with the rest

E′/A = 2

ρB

∑
N

∫ kFN

0

d3p

(2π )3

1

2
UY

N (p)

+ 2

ρB

∑
Y

∫ kFY

0

d3p

(2π )3

[
MY + p2

2MY

+ 1

2
UN

Y (p) + 1

2
UY

Y (p)

]
. (13)

In symmetric matter, which is composed only of nucleons,
E′/A vanishes, but with this separation we can calculate
the total E/A for arbitrary hyperon concentrations. In the
following we will calculate the EOS including hyperons by
determining their concentrations in β equilibrium.

IV. β EQUILIBRIUM

A. Composition of matter

In order to determine the threshold densities for hyperons
their concentrations are needed. These are fixed by charge neu-
trality and β equilibrium. The latter refers to the equilibrium
under the weak interaction decays

B1 → B2 + l + ν̄l , (14)

where B1 and B2 denote the baryons, l ∈ {e−, µ−, τ−} the
negatively charged leptons and ν̄l the corresponding neutrinos.
In the case when the neutrinos are not trapped in the star (i.e.,
µν = 0) these requirements amount to

0 =
∑

b

[ρ(+)
b − ρ

(−)
b ] +

∑
l

[ρ(+)
l − ρ

(−)
l ] (15)

for the charge neutrality and

µ�− = µ�− = µn + µe, (16)

µ�0 = µ� = µ�0 = µn, (17)

µ�+ = µp = µn − µe, (18)

for the chemical potentials. The densities of positively and
negatively charged baryons and leptons are denoted by ρ

(±)
b

and ρ
(±)
l , respectively. The chemical potentials µ are labeled

by the corresponding particles. In the absence of neutrinos all
lepton and antilepton chemical potentials are equal. In addition
to the electrons, muons are also present. The τ lepton does not
appear since it is too heavy.

At zero temperature, the chemical potential of a fermion
system is equal to its Fermi energy. For relativistic noninter-
acting leptons it is given by

µl =
√

m2
l + k2

Fl
=

√
m2

l + (3π2xlρ)
2
3 (19)

with the corresponding lepton density ratio xl = ρl/ρL. The
total lepton density ρL is the sum over all three leptons. For
nonrelativistic interacting baryons, the chemical potential for
species b reads

µb = Mb + k2
Fb

2Mb

+ Ub(kFb
). (20)

For a given total baryon density ρB the Eqs. (15)–(18)
govern the composition of matter, i.e., the baryonic and
leptonic concentrations. The corresponding solution is referred
to as β-stable matter.

For the sake of consistency we now have to treat the
nucleonic part of the chemical potential µN in the same way
as the corresponding energy per particle. Since the chemical
potential can be obtained as a derivative of the energy density
ε and is related to the energy per particle via ε = ρBE/A, we
use the definition

µb = ∂ε

∂ρb

(21)

to have the appropriate replacement in the nucleonic chemical
potential. Finally, we arrive at the expression

µN = ∂εNN

∂ρN

+ UY
N

(
kFY

)
, (22)

where we have effectively replaced MN + k2
FN

2MN
+ UN

N (kFN
)

of Eq. (20) with the derivative ∂εNN/∂ρN . In this way the
parametrization Eq. (9) enters in the nucleonic part of the
chemical potential.

Since we are only parameterizing the nucleonic sector, no
such replacement is necessary for the hyperons. However,
since we have neglected the YY interaction UY

Y (kFY
) is zero

and Eq. (20) reduces to

µY = MY + k2
FY

2MY

+ UN
Y

(
kFY

)
. (23)

For the determination of the particle concentration the
single-particle potential in equilibrium is used. For hyper-
ons below the threshold density it is given by UY (p = 0),
similar to the symmetric matter case. Above the threshold
density it depends on composition and density. In Fig. 4
the density dependence of U�−(kF�− ) in β equilibrium for
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FIG. 4. Density dependence of U�− (kF�− ) for β-equilibrated
matter. (Upper panel) K0 = 200 MeV; (lower panel) K0 = 300 MeV.

two different incompressibilities K0 is shown. In the figure
a kink in the curves appears at the point where the hyperons
appear.

