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We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino
oscillation experiments of current interest. Our approach is based on the combined use of the Sato-Lee model
of electroweak pion production on a nucleon and the �-hole model of pion-nucleus reactions. Thus we develop
a model that describes pion-nucleus scattering and electroweak coherent pion production in a unified manner.
Numerical calculations are carried out for the case of the 12C target. All the free parameters in our model are
fixed by fitting to both total and elastic differential cross sections for π -12C scattering. Then we demonstrate
the reliability of our approach by comparing our prediction for coherent pion photoproductions with the data.
Finally, we calculate total and differential cross sections for neutrino-induced coherent pion production, and
some of the results are compared with recent data from K2K, SciBooNE, and MiniBooNE. We also study the
effect of nonlocality of � propagation in the nucleus and compare the elementary amplitudes used in different
microscopic calculations.
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I. INTRODUCTION

The detailed theoretical study of neutrino-nucleus reactions
is of great current importance owing to the ever-increasing
precision of neutrino oscillation experiments (recently carried
out, ongoing, and forthcoming). Because most of these ex-
periments measure the neutrino flux through neutrino-nucleus
scattering, reliable theoretical estimates of the relevant cross
sections are prerequisite for the accurate interpretation of the
data. Some of these experiments (T2K, MiniBooNE, etc.)
use neutrinos in an energy range within which the dominant
processes are quasielastic nucleon knockout and quasifree
single-pion production through excitation of the � (1232)
resonance. Meanwhile, coherent single-pion production in
this energy region (albeit not a dominant process) is also
of considerable interest, as it allows us to study, with no
ambiguity concerning the final nuclear state, the details of
the �-excitation mechanism and medium effects on the pion;
knowledge of these details is essential for predicting the
dominant quasifree pion production processes. In this paper
we focus on the coherent single-pion production process.

There have indeed been quite active experimental efforts to
investigate neutrino-induced coherent single-pion production
in the �-excitation region. K2K [1] and SciBooNE [2]
investigated charged-current (CC) coherent pion production,
while MiniBooNE [3] studied neutral-current (NC) coherent
pion production. Furthermore, results for antineutrino-induced
coherent pion-production processes are expected to become
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available soon from MiniBooNE for the NC process [4] and
from SciBooNE for the CC process [5]. It is to be remarked,
however, that the recent experimental results offer a rather
puzzling situation. The experiments at K2K [1] and SciBooNE
[2] report that the CC process is not observed, whereas the
MiniBooNE experiment [3] concludes that the NC process
is observed. Now, from the isospin factors, we expect an
approximate relation σCC ∼ 2σNC . Although the muon mass
can reduce the phase space for the CC process at low energies,
we still expect that σCC should be of a significant size compared
with σNC , and hence the above experimental results seem quite
puzzling. In this connection it is to be noted that MiniBooNE’s
use of the Rein-Sehgal (RS) model [6] in analyzing the NC
data has recently been questioned [7]: for a critical review of
the RS model, see Refs. [7] and [8]. The CC data analyses in
Refs. [1] and [2] did not rely on a particular theoretical model
for coherent pion production itself, but in dealing with some
other neutrino-nucleus reactions that entered into the analyses,
certain models whose reliability was open to debate had to be
invoked.

The theoretical treatment of coherent pion production can
be categorized into two types: a partially conserved axial
current (PCAC)-based model and a microscopic model. In
the former approach, the hadronic matrix element for neutrino-
induced pion production is related to the pion-nucleus (or pion-
nucleon) scattering amplitude through the PCAC relation.
Meanwhile, in the microscopic approach, the hadronic matrix
element is calculated by summing the elementary amplitude
for weak pion production off a single nucleon embedded in a
nuclear environment.

A prominent example of the PCAC-based approach is the
model due to Rein and Sehgal (RS model) [6] (cf. Ref. [9]).
Because of its success in the high-energy neutrino process [10]
(Eν >∼ 2 GeV, where Eν is the incident neutrino energy) and
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its simplicity, the RS model has been extensively used in
analyzing data in neutrino-oscillation experiments. Several
authors, however, have recently pointed out that the RS model
does not give a reasonable description for relatively low-energy
neutrino processes (Eν <∼ 2 GeV) [7,8] and that the use of
the RS model may have led to the puzzling experimental
situation currently facing us. There have been several proposals
[8,11–13] to remedy some of the possible insufficiencies in the
original RS model.

Meanwhile, to build a quantitatively reliable microscopic
approach, it is obviously of primary importance to start with a
model that can describe with sufficient accuracy electroweak
pion production off a free single nucleon. Furthermore, for
pion production off a nuclear target, we need to consider
medium effects such as the final-state interactions (FSIs)
between the outgoing pion and nucleus, etc. Recently there
have been several microscopic calculations [7,14–16], the most
elaborate one being that by Amaro et al. [7]. These calculations
differ in the way the elementary process (νµN → µ+Nπ )
is modeled and/or in the way the medium effects are taken
into account. For example, only the resonant �-excitation
mechanism is considered in Refs. [14] and [15], while the
nonresonant mechanism is additionally considered in Refs. [7]
and [16]. It was shown in Refs. [7] and [16] that inclusion
of the nonresonant mechanism leads to a reduction in the
cross section by a factor of ∼2, even though both models are
constructed in such a manner that the data for the elementary
process are reproduced fairly well.1 This result indicates the
importance of modeling the elementary process with a sound
and systematic approach that has been extensively tested by
available data.

The purpose of the present article is to develop an alternative
microscopic model for coherent pion production. An important
ingredient of our formalism is a reliable dynamical model for
the elementary process, and for that we employ the Sato-Lee
(SL) model [17,18]. The SL model was first developed as
a systematic framework for studying resonance properties
by analyzing data on pion production in photon (electron-)
-nucleon scattering in the �-resonance region [17,19]. The
SL model treats the resonant and nonresonant mechanisms
on the same footing and is known to provide a reasonably
accurate description of an extensive set of pion production
data. The SL model was further extended to the weak sector
in Ref. [18] and was shown to be able to reproduce data
for neutrino-induced pion production off a nucleon. As has
been done in previous microscopic calculations, we also need
to incorporate the nuclear medium effects. In the energy
region of our interest, the �-hole approach has proved to
be successful in describing various processes involving pion-
nucleus dynamics. These situations motivate us to develop
a model for coherent pion production by combining the SL
model and the �-hole model, and this is what we attempt
in this article. We limit ourselves here to a case where the
target nucleus (and hence the final nucleus also) has spin 0 and
employ a simplified �-hole model proposed in Ref. [20]. As

1Unfortunately, conclusive data for the elementary neutrino process
are still lacking, which leads to theoretical uncertainty.

for concrete numerical calculations, we concentrate on the 12C
target, which has been and will continue to be an important
nuclear target in many of neutrino-oscillation experiments.
To test the reliability of our approach, we first calculate
observables for coherent photopion production on 12C using
the same theoretical framework and show that the calculated
results agree well with data. We then proceed to calculate
observables for coherent neutrino-pion production on 12C and
present numerical results that can be compared with the recent
data from K2K and SciBooNE. We also present theoretical
predictions for those quantities for which experimental data
will soon become available.

The fact that the previous microscopic calculations exhibit a
rather large model dependence makes it particularly interesting
to use the SL model, which has been highly successful in the
single-nucleon sector. The SL model provides a consistent set
of amplitudes for pion production and pion-nucleon scattering
on a single nucleon; all these amplitudes are obtained in a
systematic manner from the same Lagrangian. In our approach
this consistency can be further taken over to the description of
the FSI between the final pion and the nucleus. Thus, based
on the SL amplitudes, we can construct a pion-nucleus optical
potential that is consistent with the transition operators for
electroweak pion production off a nucleus. To the best of our
knowledge, our approach is the first to provide a consistent
framework for treating the medium effect on the pion and
electroweak pion production on the same footing. This point
is worth emphasizing because it is this consistency that enables
us to predict cross sections for electroweak coherent pion
production with no adjustable parameters, once we fix certain
parameters (see the following) relevant to medium effects by
fitting to the pion-nucleus scattering data.

Another point to be noted is that our model takes into
account the nonlocal effect for in-medium � propagation.
For neutrino-induced coherent pion production, neither the
RS-based nor previous microscopic models have included this
effect. As pointed out in Ref. [21], the nonlocal effect could
reduce the cross section by a factor of ∼2 (∼1.7) for Eν =
0.5 (1) GeV. We consider it important to take due account of
the possibly large nonlocal effect.

Our calculation adopts the following procedure. We first
construct a pion-nucleus optical potential, using the SL πN

scattering (on- and off-shell) amplitudes as basic ingredient.
The medium modification of the � propagation in a nucleus
is considered with the use of the �-hole model [20]. All free
parameters in our model (spreading potential, phenomeno-
logical terms in the optical potential) are fixed by fitting
to pion-nucleus scattering data. After these parameters are
determined, we are in a position to make a prediction of
the coherent pion production process. Before calculating the
neutrino-induced process, we test the reliability of our model
by comparing our predictions for the photo-induced process
with data. After finding satisfactory results for the photopro-
cess, we proceed to calculate neutrino-induced coherent pion
production.