Another observation is the relative ordering and the magni-
tudes which resemble those of the single-particle potentials at
zero momentum in symmetric matter as shown in Fig. 1. Es-
sentially, the NSC97a, NCS97c, NSC97f, and J04 interactions
are still slightly attractive while the NSC89 and χEFT600
remain repulsive. Similar observations hold for the � system.
A new structure in form of a second inflection point emerges
due to the appearance of the �− hyperon.

A better indicator at which densities hyperons start to appear
is given by the concentrations of all particles and is displayed
in Figs. 5 and 6. In Fig. 5 a “soft” nucleonic EOS is used in
combination with an attractive �N and a very repulsive �N

interaction implemented by the χEFT600 model. In contrast
in Fig. 6 a “stiff” EOS is used represented by the NSC97f
model which has a similar �N interaction compared to the
χEFT600 model but also an attractive �N interaction. This
difference already leads to very different density profiles.
While in Fig. 5 the � hyperon is the first one which appears and
no �− hyperons are present, the �− hyperon appears first in
Fig. 6.

One should note that with the appearance of the �− hyperon
the density of the negatively charged leptons starts to drop
immediately. This is because their role in the charge neutrality
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FIG. 5. Density ratios for different particles for a “soft” nucleonic
EOS as a function of the baryon density using the χEFT600 model.

condition, Eq. (15), is now being taken over by the �−.
Similarly, the appearance of the � hyperon will accelerate
the disappearance of neutrons since both are neutral particles.

Once the composition of the matter has been determined
by demanding β equilibrium we can calculate the energy per
particle. For this purpose, we cannot use Eq. (6) but have to use
Eqs. (12) and (9). The result is presented in Fig. 7 where the
energy per particle in β-stable matter is shown as a function
of the density for different YN models. The symmetry energy
is fixed to at = 32 MeV while the incompressibility is set
to K0 = 200 MeV (upper panel in the figure) and to K0 =
300 MeV (lower panel). In addition, the EOS with hyperons
is compared with the purely nucleonic one.

One easily observes the onset of the hyperon appearance
at the point at which the curves start to deviate. As expected
the differences between the various YN interactions do not
modify the EOS for very small densities. In the range between
(2 − 3)ρ0, all EOS’s are similar to each other. However,
for increasing densities the influence of hyperons becomes
more significant, resulting in rather different EOS’s. This
concerns not only the magnitudes of the different energies
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FIG. 6. Same as Fig. 5 but for “stiff” nucleonic EOS using the
NSC97f model.
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per particle but also their slopes at higher densities. These
variations will lead to differences in the pressure and finally to
significant changes in the possible maximum mass of a neutron
star.

B. Threshold densities

The appearance of a given hyperon species is determined
by increasing the density for fixed K0 and at . The resulting
threshold densities for the �− hyperon for certain K0 and at are
collected in Fig. 8 for six different YN interactions. Similarly,
the threshold densities for the � hyperon are shown in Fig. 9.
From these figures one sees how the single-particle potentials
for various YN interactions modify the threshold densities. In
this way, the properties of the YN interaction in Fig. 1 and
Fig. 2 can be attributed to the hyperon appearances.

From Fig. 8 one concludes that the �− hyperon appears
between 1.4ρ0 and 2.4ρ0 with the exception of the χEFT600

model. For almost all YN interactions used in the present study
the �− is the first hyperon which will appear even though the �

hyperon is the lighter one. The reason is that the heavier mass
of the �− is offset due to the presence of the e− chemical
potential, cf. Eq. (16). In general, heavier and more positively
charged particles appear later. In the case of the �−, compared
to the �, the effect caused by the electric charge dominates
the one coming from the mass in almost all cases. For the �−
hyperon a further modification caused by the electric charge, is
the influence of at on the threshold density because the electron
chemical potential is modified by the symmetry energy. Thus,
the decrease of the threshold densities due to the increase of
K0 is analogous to the increase due to at .

For the � hyperon the range of threshold densities is
between densities from 1.7ρ0 to 4.5ρ0 depending on the choice
of K0, at , and the YN interaction used, cf. Fig. 9. The influence
of K0 on the threshold density for this hyperon is larger than the
one from at . This is reasonable since K0 controls the rate of the
energy increase with the density more directly, while at affects
only the details of the β equilibrium. One clearly recognizes in
Fig. 9 that the � appears earlier for larger incompressibilities.
Thus, in general we see that for increasing K0 the threshold
densities decrease for both hyperons.

In contrast to the previous K0 and at discussion, the
influence of the single-particle potentials on the threshold
densities is harder to analyze.

The threshold densities for the �− are largest for the
χEFT600 interaction which yields the most repulsive �−
single-particle potential. In general, hyperons will appear
earlier for a more attractive single-particle potential. This
becomes obvious from Eq. (20): the chemical potential
decreases for a more negative Ub(kFb

) and, consequently, the
threshold density will also decrease. Thus, the most repulsive
single-particle potential like the one for the χEFT600 leads to
the largest threshold density. For the � hyperon the threshold
densities are smallest for the most attractive single-particle
potential obtained with the J04 model, cf. Fig. 9. On the
other hand, they are largest for the most repulsive NSC89
interaction. For the NSC97f interaction, which is between
these extremes, the � threshold densities are very close to
those of the most repulsive NSC89 one, cf. Fig. 9. This stems
from the appearance of the �− hyperon. The effect is caused by
the slowdown of the increase of the neutron chemical potential
and is further related to the rapid increase of the �− density
just after its appearance, cf. Fig. 6. Basically, the slowdown
occurs as soon as a new hyperon appears because most of the
energy is used for its creation. Once the concentration of the
hyperon has reached a plateau, the neutron chemical potential
resumes its increase until a further hyperon might appear.
Thus, the appearance of the first hyperon shifts the threshold
density of the next hyperon toward higher values. This effect
explains why the threshold densities of the � are so similar
for the NSC97f and NSC89 interactions. It also makes clear
why the � threshold densities for the χEFT600 interaction
are smaller than those of the NSC97a, NSC97c, and NSC97f
interactions even though their � single-particle potentials are
almost the same, cf. Fig. 1. In the case of the J04 model the
delay mechanism described above becomes very interesting.
For this YN interaction the � and �− hyperon appear almost
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at the same density. In this case the neutron chemical potential
stagnates but the � and the �− single-particle potentials are
attractive enough to compensate for this.

To summarize this section strangeness appears around
∼2ρ0 for all YN models and parameter sets used. Note, that
the appearance of the first hyperon, whether it is the �− or the
�, cannot be altered by taking into account YY interactions
which have been neglected in this work. The present study in
terms of the broad parameter ranges as well as the multitude
of YN interaction models reveals that strangeness in the
interior of neutron stars cannot be ignored. Similar con-
clusions are obtained in the Brueckner-Hartree-Fock theory
[26].

V. STRUCTURE OF NEUTRON STARS

In this section we analyze the effect of the EOS including
hyperons on neutron stars. We focus on non-rotating stars,
ignoring any changes, caused by the rotation. For a given
EOS, the mass-radius relation of a NS can be determined by
solving the familiar Tolman-Oppenheimer-Volkoff equation
(TOV) [27]. To describe the outer crust and atmosphere of
the star, i.e., the region of subnuclear matter densities for
very small baryon densities below ρB < 0.001 fm−3, we have
used the EOS of Baym, Pethick, and Sutherland [28], which
relies on properties of heavy nuclei. For densities between
0.001 fm−3 � ρB � 0.08 fm−3, i.e., for the inner crust, we
have used the EOS of Negele and Vautherin [29], who have
performed Hartree-Fock calculations of the nuclear crust
composition. Details on crust properties can be found, e.g.,
in Refs. [30,31], while recent state-of-the-art approaches are
discussed in Ref. [32].