The organization of this paper is as follows. Section II
is dedicated to the explanation of our approach. We first
introduce the elementary amplitudes of the SL model. We
then give expressions for calculating the electroweak coherent
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pion production amplitudes in terms of the SL amplitudes
and derive the cross-section formulas. The expression for the
constructed optical potential and its relation with the scattering
amplitude are also given there. We present numerical results in
Sec. III and give a conclusion in Sec. IV. Appendix A provides
definitions of the multipole amplitudes, while Appendix B
explains the Lorentz transformation used in our calculation. In
Appendix C we give expressions for quantities that appear in
the �-hole model.

II. FORMULATION

The kinematics of the reactions under consideration is as
follows. We consider coherent pion production in neutrino(ν�)-
nucleus(t) scattering: ν�(pν) + t(pt ) → �−(p′

�) + π+(k) +
t(p′

t ) for the CC process, and ν�(pν) + t(pt ) → ν�(p′
�) +

π0(k) + t(p′
t ) for the NC process; we also consider the antineu-

trino counterparts. The four-momentum for each particle in
the laboratory frame (LAB) is given in parentheses. The four-
momentum transfer from the leptons is denoted qµ ≡ pµ

ν −
p

′ µ
� . We choose a right-handed coordinate system in which the

z axis lies along the incident neutrino momentum pν , and
the y axis is taken along pν × p′

�. In evaluating a nuclear
matrix element, it is convenient to work in the pion-nucleus
center-of-mass frame (ACM). The kinematical variables in
ACM are denoted by qA, kA, etc. We also work in the
pion-nucleon center-of-mass frame (2CM), when calculating
the elementary SL amplitudes. The kinematical variables in
2CM are denoted q2, k2, etc. When working in ACM (2CM),
we choose a coordinate system in which the z axis lies along
qA (q2) and the y axis is along pν,A × p′

�,A ( pν,2 × p′
�,2).

A. The Sato-Lee model

We express nuclear transition amplitudes for coherent pion
production in terms of the elementary amplitudes derived
from the SL model [18]. In this section, therefore, we
introduce the SL amplitudes. The differential cross section in
the LAB frame for pion production in the neutrino-nucleon
CC reaction, ν�(pν) + N (pN ) → �−(p′

�) + π+(k) + N (p′
N ),

is given by [cf. Eq. (10) in Ref. [18]]

d5σ

dE′
�d�′

�d�π

= G2
F cos2 θc

2

(
|k|
ωπ

+ |k| − k̂ · ( pν − p′
�)

E′
N

)−1

× | p′
�|

| pν |
|k|2m2

N

ωπENE′
N

LµνWµν

(2π )5
, (1)

where GF = 1.16637 × 10−5 GeV−2 is the Fermi constant,
and θc is the Cabbibo angle (cos θc = 0.974). E′

� and ωπ are
the energies of the final lepton and pion, respectively, mN is
the nucleon mass, and EN (E′

N ) is the initial (final) nucleon
energy. Wµν and Lµν represent the hadron and the lepton
tensors, respectively, and their definitions are given in Ref. [18]
[Eqs. (11) and (12) therein]. The preceding cross section can

be written as

d5σ

dE′
�d�′

�d�π

= G2
F cos2 θc

2

(
|k|
ωπ

+ |k| − k̂ · ( pν − p′
�)

E′
N

)−1

× | p′
�||k|2

(2π )5| pν |E
′
�,2pν,2

× 1

2

∑
sN s ′

N

∑
s ′
�

|	2L(FV − FA)|2, (2)

where FV and FA are the transition amplitudes in which the
hadronic vector and the axial-vector currents are, respectively,
contracted with the leptonic current. The symbol sN (s ′

N ) is
the z component of the initial (final) nucleon spin, while s ′

�

denotes the final lepton spin. The energies of the final lepton
and the initial neutrino in 2CM are denoted E′

�,2 and pν,2,
respectively. FV and FA, including both hadronic and lepton
currents, are calculated in 2CM and then embedded in the
cross-section expression given in LAB. The factor 	2L arises
from the relevant Lorentz transformation (see Appendix B):

	2L =
√

ωπ,2EN,2E
′
N,2

ωπENE′
N

, (3)

where ωπ,2, EN,2, and E′
N,2 are the energies of the pion, the

incident nucleon, and the final nucleon in 2CM. The spin
structure of FV and FA can be parametrized as

FV = −i �σ · �ε⊥FV
1 − �σ · k̂2 �σ · q̂2 × �ε⊥FV

2

− i �σ · q̂2k̂2 · �ε⊥FV
3 − i �σ · k̂2k̂2 · �ε⊥FV

4

− i �σ · q̂2q̂2 · �εFV
5 − i �σ · k̂2q̂2 · �εFV

6

+ i �σ · k̂2ε0F
V
7 + i �σ · q̂2ε0F

V
8 , (4)

where �ε⊥ = q̂2 × (�ε × q̂2) and

FA = −i �σ · k̂2 �σ · �ε⊥FA
1 − �σ · q̂2 × �ε⊥FA

2

− i �σ · k̂2 �σ · q̂2k̂2 · �ε⊥FA
3 − ik̂2 · �ε⊥FA

4

− i �σ · k̂2 �σ · q̂2q̂2 · �εFA
5 − iq̂2 · �εFA

6

+ iε0F
A
7 + i �σ · k̂2 �σ · q̂2ε0F

A
8 . (5)

The lepton-current matrix element εµ is given by εµ =
〈�|ψ̄lγ

µ(1 − γ5)ψν |ν�〉. We have introduced parametrization
for FA simply via FA = �σ · k̂2F

V . The amplitudes, FV
i and

FA
i , are expressed in terms of the multipole amplitudes

E
V,A
l± ,M

V,A
l± , S

V,A
l± , and LA

l±, which are functions of q2 and W

(the πN invariant mass) and computed in 2CM. Their explicit
expressions are presented in Appendix A.

In a coherent process on a spin-0 target under consideration,
only the spin nonflip terms of the transition amplitudes
contribute. We therefore can work with F̄ V (A), defined by

F̄ V (A) = 1
2 Tr[FV (A)], (6)

where the trace is taken for nucleon spin space. Their explicit
forms are

F̄ V = −k̂2 · q̂2 × �ε⊥FV
2 (7)
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and

F̄ A = −ik̂2 · �ε⊥FA
1 − ik̂2 · q̂2k̂2 · �ε⊥FA

3 − ik̂2 · �ε⊥FA
4

− ik̂2 · q̂2q̂2 · �εFA
5 −iq̂2 · �εFA

6 +iε0F
A
7 +ik̂2 · q̂2ε0F

A
8 .

(8)

In particular, the resonant parts of the elementary amplitudes
are given by

F̄ V
R − F̄ A

R

= (−2k̂2 · q̂2 × �ε⊥M
(3/2),V
R 1+ − 2ik̂2 · �ε⊥E

(3/2),A
R 1+

− 4ik̂2 · q̂2ε0S
(3/2),A
R 1+ + 4ik̂2 · q̂2q̂2 · �εL(3/2),A

R 1+
)


3/2
ij ,

(9)

where the subscript R stands for the resonant parts of
the corresponding multipole amplitudes associated with the
excitation of the � resonance. From the resonant amplitude
we can factor out the � propagator D(W ) as

F̄ V
R − F̄ A

R = N (k2, q2)

D(W )
, (10)

and

D(W ) = W − m� − ��(W ), (11)

where m� and �� are the bare mass and self-energy of the �

resonance, respectively.
We next discuss the T -matrix element for πN scattering,

which serves as an input for constructing an optical potential
for pion-nucleus scattering. A calculational procedure for the
πN T matrix within the SL model is given in Ref. [17]. A
distorted wave obtained with this optical potential will be used
to take account of the final-state interaction in coherent pion
production. The T matrix is decomposed into the resonant (tR)
and nonresonant (tnr) parts as

t
(c)
πN = t

(c)
R + t (c)

nr , (12)

where the superscript (c) specifies a channel; in our model
the resonance amplitude exists only for the P33 channel. The
on-shell component of the T matrix given in Eq. (12) is related
to the phase shift by

t
(c)
πN = − W

πωπ,2EN,2

e2iδ(c) − 1

2iko
2

, (13)

where W is the invariant mass of the πN system, and
ωπ,2 =

√
ko 2

2 + m2
π and EN,2 =

√
ko 2

2 + m2
N are the on-shell

energies of the pion and the nucleon in 2CM, respectively. The
resonant amplitude is expressed as

t
(P33)
R (k′

2, k2; W ) = −FπN�(k′
2)FπN�(k2)

D(W )
, (14)

where FπN�(k2) is the dressed πN� vertex, and D(W ) is
the � propagator introduced in Eq. (11). We note that the
four-momenta, k2 and k′

2, are in general off energy shell.

B. Coherent pion production in neutrino-nucleus scattering

Similarly to Eq. (12) for the πN scattering amplitude, the
weak amplitudes F̄ V (A), defined in Eqs. (6)–(8), also have

a resonant F̄
V (A)
R and a nonresonant F̄ V (A)

nr part. Accordingly,
the transition amplitudes of coherent pion production on nuclei
have resonant and nonresonant parts. We now describe how
these two components are calculated in our approach.

1. Transition matrix element: resonant part

The main task in calculating the resonant part of coherent
pion production on nuclei is to account for the medium effects
on � propagation in the elementary resonant amplitudes F

V (A)
R .

Here we follow the procedure of the �-hole model of pion-
nucleus reactions by modifying the � propagator in Eq. (11).
Thus it is useful to first briefly explain how the �-hole model
is formulated by considering elastic pion-nucleus scattering;
for a full account of the formulation see Refs. [22–25].

The �-hole model is formulated within the projection
operator formalism [22]. The nuclear Fock space is divided
into four spaces: P0, P1, D, and Q. The P0 space is spanned
by the pion and the nuclear ground state, the P1 space by the
pion and one-particle one-hole states, the D space by the one-�
one-hole configurations, and Q = 1 − P0 − P1 − D contains
the remainder of the full space. A projected Hamiltonian is
written as, for example, HP0D = P0HD. Starting with the
Schrödinger equation in the full space (H |�〉 = E|�〉), we
can apply the standard projection operator techniques [22]
to obtain an equation, defined only in the P0 space, to
describe the pion-nucleus elastic scattering T matrix. In the
�-hole model, one further imposes the condition that the D

space is the doorway of the transitions between P = P0 + P1

and Q spaces; namely, HPQ = HQP = 0. The pion-nucleus
scattering amplitude owing to � excitation can then be written
as

TP0P0 (E) = HP0DG�h(E)HDP0 , (15)

where the total energy defined in ACM (E + AmN ) is given
by

E + AmN = q0
A +

√
q2

A + (AmN )2

=
√

k2
A + m2

π +
√

k2
A + (AmN )2, (16)

where A is the mass number. The �-hole propagator G�h in
Eq. (15) is defined by

G−1
�h = D(E − H�) − Wel − �pauli − �spr. (17)

Here D(E − H�) can be calculated from Eq. (11), with H�

being the Hamiltonian for the � particle in the nuclear many-
body system. The effects owing to the Q space are included
in the so-called spreading potential �spr. A microscopic
calculation of the spreading potential is very complicated, as
it involves the calculation of pion absorption by two or more
nucleons. It is therefore a common practice to determine �spr

phenomenologically by fitting to the pion-nucleus scattering
data. Excitations to the P1 space are included in the �

self-energy ��(W ) of D(E − H�) [see Eq. (11)] with a
correction owing to Pauli blocking (�pauli). De-excitation to
the P0 space is the rescattering in the elastic mode and is
denoted Wel. In our actual calculation, we expand G�h in term
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of Wel, and the expansion series is resummed by solving the
Lippmann-Schwinger (LS) equation.

The calculations of the pion-nucleus scattering amplitude
in Eq. (15) require a diagonalization of the �-hole propagator
G�h of Eq. (17). For the diagonalization, it is practically
convenient to work with the oscillator basis for the � state,
defined by the Hamiltonian H�, and the nucleon-hole state.
This diagonalization is a difficult numerical task. Although
an efficient method using the doorway-state expansion has
been developed [24], the diagonalization of G�h is still
difficult, particularly for heavier nuclei. In Ref. [20], Karaoglu
and Moniz (KM) proposed a simplified calculation with
the �-hole model in which G�h is calculated with a local
density approximation rather than a diagonalization. In their
simplified treatment, �pauli is calculated by a nuclear matter
calculation [26], and their result is given in Appendix C. Their
parametrization of the spreading potential �spr in terms of a
central and a spin-orbit term is also given in Appendix C. Each
term of the spreading potential has a complex strength, which
is determined by fitting to the pion-nucleus scattering data.
KM applied their approach to π -16O scattering and found a
good agreement between their calculation and the data and,
also, the full �-hole calculation [23,24] except for the most
central partial waves. Encouraged by this success, we follow
this simplified version of the �-hole model to include the
medium effects on � propagation in defining the electroweak
pion production matrix elements.

Schematically, the resonant part of the transition matrix
element MA

R of weak coherent pion production on nuclei
induced by the CC can be obtained by replacing the initial
HDP0 in Eq. (15) with HDP ′

0
where P ′

0 is the space spanned by
the (axial-)vector current and the nucleus in the ground state.
In terms of the single-particle wave functions ψj ( pN ) of the
nucleons in the initial and final nuclear states, we thus have2

MA
R =

∑
j

∫
d3pN

(2π )3

d3p′
N

(2π )3
ψ∗

j ( p′
N )

× 	2AN (k2, q2)(2π )3δ( pN + qA− p′
N−kA)

D(E + mN − H�) − �pauli − �spr
ψj ( pN )

=
∑

j

∫
d3p�

(2π )3
ψ∗

j ( p′
N )

× 	2AN (k2, q2)

D(E + mN − H�) − �pauli − �spr
ψj ( pN ), (18)

where p� = pN + qA = p′
N + kA; the index j denotes

single-particle quantum numbers including the isospin. The
summation (

∑
j ) is taken over the occupied states of the

nucleus. The factor 	2A is defined by

	2A =
√

ωπ,2EN,2E
′
N,2

ωπ,AEN,AE′
N,A

, (19)

where ωπ , EN , and E′
N are the energies of the pion, the

incoming nucleon, and the outgoing nucleon, respectively, and

2In Ref. [27], the authors carried out a calculation for photon-
induced coherent pion production by diagonalizing G�h.

the quantities in the numerator (denominator) refer to 2CM
(ACM). This factor arises from the fact that F̄

V (A)
R values

computed in 2CM are to be embedded in MA
R evaluated in

ACM. To evaluate the numerator in the integrand of Eq. (18),
we clearly need a prescription for relating variables in 2CM to
those in ACM. Here we use the commonly used prescription
[28,29] to fix the nucleon momenta with the lepton momentum
transfer qA and outgoing pion momentum kA as

pN = −qA

A
− A − 1

2A
(qA − kA),

(20)

p′
N = − kA

A
+ A − 1

2A
(qA − kA),

and write the πN invariant mass as

W =
√(

EN A + q0
A

)2 − ( pN + qA)2 , (21)

with EN A =
√

p2
N + m2

N . Having specified all the relevant
variables in ACM, we can derive the corresponding variables
in 2CM via a Lorentz transformation to obtain N (k2, q2) of
Eq. (18). For more details about this Lorentz transformation
(including the discussion of a somewhat different treatment
of an off-shell pion momentum), see Appendix B. Note that,
in treating the wave functions, ψ( pN ) and ψ( p′

N ), and the �

kinetic term in the denominator in the integrand of Eq. (18),
we do not use the prescription given in Eqs. (20) and (21); thus
the important recoil effects on � propagation are not neglected
in our calculations.

We incorporate the recoil effect on the � self-energy in the
first-order approximation. This is done by linearizing the �

propagator with the following expansion [25]:

D(E + mN − H�) ∼ D(W ) − γ (W )
(
H� − e0

�

)
, (22)

E + mN = W + e0
�, (23)

γ (W ) = ∂D(W )/∂W, (24)

H� = p2
�

2µ�

+ V� + V C
� + eN, (25)

1/µ� = 1/m� + 1/(A − 1)mN, (26)

where V� (V C
� ) is the � (Coulomb) potential in the nucleus,

and eN is the hole energy. The � potential is taken to be the
same as that for the nucleon; its explicit expression is given
in Appendix C. Equation (23) defines e0

�. To carry out the
integration over the � momentum p� in Eq. (18), we express
the nucleon wave function ψj ( p) in terms of its coordinate-
space form φj (r). We note that with the prescription in
Eqs. (20) and (21), the numerator N (k2, q2) of Eq. (18) is
independent of the variable p� and can be factorized out of
the integration. With this factorization approximation and with
the use of the linearized form in Eq. (22), the integration over
p� leads to the following r-space expression:

MA
R = −

(
µ�	2AN (k2, q2)

2πγ

) ∑
j

∫
d3rd3r ′

×φ∗
j (r ′)e−ikA·r ′ eiK�|r ′−r|

|r ′ − r| eiqA·rφj (r), (27)
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where

K2
� = 2µ�

γ

{
W − m� − ��(W ) + γ (E − W + mN )

− γ
[
eN + V� + V C

�

] − �pauli − �spr
}
. (28)

Following the procedure described in Ref. [20] [see
Eqs. (25)–(39) therein], and subsequently applying the Lorentz
transformation from ACM to LAB, we obtain the following
expression for the transition matrix element ML

R in LAB:

ML
R = 16

√
1 + |λ|π

3

µ�D(W )

γ
	2L

× (−2k̂2 · q̂2 × �ε⊥M
(3/2),V
R 1+ − 2ik̂2 · �ε⊥E

(3/2),A
R 1+

− 4ik̂2 · q̂2ε0S
(3/2),A
R 1+ + 4ik̂2 · q̂2q̂2 · �εL(3/2),A

R 1+
)

×
∑

N=p,n

(
1 + λτN

2

)∫
s2dsR2dRj0(pR)j0(Ps)

eiK̄�s

s

×
{

1 + iµ�s

K̄�

[ ¯eN + HN ]

}
ρN (R)ĵ1(kF s), (29)

where p = |kA − qA|, P = |kA + qA|/2, s = |r ′ − r|, R =
|r ′ + r|/2, and K̄� is obtained from K� by replacing eN with
its average value, ēN ; we choose ēN = 16 MeV. The 2CM
variables k2 and q2 are obtained from kA and qA using the
Lorentz transformation as mentioned previously. The variable
λ denotes the charge state of the outgoing pion, while τN =
1 (−1) for N = proton (neutron). The factor 	2L is from the
Lorentz transformation from 2CM to LAB and is defined by

	2L =
√

ωπ,2EN,2E
′
N,2

ωπ,LEN,LE′
N,L

. (30)

In Eq. (29), j�(x) is the spherical Bessel function of order �,
and ĵ1(x) ≡ 3

x
j1(x); kF is the Fermi momentum,

k3
F (R) = 3π2

2
ρN (R). (31)

The proton (neutron) matter density is denoted ρp (ρn) and is
normalized to the total number of protons (neutrons) inside the
target. For the proton matter form factor we use the empirical
nuclear charge form factor [30] divided by the proton charge
form factor [31]. The neutron matter density is assumed to be
the same as the proton matter density.