In Fig. 10 the mass-radius relation of a NS for a soft
EOS (left panel) and for a stiff EOS (right panel) is shown.
The symmetry energy at = 32 MeV is kept fixed in both

calculations and the resulting mass-radius relation without any
strangeness is also added for comparison.

As can be seen from the figure the appearance of hyperons
reduces the NS mass drastically compared with the pure NN

case. Even for larger values of the incompressibility, i.e.,
K0 = 300 MeV, the maximum mass, obtained with all YN

interactions used, is still below the largest precisely known
and measured NS masses 1.44 M� of the Hulse-Taylor binary
pulsar. This is not an unusual result and is also seen in other,
related works such as, e.g., Refs. [8,33–35]. In general, any
inclusion of further degrees of freedom to the nucleons will
reduce the NS mass.

Due to large uncertainties in the high density behavior of
the symmetry energy we investigate its influence on the NS
masses as follows: The parameter γ in Eq. (9) determines
the symmetry energy changes, i.e., how asy-stiff or asy-soft
the EOS is. The value of γ = 0.6, used so far, represents an
asy-soft system [36]. Above saturation density we change the
value of this parameter and use γ = 1 while keeping all other
parameters fixed representing a asy-stiff system. The effect of
the γ modification is shown in Fig. 11.

Only small changes in the mass-radius relation are obtained
when hyperons are included. In most cases the mass difference
is 0.1M�. An increasing γ leads to an increase in the proton
concentration which in turn leads to an increase in the �−
concentration. This largely cancels any energy gain from an
increased symmetry energy term that could possibly increase
the mass of a neutron star. The biggest mass change is seen for
K0 = 200 MeV with the χEFT600 interaction since this model
does not contain any �− hyperons. However, even in this case
the difference is below 0.2M� which leads to a maximum mass
below 1.2M�. A more noticeable change can be observed for
the radius. A radius shift of 1 km toward larger radii is seen for
all curves. Furthermore, if we in addition vary at at saturation
density between 28 and 36 MeV, a less pronounced effect on
the NS mass is visible as compared to the variation of γ .
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FIG. 10. Mass-radius relation of a neutron star for symmetry energy at = 32 MeV and different YN interactions. For comparison the
mass-radius curve obtained for the pure NN interaction is also shown. (Left panel) Soft EOS; (right panel) stiff EOS.
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To complete our investigation of hyperon effects on the
neutron star EOS we also need to consider modifications
induced by the YY and �N interactions. In order to evaluate
the effects of the S = −2 sector we have to construct YY and
�N Vlow k interactions, along the lines discussed earlier for
the S = −1 sector. Obviously, since there are more particles
to consider, the situation complicates considerably from a
numerical point of view. Unfortunately, unlike the S = −1
sector where we had several different “bare” interactions from
which we constructed the Vlow k potentials, in the S = −2
sector we only have one, namely the NSC97 interaction. We
also note that the inclusion of the S = −2 sector will not

influence the appearance of the first hyperon. Hence we have
neglected the S = −2 up to this point.

Figure 12 shows the mass-radius relation of a NS with
different YN, YY , and �N interactions is presented. The effect
of the inclusion of the S = −2 sector is rather marginal. As is
visible in Fig. 12 the maximum masses are lower than in the
previous cases which is reasonable since a further degree of
freedom, the � particle, is added. However, we note that the
NSC97 YY interaction is attractive which is the reason for
the decrease of the allowed maximum NS masses, see, e.g.,
Ref. [8]. A repulsive YY interaction would have an opposite
effect as shown in Ref. [34].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10  12  14

M
 [M

0]

R [km]

K0=200 MeV
at=32 MeV

NN
NSC97a
NSC97c
NSC97f

χEFT600

(a) K0 = 200 MeV

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  12  14  16

M
 [M

0]

R [km]

K0=300 MeV
at=32 MeV

NN
NSC97a
NSC97c
NSC97f

χEFT600

(b) K0 = 300 MeV

FIG. 12. Mass-radius relation of a neutron star for symmetry energy at = 32 MeV and different YN, YY , and �N interactions. For
comparison the mass-radius curve obtained for the pure NN interaction is also shown. (Left panel) Soft EOS; (right panel) stiff EOS.