The single-nucleon Hamiltonian appearing in Eq. (29) is
given by

HN = − ∇2
s

2mN

− ∇2
R

8mN

+ V [(R2 + s2/4)1/2], (32)

where V is the single-particle potential [Eq. (C8)].
To take account of the final pion-nucleus interactions, we

convolute the matrix element ML
R of Eq. (29) with the pion

distorted wave, which is expanded in partial waves:

χ∗
λ (k′

A) =
∑
lπ mπ

χ∗
λ lπ

(k′
A)Y ∗

lπmπ
(k̂A)Ylπ mπ

(k̂
′
A), (33)

where k′
A is the off-shell momentum. We note that the pion

distorted wave also depends on the pion charge (λ). More

details on our calculations of the pion wave functions are given
in Sec. II D.

By performing the partial-wave decomposition of ML
R

(now defined by the off-shell pion momentum by setting kA →
k′

A) and using Eq. (33), the amplitude ML
R with pion-nucleus

FSI takes the following form:

ML
R = ε

µ

A

∑
lπ

[
P 1

lπ
(xA)

(
cos φπ

AI
lπ 1
E µ − i sin φπ

AI
lπ 1
M µ

)
+P 1

lπ
(xA)

(
sin φπ

AI
lπ 2
E µ + i cos φπ

AI
lπ 2
M µ

)
− 2Plπ (xA)I lπ 3

Lµ + 2Plπ (xA)I lπ 0
S µ

]
, (34)

where xA = q̂A · k̂A, φπ
A is the azimuthal angle of the pion,

and ε
µ

A is the lepton-current matrix element in ACM. The
associated Legendre function of degree lπ and order 0 (1)
is denoted Plπ (P 1

lπ
). We have introduced the quantities I

lπ ν
X µ ,

defined by

I
lπ ν
X µ = −i

32
√

1 + |λ|πµ�

3

∫
dk′

Ak′2
A χ∗

λ lπ
(k′

A)

×
∫

dx ′
Aν

µ	
χ

AL	2ALγ −1XRξX
1lπ

(x ′
A)

×
∑

N=p,n

(
1 + λτN

2

)∫
s2dsR2dRj0(pR)j0(Ps)

eiK̄�s

s

×
{

1 + iµ�s

K̄�

[ ¯eN + HN ]

}
ρN (R)ĵ1(kF s), (35)

where x ′
A = q̂A ·k̂′

A, x ′
2 = q̂2 ·k̂′

2, and

ξX
�lπ

(x ′
A) =

⎧⎨
⎩

2lπ + 1
2lπ (lπ + 1)P

1
� (x ′

2)P 1
lπ

(x ′
A), (X = E,M),

2lπ + 1
2 P�(x ′

2)Plπ (x ′
A), (X = L, S),

(36)

and

XR

D(W )
= E

(3/2),A
R 1+ , M

(3/2),V
R 1+ , L

(3/2),A
R 1+ , S

(3/2),A
R 1+ , (37)

for X = E, M , L, S.
The Lorentz transformation factors coming from the elec-

troweak amplitudes (	2AL) and the wave function (	χ ) in
Eq. (35) are, respectively,

	2AL =
√

ω′
π,2E

′
N,2E

i
N,2

ω′
π,AE′

N,LEi
N,L

, 	χ =
√√√√ωπ,AE′′

N,AE
f

N,A

ωπ,LE′′
N,LE

f

N,L

, (38)

where ω′
π is the pion energy in the intermediate state, Ei

N and
E

f

N are the nucleon energies in the initial and final states, and
E′

N and E′′
N are those in the intermediate states; in general, E′

N

and E′′
N can be different. As before, the subscripts {2, A,L}

attached to the energies specify reference frames. It is noted
that the multipole amplitudes (XA

R ) depend on x ′
A because

the πN invariant mass in the intermediate state depends on
it [Eqs. (20) and (21)]. We also have introduced the Lorentz
matrix ν

µ defined by εν
2 = ν

µε
µ

A; ν
µ also depends on x ′

A; the
same Lorentz matrix relates qA (k′

A ) to q2 (k′
2 ). A procedure
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for deriving the Lorentz matrix and the transformation factors
in Eq. (38) is explained in Appendix B.

2. Transition matrix element: nonresonant part

We assume that there is no medium effect on the nonres-
onant part, F̄ V

nr − F̄ A
nr , of the weak pion production amplitude

on a nucleon in nuclei. Including the final pion-nucleus
interactions and using the same factorization approximation,
based on the choice [Eq. (20)] of the nucleon momenta to
evaluate F̄ V

nr − F̄ A
nr , the nonresonant coherent pion production

matrix element ML
nr can be written as

ML
nr =

∑
N=p,n

∫
d3k′

Aχ∗
λ (k′

A)

×	
χ

AL	2ALFN (k′
A − qA)

(
F̄ V,ζ

nr − F̄ A,ζ
nr

)
, (39)

where F̄
V,ζ
nr (F̄ A,ζ

nr ) is the nonresonant part of F̄ V (F̄ A) given
in Eqs. (7) and (8). F̄ V (A)

nr depends on N and λ [Eq. (A17)],
and the set (N, λ) is collectively denoted ζ . The nuclear form
factor FN ( p) is given by

FN ( p) =
∫

d3rρN (r)ei p·r . (40)

After the partial wave expansion of the pion distorted wave,
we arrive at

ML
nr = ε

µ

A

∑
lπ

[
P 1

lπ
(xA)

(
cos φπ

AJ
lπ 1
E µ − i sin φπ

AJ
lπ 1
M µ

)
+P 1

lπ
(xA)

(
sin φπ

AJ
lπ 2
E µ + i cos φπ

AJ
lπ 2
M µ

)
−Plπ (xA)J lπ 3

L µ + Plπ (xA)J lπ 0
S µ

]
, (41)

where we have introduced J
lπ ν
X µ , defined by

J
lπ ν
X µ = −4πi

∫
dk′

Ak′2
A χ∗

λ lπ
(k′

A)
∫

dx ′
Aν

µ	
χ

AL	2AL

×
∑

�

ξX
�lπ

(x ′
A)

∑
N=p,n

X�,ζ
nr

∫
r2drρN (r)j0(pr), (42)

for X = E, M , L, S. The multipole amplitudes are included
in X

�,ζ
nr as

X�,ζ
nr = (� + 1)2X

A,ζ

nr �+ + �2X
A,ζ

nr �−, (43)

for X = L, S, and

E�,ζ
nr = (� + 1)EA,ζ

nr �+ − �E
A,ζ

nr �−, (44)

M�,ζ
nr = (� + 1)MV,ζ

nr �+ + �M
V,ζ

nr �−, (45)

for X = E, M . The ζ dependence of the multipole amplitudes
is indicated explicitly. For example, E

A,ζ

nr �+ is the nonresonant
part of EA

�+, which has been introduced previously. The same
rule applies to the other multipole amplitudes.

3. Cross section

Having written the transition amplitude for the coherent
process in terms of the SL multipole amplitudes, we can
proceed to calculate the cross section for the CC process. First,

we write the transition amplitudes in Eqs. (34) and (41) as

ML
R = M̄L

R,µε
µ

A,

ML
nr = M̄L

nr,µε
µ

A.

In the LAB frame, the differential cross section for ν�(pν) +
t(pt ) → �−(p′

�) + π+(k) + t(p′
t ) is then given by

d5σ

dE′
�d�′

�d�π

= G2
F cos2 θc

2

(
|k|
ωπ

+ |k| − k̂ · ( pν − p′
�)

E′
t

)−1

× | p′
�||k|2

(2π )5| pν |E
′
�,Apν,A

×
∑
s ′
�

∣∣(M̄L
R,µ + M̄L

nr,µ

)
ε

µ

A

∣∣2
, (46)

where E′
t (=

√
p2

t + (AmN )2) is the total energy of the nucleus
in the final state in LAB, and E′

�,A and pν,A are the energies
of the final lepton and the initial neutrino in ACM. Note that
the calculation of

∑
s ′
�
|(M̄L

R,µ + M̄L
nr,µ)εµ

A|2 of Eq. (46) can
make use of the following property:

L
µν

A ≡ E′
�,Apν,A

2

∑
s ′
�

ε
µ

Aεν∗
A = p

µ

ν,Ap′ ν
�,A + pν

ν,Ap
′µ
�,A

− gµνpν,A · p′
�,A ± iεµνρσpν,A ρp

′
�,A σ , (47)

where gµν is the geometric tensor and εµνρσ is the antisym-
metric tensor with ε0123 = 1. The plus (minus) sign in the last
term is for the (anti-) neutrino process.