035803-9



H. ÐAPO, B.-J. SCHAEFER, AND J. WAMBACH PHYSICAL REVIEW C 81, 035803 (2010)

It is also interesting to point out that for the χEFT600
interaction, where the �− hyperons appears late, if at all, it
is the � hyperons which takes its pace and influences the
maximum mass of a NS [37,38]. For all other models in which
the �− appears earlier than the � their influence on the NS
mass is marginal.

VI. SUMMARY AND CONCLUSIONS

The main intention of the present work was to study
the consequences of available hyperon-nucleon interactions
on the composition of neutrons stars and the maximum
masses. The analysis was performed in the framework of the
renormalization group improved Vlow k interaction deduced
from available bare potentials. Since the experimental data
base is very limited, these potentials are not well constrained,
in contrast to the nucleon-nucleon case.

We have determined the threshold densities for the ap-
pearence of hyperons in β-equilibrated neutron star matter
to lowest order in a loop expansion. To explore the sensitivity
to available YN potentials we have constructed single-particle
potentials for the � and �− hyperon in lowest order and
deduced the energy per particle. We have replaced the pure
nucleonic contribution to the energy per particle by an analytic
parametrization. This replacement enables us to vary the
incompressibility K0 and symmetry energy at of the purely
nucleonic EOS and to investigate their influence on the
threshold densities of hyperons. The composition of β-stable
matter has been determined by the requirement of charge
neutrality and β equilibrium. The corresponding threshold
densities for various values of K0 and at were evaluated.
The most important conclusion is that a more attractive
single-particle potential will decrease the chemical potential
and thus decrease the threshold density of the corresponding
hyperon.

We have found that, irrespective of the YN interactions,
incompressibility, and symmetry parameter used, hyperons
will appear in dense neutron star matter at densities around
∼2ρ0. This inevitably leads to a significant softening of the
EOS which in turn results in smaller maximum masses of a
neutron star compared to a purely nucleonic EOS. Notably,

the predicted maximum masses are well below the observed
value of 1.4 M�, an outcome also known from other works,
e.g., Refs. [8,33–35]. This poses a serious problem.

The softening of the EOS due to hyperons cannot be
circumvented by stiffening the nucleonic EOS, i.e., by in-
creasing K0, since this will cause hyperons to appear earlier.
Changing the high-density behavior of the symmetry energy
dependence or including the S = −2 sector does not alter this
conclusion either. For more details about the S = −2 sector,
in particular � hyperons in dense baryonic matter see, e.g.,
Refs. [39–42]. This can only mean that correlations beyond
the one-loop level could be important to stiffen the hyperon
contributions to the EOS. This, however, is not sufficient,
as Brueckner-Hartree-Fock calculations indicate [9,26]. As
has been known for a long time from nonrelativistic nuclear
many-body theory, three-body interactions are crucial to yield
a stiff nucleonic EOS. Repulsive three-body forces may also
play a role in the hyperon sector. There is, however, little
empirical information available at present. There is also the
possibility of an early onset of quark-hadron transition to cold
quark matter. This might also stiffen the high-density equation
of state.

Clearly, our results pose significant restrictions on any
reasonable equations of state employed in the study of
neutron star matter. With the prediction of a low onset
of hyperon appearance it becomes mandatory to seriously
consider strangeness with respect to neutron stars. Even though
our predictions for the maximum masses of neutron stars are
too low, the treatment of hyperons in neutron stars is necessary
and any approach to dense matter must address this issue.
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