To obtain the cross-section formula for the neutrino NC
process, ν + t → ν + π0 + t , we make the following changes
in Eq. (46). Remove the Cabbibo angle. Set the lepton mass
equal to 0. Set the pion charge index λ (and ζ ) to 0 in I

lπ ν
X µ

and J
lπ ν
X µ (X = E, M , L, S) in Eqs. (35) and (42). [Note that

the pion wave function (χλ lπ ) also contains λ dependence.]
Finally, multiply the multipole amplitudes M

(3/2,1/2),V
�+ with

(1 − 2 sin2 θW ), where θW is the Weinberg angle (sin2 θW =
0.23), and multiply M

(0),V
�+ with (−2 sin2 θW ).

For the antineutrino CC process, the result for the neutrino
CC process is modified as follows. Set the pion charge index
λ (and ζ ) to −1 in I

lπ ν
X µ and J

lπ ν
X µ . Replace the lepton current

by the one for the antineutrino process, which amounts to
adopting the negative sign in the leptonic tensor, Eq. (47).
The modifications needed for getting the cross section for the
antineutrino NC process are now obvious.

C. Coherent pion photoproduction

With the same derivation given previously, we can also get
an expression for the differential cross section of the coherent
π0 photoproduction process, γ (q) + t(pt ) → π0(k) + t(p′

t ),
in the LAB frame:

d2σ

d�π

= α

2π

(
|k|
ωπ

+ |k| − k̂ · q
E′

t

)−1 |k|2
|q|ωπ

× 1

2

∑
ε

∣∣Mγ

R + Mγ
nr

∣∣2
, (48)
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where α is the fine structure constant, and 1
2

∑
ε stands

for averaging over the photon polarization. The transition
amplitudes Mγ

R and Mγ
nr for the photoprocess are obtained

from Eqs. (34) and (41) by retaining only the vector current,
setting φπ

A = 0, and regarding ε
µ

A as the polarization vector of
the incident photon. Finally, the pion charge index (λ) is set to
0 in I

lπ ν
X µ and J

lπ ν
X µ [Eqs. (35) and (42)].

D. Optical potential for pion-nucleus scattering

We calculate the pion-nucleus scattering using the computer
code, PIPIT [32], by appropriately modifying the optical poten-
tial there to accommodate the dynamical features of the �-hole
model and the SL model. In the original PIPIT, the optical
potential (U ), which is derived within the multiple scattering
formalism by Kerman, McManus, and Thaler (KMT) [33], is
given by3

U (k′
A, kA) = A − 1

A

{
ρp(q)tπp

(
k′

A, kA; ko
A

)
+ ρn(q)tπn

(
k′

A, kA; ko
A

)}
, (49)

where kA (k′
A) is the incoming (outgoing) pion momentum

in ACM, and ko
A the magnitude of the on-shell momentum.

The quantity ρp(q) (ρn(q)) is the form factor of the proton
(neutron) matter distribution for q = kA − k′

A, and tπp (tπn)
is the pion-proton (pion-neutron) scattering T matrix whose
normalization is defined in Eq. (13). It is to be noted that
this original optical potential does not take account of �

propagation in nuclei. In Ref. [20], KM separated tπp (tπn)
into the resonant and nonresonant parts, took the nonresonant
and the Coulomb parts of the optical potential from the
PIPIT code, and combined it with the resonant part derived
from a simplified �-hole model. A phenomenological s-wave
potential that is proportional to the square of the nuclear
density (ρt = ρp + ρn) was also included to account for the
pion absorption by two nucleons through non-� mechanisms.
Thus the KM optical potential is given by

U (k′
A, kA) = Unr + UR + Uph

(
ρ2

t

)
, (50)

where Unr, UR , and Uph are the nonresonant, resonant, and
phenomenological parts, respectively.

In constructing our optical potential, we follow the same
separation as in Eq. (50). The nonresonant part of the optical
potential is obtained from the PIPIT code by replacing the
nonresonant T matrices in the original code with those derived
from the SL model. It is worth emphasizing that the SL
model provides both on-shell and off-shell T -matrix elements.
Another difference from the original PIPIT code is that we use
a different prescription for the Lorentz transformation from
ACM to 2CM, as explained in Appendix B.

Regarding the resonant part, we use the resonant part of T

matrix for the πN scattering from the SL model, basically fol-
lowing the procedure used in Ref. [20] [apart from a more elab-

3PIPIT also includes a finite-range Coulomb interaction, and correc-
tions from the truncated part of the Coulomb interaction are taken
into account using the Vincent-Phatak method [34].

orate treatment of kinematics (Lorentz transformation, etc.)].
First, we expand the optical potential into partial waves as

U (k′
A, kA) = 2

π

∑
lπ mπ

V lπ (k′
A, kA)Y ∗

lπ mπ
(k̂′

A)Ylπ mπ
(k̂A). (51)

The resonant part of the potential is [cf. Eq. (39) of Ref. [20]]

V
lπ
R (k′

A, kA)

= A − 1

A

8π2µ�

3

×
∫

dxA	A2γ
−1x2Plπ (xA)FπN�(k′

2)FπN�(k2)

×
∑

N=p,n

(
1 + λτN

2

) ∫
s2dsR2dRj0(pR)j0(Ps)

×eiK̄�s

s

{
1+ iµ�s

K̄�

[ ¯eN+HN ]

}
ρN (R)ĵ1(kF s), (52)

where k2 (k′
2) is the incoming (outgoing) pion momentum in

2CM, and xA = k̂A · k̂′
A, x2 = k̂2 · k̂′

2, P = |kA + k′
A|/2, and

p = |kA − k′
A|. The dressed πN� coupling (FπN�) has been

introduced in Eq. (14). The Lorentz transformation of the
T matrix from 2CM to ACM gives rise to the factor 	A2

defined by

	A2 =
√

ωπ,2 ω′
π,2 EN,2E

′
N,2

ωπ,A ω′
π,A EN,AE′

N,A

, (53)

with ω
(′)
π,2 =

√
k(′) 2

2 + m2
π , ω

(′)
π,A =

√
k(′) 2

A + m2
π ,

E
(′)
N,2 =

√
k(′) 2

2 + m2
N , and E

(′)
N,A =

√
p(′) 2

N,A + m2
N . The

values of k(′)
2 and p(′)

N,A are fixed according to the prescription
explained in Appendix B. The other quantities have been
introduced in Sec. II B1.

Finally, we discuss the phenomenological term Uph. We
assume that in coordinate space Uph can be parametrized as

Uph(r) = B

(
ρt (r)

ρt (0)

)2

, (54)

where B is the partial-wave-dependent strength of the poten-
tial. The corresponding partial-wave potential in momentum
space is given by

V
lπ

ph (k′
A, kA) = A − 1

A
4π3Blπ

∫ 1

−1
dxAPlπ (xA)

×
∫

drr2j0(pr)

(
ρt (r)

ρt (0)

)2

. (55)

In the present calculation we include V 0
ph and V 1

ph and treat their
strengths B0 and B1 as adjustable parameters. Thus our model
contains as free parameters B0 and B1 (complex numbers) in
addition to the couplings in the spreading potential.

Given the optical potential, we solve the LS equation,

T ′
lπ

(
k′
A, kA; ko

A

)
= Vlπ

(
k′
A, kA; ko

A

)
+ 2

π

∫
Vlπ

(
k′
A, k̄A; ko

A

)
T ′

lπ

(
k̄A, kA; ko

A

)
k̄2
Adk̄A

ωπ

(
ko
A

) + Et

(
ko
A

) − ωπ (k̄A) − Et (k̄A) + iε
.

(56)

035502-8



DYNAMICAL MODEL OF COHERENT PION PRODUCTION . . . PHYSICAL REVIEW C 81, 035502 (2010)

The solution to this equation is used in two contexts. First, we
use it to calculate the pion-nucleus elastic and total scattering
cross sections and compare them with data to find the optimal
values of the free parameters in our model. The solution to
Eq. (56) is also used to compute the pion distorted-wave
function that features in the matrix elements in Eqs. (35) and
(42). For the former purpose, we obtain the full T matrix of
pion-nucleus scattering from T ′ in Eq. (56) using the relation

T = A

A − 1
T ′. (57)

For charged-pion scattering, corrections for the finite-range
Coulomb potential are incorporated with the use of the
Vincent-Phatak method [34]. The procedure for calculating
scattering observables from T is detailed in Ref. [32]. For the
latter purpose, we calculate the pion distorted wave χ∗

lπ
(kA)

associated with T ′ using the relation

χ∗
lπ

(kA) = δ
(
kA − ko

A

)
k2
A

+ T ′
lπ

(
ko
A, kA; ko

A

)
ωπ

(
ko
A

) + Et

(
ko
A

) − ωπ (kA) − Et (kA) + iε
,

(58)

where, for notational simplicity, dependence on the pion
charge (λ) is suppressed. Following the KMT formalism [33],
we use χ∗

lπ
(kA) in evaluating the matrix elements in Eqs. (35)

and (42). This wave function is related to the full wave function
by

χ
(full)∗
lπ

= − 1

A − 1
+ A

A − 1
χ∗

lπ
. (59)

For charged-pion scattering, χ
(full)∗
lπ

does not have the correct
normalization, because the Coulomb potential has been cut off
at a finite distance; this entails the necessity of multiplying
χ

(full)∗
lπ

with a normalization factor (call it κ). We note that it is

χ∗
lπ

rather than χ
(full)∗
lπ

that enters into our calculation, and we
choose to use the same normalization factor κ for χ∗

lπ
as for

χ
(full)∗
lπ

. Thus, in evaluating the matrix elements in Eqs. (35) and
(42), we use κχ∗

lπ
instead of χ∗

lπ
. In the �-resonance region of

our interest, it turns out that |κ − 1| <∼ 0.01. (For neutral pion
scattering, κ = 1.)

III. NUMERICAL RESULTS

A. Pion-nucleus scattering

As explained in the previous sections, our model contains
four complex free parameters. Two of them are the central
(VC) and spin-orbit (VLS) parts of the spreading potential [see
Eq. (C5)], and the other two are the strengths, B0 and B1, of
the s-wave and p-wave phenomenological terms in the optical
potential [see Eq. (55)]. These free parameters are optimized to
fit the pion-nucleus scattering data. Because our aim here is to
calculate coherent pion production off 12C, we should use the
π -12C scattering data to fix these parameters. Adjusting them
to reproduce the total cross sections and the elastic differential
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FIG. 1. Total cross sections for π−-12C scattering. The solid curve
was obtained with our full calculation, while the dashed curve was
obtained without the spreading potential. Data are from Ref. [35].

cross sections for π -12C scattering, we obtain

VC = 48.0 − 34.5i MeV, VL = −3.0 − 2.0i MeV,
(60)

B0 = 5.1 + 5.2i MeV, B1 = 2.8 − 5.7i MeV.

We note that our calculations include the pion-nucleus partial
waves up to lπ � 9 [Eq. (56)] and s and p waves (and
all possible spin-isospin states) for the elementary πN

scattering.4 Figures 1 and 2 illustrate the quality of fit to
the π -12C scattering data achieved in our model (with our
optical potential). In Fig. 1, the total cross sections for
π−-12C scattering are shown as a function of the pion kinetic
energy Tπ in the laboratory frame. The results of our full
calculation are given by the solid curve, and for comparison,
the results obtained without the spreading potential are also
shown by the dashed curve. We observe a large reduction in
the total cross section as we go from the dashed to the solid
lines, which is mainly caused by the strong pion absorption
simulated by the spreading potential. In connection with fitting
to the pion-nucleus scattering data, it is worthwhile to make
the following comment. In the calculation of coherent pion
production, the FSI is nothing but elastic scattering between
the pion and the nucleus. One might therefore think that
a phenomenological adjustment of the pion-nucleus optical
potential to fit the elastic pion-nucleus scattering data will be
good enough. However, in our consistent model building, the
spreading potential enters not only into the optical potential
but also into the pion production operators, and hence it is
important to control its strength using the total cross-section
data. The fact that the spreading potential has a very large
effect on the total cross sections makes this point particularly
important.

Our results for the differential cross sections are shown in
Fig. 2. In addition to our full calculation, shown by the solid
curve, we also show, in the dashed curve, the results obtained

4Hereafter, we include the same set of partial waves (lπ ) in the
amplitudes for both pion-nucleus scattering and pion production off a
nucleus. For the nonresonant elementary pion production amplitudes,
we include the partial waves up to � � 4 in Eq. (42).
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FIG. 2. π -12C elastic differential cross sections. The pion kinetic energy in the laboratory frame is indicated in each figure. The solid curve
is obtained with our full calculation, while the dashed curve was obtained without the phenomenological terms in Eq. (54). Data are from
Ref. [36] for (a), Ref. [37] for (b), and Ref. [35] for (c)–(f).

without the phenomenological term Uph [see Eq. (54)]. We
see that this phenomenological ρ2 term, which simulates
absorption of s-wave and p-wave pions by two-nucleons
within our model, is not large in the considered Tπ > 40 MeV
region for π -12C elastic scattering. However, it is known
that Uph can play an important role for many observables in
low-energy pion-nucleus scattering. As an example to shed
light on this point, we have calculated π -16O elastic scattering
at Tπ = 50 MeV using the same model (only the nuclear
density is different). We have found that, in reproducing
the data satisfactorily in our approach, the ρ2 term plays an
important role, its size being almost as large as that found in
Fig. 4(a) of Ref. [20]. Overall, the results of our full calculation
satisfactorily reproduce the data for both the total and the
elastic cross sections.

B. Coherent pion photoproduction

We are now in a position to perform a parameter-free
calculation of the cross sections for coherent pion production.
The photoprocess, for which extensive data are available,
provides a good testing ground for checking the reliability of
our approach. We compare in Fig. 3 our numerical results for
the differential cross sections for γ + 12Cg.s. → π0 + 12Cg.s.

with the existing data [38,39]. The long-dashed lines are

obtained without FSI and without the medium effects on
� propagation.5 With the medium effects on the � included,
the short-dashed lines are obtained, and the results of our full
calculation are given by the solid lines. Figure 3 indicates that
the medium effects are quite sizable, and they play an important
role in bringing the calculated differential cross sections in
agreement with the data. Particularly noteworthy is the drastic
reduction of the cross section in the � region [Fig. 3(c)],
a feature that reflects the fact that a significant part of the
medium effects simulate pion absorption. The good general
agreement seen in Fig. 3 indicates the basic soundness of the
method we have used in determining the spreading potential.

It is true that, for higher incident energies, in the large-
angle region beyond the peak position, there are noticeable
discrepancies between the results of our full calculation and
the data. However, as noted in Ref. [39], the data in this region
are likely to be substantially contaminated by incoherent
processes in which the final nucleus is in its low-lying
excited states. The effects of this type of contamination are
expected to grow for higher incident photon energies and for
larger momentum transfers (the large-angle region) because of

5The “medium effects on �” here refer to the combined effects of
the Pauli blocking of � decay (�pauli), the spreading potential (�spr),
and the terms in square brackets in Eq. (28).
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FIG. 3. Differential cross sections for γ + 12Cg.s. → π 0 + 12Cg.s. for different incident photon energies (indicated in each panel). Solid lines
represent the results of the full calculation. Dashed lines were obtained without the FSI and without the medium effects on the �-propagation,
while dotted lines were obtained with the medium effects on the � included. Dash-dotted curves correspond to a case in which the pion
production operator includes only the � mechanism. For more detailed explanations for the different cases, see the text. Data are from Ref. [38]
for (a) and from Ref. [39] for (b)–(d).

increased nuclear excitations. We therefore take the viewpoint
that the discrepancy found in Fig. 3(b) to Fig. 3(d) does not
necessarily signal a failure of our model and that our model
describes coherent pion photoproduction reasonably well.

Figure 3 also shows (in the dash-dotted lines) the results
corresponding to a case in which the pion production operator
includes only the � mechanism (the nonresonant mechanism
turned off);6 the distorted pion wave function incorporating
FSI is the same as that used for the full calculation. These
results serve to demonstrate the importance of the nonresonant
mechanism. Figure 3(a) indicates that, near threshold, the
contributions from the resonant and nonresonant mechanisms
are comparable, a feature that is not surprising away from the
resonance peak. A remarkable feature is that, even near
the resonance energy [see Fig. 3(c)], the contribution from
the nonresonant mechanism is quite significant. This is partly
because the resonant contribution is considerably suppressed

6In the SL model, the resonant amplitude itself contains the
nonresonant mechanism. We refer to the purely nonresonant ampli-
tudes as “nonresonant amplitudes,” and it is only these nonresonant
amplitudes that we turn off here and, later, in Figs. 5–8 and 10.

by pion absorption (the spreading potential) and the nonlocal
effect of � propagation (the � kinetic term).7

To summarize this section, the results for the coherent
photo-pion production process establish, to a satisfactory
degree, the reliability of our present approach (i.e., combined
use of the SL model and the �-hole model) and motivate us
to apply the same approach to neutrino-induced coherent pion
production.

C. Neutrino-induced coherent pion production

We now present the numerical results of our calculations for
neutrino-induced coherent pion production on the 12C target.
We consider the CC and NC processes induced by a neutrino
or an antineutrino:

νµ + 12Cg.s. → µ− + π+ + 12Cg.s.,

ν + 12Cg.s. → ν + π0 + 12Cg.s.,

7We come back to the nonlocal effect owing to the � kinetic term
later when we discuss neutrino-induced processes.
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and ν̄ + 12Cg.s. → ν̄ + π 0 + 12Cg.s. (dash-dotted line).

ν̄µ + 12Cg.s. → µ+ + π− + 12Cg.s.,

ν̄ + 12Cg.s. → ν̄ + π0 + 12Cg.s.. (61)

Figure 4 gives the total cross sections for these processes as
functions of the incident neutrino (antineutrino) energy in the
laboratory system Eν . It is shown that, for higher incident
energies, the ratio σCC/σNC approaches 2, a value expected
from the isospin factor. For lower incident energies (Eν <∼
500 MeV), however, σNC is larger than σCC , reflecting the fact
that the phase space for the CC process is reduced significantly
by the muon mass. It is well known that interference between
the vector and the axial-vector currents can lead to different
cross sections for the neutrino and antineutrino processes.
However, because the coherent process is dominated by the
contribution of the axial current (see Fig. 9), the role of the
interference term is diminished drastically. This explains why
in Fig. 4 the cross sections for the neutrino and antineutrino
processes are almost the same.

To compare our results with data, we need to evaluate the
total cross sections averaged over the neutrino fluxes that
pertain to the relevant experiments. We choose to use the
fluxes up to Eν � 2 GeV and neglect the fluxes beyond that
limit based on the following consideration. Because our model
includes no resonances other than the �, it is expected to be
reliable only for W <∼ 1.4 GeV. The fact that even at Eν =
1 GeV coherent pion production can involve contributions
coming from the W >1.4 GeV region is disquieting, but we can
still expect that the �-excitation contribution is predominant
for the total cross section for the coherent process. (This
feature can be seen in, for example, Fig. 5, discussed later.) For
Eν ∼ 2 GeV, we do expect that � dominance gets significantly
less pronounced but that � still gives the most important
contribution. Meanwhile, the region Eν >∼ 1.5 GeV belongs to
the tail of the neutrino flux used in MiniBooNE. We therefore
consider it reasonable to compare with data our theoretical
cross section averaged over the neutrino flux up to Eν =
2 GeV. For the CC process, we use the flux reported in Ref. [40]
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FIG. 5. Pion momentum distribution for νµ + 12Cg.s. → µ−+
π++12Cg.s. at Eν = 1 GeV; pπ is the pion momentum in the
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the same convention as in Fig. 3.

and deduce

σ CC
ave = 6.3 × 10−40 cm2. (62)

A K2K experiment [1] reports the upper limit

σK2K < 7.7 × 10−40 cm2. (63)

In fact, this upper limit corresponds to events satisfying
the muon momentum cut, pµ > 450 MeV, and the cut on
the momentum transfer squared, Q2

rec < 0.1 GeV2; Q2
rec is

calculated as

Q2
rec = 2Erec

ν (Eµ − pµ cos θµ) − m2
µ, (64)

where the reconstructed neutrino energy (Erec
ν ) is calculated

from the muon kinematics [the energy (Eµ) and the scattering
angle (θµ)] assuming the quasielastic kinematics:

Erec
ν = 1

2

(
m2

p − m2
µ

) − (mn − V )2 + 2Eµ(mn − V )

(mn − V ) − Eµ + pµ cos θµ

, (65)

where mp, mn, and mµ are the masses of the proton, neutron,
and muon, respectively, and the nuclear potential (V ) is set
to 27 MeV. Our result in Eq. (62) is also obtained with these
cuts and is consistent with the K2K data. We note that a recent
report from SciBooNE [2] gives a similar empirical upper
limit.

For the NC process, we use the flux reported by MiniBooNE
in Ref. [41] and arrive at

σ NC
ave = 2.8 × 10−40 cm2. (66)

This is to be compared with

σMiniBooNE = 7.7 ± 1.6 ± 3.6 × 10−40 cm2, (67)

given in Ref. [42]. Our result is consistent with the empirical
value within the large experimental errors, even though the
theoretical value is rather visibly smaller than the empirical
central value. It must be noted, however, that Ref. [42] is a
preliminary report and that, as discussed in great detail in
Ref. [7], σMiniBooNE may be overestimated owing to the use of
the RS model [6] in the analysis.

We now proceed to present our results for differen-
tial observables. In view of the fact that the event rates
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FIG. 6. Same as Fig. 5 but for Eν = 0.5 GeV.

(cross section × flux) in the K2K, MiniBooNE, and Sci-
BooNE experiments [3,40] have been reported to have a
peak around Eν ∼ 1 GeV, we often use this energy as
a representative in the following presentation. Meanwhile,
because the neutrino flux in the planned T2K experiment
is expected to have a peak around Eν = 0.6–0.7 GeV [43],
we also present results for lower neutrino energies when that
seems useful.

The pion momentum spectrum for CC neutrino-induced
coherent pion production is shown in Fig. 5 (Fig. 6) for
Eν = 1 GeV (0.5 GeV). The importance of the medium effects
manifests itself here in the same manner as in the photoprocess
(Fig. 3). In the � region, strong pion absorption is seen to
reduce the cross sections significantly, and FSI shifts the peak
position. The dash-dotted line corresponds to a case in which
the pion production operator contains only the � mechanism
(without nonresonant contributions), while the pion optical
potential is kept unchanged. We note that, at Eν = 1 GeV
(0.5 GeV), the dash-dotted line corresponds to 82% (64%)
of the solid line (the results of the full calculation). We have
seen in the photoprocess that the nonresonant mechanism is
more important for a smaller energy transfer. To what extent
the neutrino case should share this feature is not obvious
because the axial-vector current contributions dominate here
(see Fig. 9). However, Figs. 5 and 6 show that, in the neutrino
case as well, the differential cross sections with smaller pion
momenta are more enhanced by the nonresonant mechanism
and that this feature is more prominent for a smaller value of
Eν . A similar tendency is seen for the NC process also. These
results indicate that the nonresonant amplitudes in our model,
which are dressed by the rescattering, play a significant role in
coherent pion production; their role is particularly important
for Eν <∼ 0.5 GeV. This characteristic feature of our model
should be contrasted with the fact that (tree-level) nonresonant
mechanisms play essentially no role in any of the previous
microscopic calculations for neutrino-induced coherent pion
production. A more detailed comparison of the elementary
amplitudes used in our present calculation and the previous
microscopic-model calculations is given in Sec. III E.

We show in Fig. 7 (Fig. 8) the Q2distribution for the
CC (NC) process. Note that Q2 defined by Q2 ≡ −q2 ≡
−(pν − p′

�)2 is different from Q2
rec defined in Eq. (64). Because
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FIG. 7. Q2 spectrum for νµ + 12Cg.s. → µ− + π+ + 12Cg.s. at
Eν = 1 GeV.

of the nuclear form factor effect, the distribution rises sharply
as Q2 approaches 0; for the CC process, however, the Q2

distribution becomes 0 at Q2 = 0 owing to the finite muon
mass. Here, again, we show the results corresponding to a
case in which the pion production operator contains only
the � effect (with nonresonant contributions turned off). The
nonresonant mechanism is seen to change the spectrum shape
significantly and lead to a sharper peak.

It is informative to examine the individual contributions
of the vector and axial-vector currents. We show in Fig. 9
these individual contributions to the neutrino CC process.
We find strong dominance of the axial-vector current. The
nuclear form factor causes drastic suppression of nonforward
pion production. This aspect, combined with the fact that the
transverse photon coupling of the vector current [Eq. (7)]
forbids forward pion production, leads to strong suppression
of the vector current contribution. By contrast, because the
vertex structure of the axial-vector current favors forward pion
production, the strong suppression mechanism at work for the
vector current does not apply here. This is the reason why
the axial-vector current dominates. This result may be used
to argue that incoherent pion production processes in which
a nucleus does not break up, but transits to excited states,
are much less important than coherent pion production in
neutrino-nucleus scattering. As shown in Fig. 3, incoherent
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FIG. 8. Same as Fig. 7 but for the NC process at Eν = 1 GeV.
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processes make considerable contributions to the total pion
production in the photoprocess,8 a feature that may lead to the
expectation that incoherent processes are considerable in the
neutrino process as well. However, the mechanism responsible
for the axial-vector dominance in the neutrino process works
for the photoprocess in such a manner that coherent photo-pion
production is strongly suppressed. Also, the inelastic transition
form factor has a peak at a nonzero momentum transfer.
As a result, for the photoreaction, the contributions from
the incoherent processes become comparable to those from
the coherent process. Thus the importance of incoherent
processes relative to the coherent process can be very different
between the photo- and the neutrino processes. Takaki et al.
[44] used a similar argument to explain a significant (very
small) contribution from incoherent processes in photopion
production (pion-nucleus scattering), compared to the coherent
process. This argument may serve as a justification for the
assumption currently used in data analyses that incoherent
processes need not be taken into account explicitly.

Finally, we examine the effect of the nonlocality of
� propagation in nuclei; because we employed the local
density approximation to evaluate the � Green function
[Eq. (17)], this effect arises only from the � kinetic term in
the � Hamiltonian [Eq. (25)]. Although, as mentioned in the
Introduction, this subject has been studied in Ref. [21], that
study only included the � mechanism, without considering
FSI or medium effects on the �. It is thus interesting to revisit
this problem in the framework of our significantly extended
treatment. In the local approximation, we neglect the kinetic
term in the � Hamiltonian [Eq. (25)], which means that the
� is considered to be so heavy that it does not propagate in
nuclear medium. To facilitate our discussion, we introduce the
ratio R(Eν), defined by

R(Eν) ≡ σ (Eν)/σlocal(Eν) , (68)

8The contributions from incoherent processes are larger than they
appear in Fig. 3 because sin θπ needs to be multiplied in integrating
over θπ .
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FIG. 10. Effect of the nonlocality of � propagation for νµ+
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where σ (Eν) represents the total cross section for νµ+
12Cg.s. → µ−+π++12Cg.s. calculated with the � propagator
including the � kinetic term, whereas σlocal(Eν) is that
obtained in the local approximation. Figure 10 shows R(Eν)
values calculated for the various cases. The long-dashed curve
corresponds to the �-only case (without FSI or medium effects
on the �; see footnote 5), and the solid line to the case that
includes the nonresonant components, medium effects on the
�, and FSI. To make a comparison with Ref. [21], we first
consider the long-dashed line; R(Eν) in this case is found
to be 0.55, 1.03, and 1.14 at Eν = 0.5, 1.0, and 1.5 GeV.
Meanwhile, Ref. [21] reports R(Eν) <∼ 0.5, 0.6, and <∼ 1
at Eν = 0.5, 1.0, and 1.5 GeV. Although both calculations
indicate that the nonlocal effects are important, our results are
qualitatively different from those of Ref. [21]. This difference
originates from different ways of treating the energy in the
� propagator. In Ref. [21], the in-medium � propagator is
assumed to be the same as the free � propagator, whereas
our � propagator [G�h; Eq. (17)] is a nuclear many-body
operator [25] (with some of the medium effects switched off).
To illustrate this point, we include in Fig. 10 (dash-dotted line)
the results obtained with the use of the free � propagator. In
this case, we find R(Eν) = 0.4, 0.76, and 0.88 at Eν = 0.5,
1.0, and 1.5 GeV, which is fairly close to the results in Ref. [21].
The result shown by the solid line indicates that, after the
sophistication of the calculation, the nonlocality owing to the
kinetic term is still important over the entire range of Eν under
consideration. In the previous microscopic calculations for
neutrino-induced coherent pion production, the nonlocality has
not been explicitly taken into account. However, this does not
necessarily mean that the earlier results are off by an amount
suggested by comparison of the curves in Fig. 10, for it is
possible that the nonlocality effects are partly included with
the use of the spreading potential fitted to observables. In
view of the importance of the nonlocal effect, however, we
consider it preferable to take it into account explicitly, rather
than include it operationally in the � mass shift.

An additional point of interest is that it was reported
in Ref. [21] that the nonlocality changes the shapes of the
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differential cross sections. We remark that our results (not
shown here) agree with that finding.

D. Comparison with SciBooNE and MiniBooNE data

The SciBooNE collaboration has been pursuing a further
analysis of the data on neutrino and antineutrino CC coherent
pion production, and some preliminary results have appeared
in Refs. [5] and [45]. These results contain detailed information
on the differential observables for the pion and muon, and it
seems informative to present our theoretical results in a manner
that allows ready comparison with these data. To this end, we
need to take into account the muon momentum cut (pµ >

350 MeV) and the momentum transfer cut (Q2
rec < 0.1 GeV2)

adopted in the SciBooNE experiment; Q2
rec has been defined

in Eq. (64). The theoretical results we present in the following
take account of these cuts unless otherwise stated. We present
the results at Eν = 1 GeV, around which the event rate has a
peak. Although for direct comparison, we need to convolute the
observables with the (anti-) neutrino flux used in the SciBooNE
experiment, the flux has not been released yet. We therefore
present our results at a representative value of Eν = 1 GeV. In
Fig. 11, we show the cos θπ distribution for the neutrino and
antineutrino CC processes. In the recent data analysis by the
SciBooNE collaboration, events are classified according to the
pion emission angle (θπ ). Their preliminary results exhibit a
rather clear excess yield for θπ < 35◦, which is thought to be
ascribable to coherent pion production. In our model, 85% of
the pions are emitted in θπ < 35◦ for the neutrino CC process
at Eν = 1 GeV, a feature that is in fair agreement with the
preliminary SciBooNE result.

Next we show, in Fig. 12 (solid line), the Q2
rec distribution

for the neutrino reaction.9 Only the pµ cut is applied here for
an obvious reason. We can see that the contribution from above
Q2

rec = 0.1 GeV2 (the value adopted for the Q2
rec cut) constitutes

only a small fraction of the entire contribution (3% for the
solid curve). The decomposition of the total contribution (solid

9As discussed earlier, the neutrino and antineutrino cross sections
differ only slightly.
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curve) into two parts according to whether θπ is smaller or
larger than 35◦ is shown by the dashed curve (θπ <35◦) or
the dotted curve (θπ >35◦), respectively. The pion and muon
momentum distributions are shown in Figs. 13 and 14. The
upper (lower) end of the pion (muon) momentum distribution
is sharply cut off because of the muon momentum cut (pµ >

350 MeV). The muon scattering angle distribution is shown
in Fig. 15. Figures 11–15 clearly show the characteristics of
coherent pion production, that is, sharply forward scattering
(emission) of the muon (pion) with small momentum transfers.
Finally, in Fig. 16 we show the spectrum with respect to the
coplanar angle difference �φ, which is defined by �φ = φπ −
π , where φπ is the pion azimuthal angle in the LAB frame.
(See Fig. 17 for a graphical representation of �φ.)

Figure 16 shows slight asymmetry in the �φ distribution
around �φ = 0. It is interesting to note that this asymmetry
is generated mostly by the contribution from the nonresonant
amplitudes. To demonstrate this point, we present in the same
figure the results obtained with the nonresonant amplitudes
turned off (dash-dotted curve). We also remark that the asym-
metry arises mostly from the kinematical region satisfying
θπ > 35◦ (see dotted curve). A similar asymmetry also arises
for the antineutrino process.
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FIG. 13. Pion momentum distribution for νµ + 12Cg.s. → µ− +
π+ + 12Cg.s. at Eν = 1 GeV.
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FIG. 14. Muon momentum distribution for νµ + 12Cg.s. → µ− +
π+ + 12Cg.s. at Eν = 1 GeV.

The SciBooNE collaboration has recently presented its
preliminary results corresponding to Figs. 11–16 for both the
neutrino and the antineutrino CC coherent pion production
reactions [5,45]. When the flux prediction for the SciBooNE
experiment becomes available, we will be able to convolute
the results of our calculation with the flux and make direct
comparison with the data.

Meanwhile, the MiniBooNE collaboration has been inves-
tigating the NC process in (anti-) neutrino-nucleus scattering;
some results for the neutrino process have been published [3],
and more results are expected to be released. Because the
neutrino flux information for the MiniBooNE experiment is
available [41], we can give the theoretical values of relevant
observables convoluted with the flux. At present, data are
publicly available only for the η distribution [η ≡ Eπ (1 −
cos θπ )], and we compare our calculation for this quantity
with the data. In the analysis of the MiniBooNE NC data, the
η distribution was used to distinguish coherent pion production
from other processes contributing to the π0-production events.
To be more specific, MiniBooNE used the “shape“ of the
η distribution obtained from the RS model [6] with the
momentum reweighting function applied. It has been found,
however, that a microscopic calculation in Ref. [7] gives an
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FIG. 15. Muon scattering angle distribution for νµ + 12Cg.s. →
µ− + π+ + 12Cg.s. at Eν = 1 GeV.
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FIG. 16. Coplanar angle difference (�φ) distribution for νµ +
12Cg.s. → µ− + π+ + 12Cg.s. at Eν = 1 GeV. The definition of �φ is
given in Fig. 17.

η distribution appreciably different from that obtained in the
RS model, and the authors of Ref. [7] have pointed out that
the MiniBooNE might have substantially overestimated the
NC events. Figure 18 shows the “average” η distribution
obtained by convoluting the η distribution given by our
present calculation with the MiniBooNE neutrino flux [41].
For comparison, the figure also shows the MiniBooNE Monte
Carlo results (cf. Fig. 3(b) of Ref. [3]), arbitrarily rescaled to
match the theoretical curve at η = 0.005 GeV. We remark that
the η distribution we have obtained is fairly close to that given
in Ref. [7], because the nonresonant amplitudes do not change
the shape of the η distribution significantly. Therefore, we
arrive at the same conclusion as in Ref. [7], that it is possible
that MiniBooNE substantially overestimated the NC events.

To facilitate a comparison of our calculation with data that
are expected to become available soon from MiniBooNE, we
present theoretical predictions for some more quantities that
are likely to be relevant. Figure 19 shows the flux-convoluted
π0-momentum distribution predicted by our calculation. As far
as observables for the antineutrino process are concerned, the
flux-convoluted η distribution resulting from our calculation
is given in Fig. 20, and the flux-convoluted π0-momentum
distribution obtained in our model is shown in Fig. 21.

ν (z)

µ

π

x

∆φ

xy-plane

FIG. 17. Graphical definition for the coplanar angle difference
(�φ).
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E. Comparison of microscopic models

As mentioned, there are mainly two theoretical approaches
to coherent pion production in neutrino-nucleus scattering: a
PCAC-based model and a microscopic model. The relation
between the RS model (a PCAC-based model) and a micro-
scopic model has been discussed in great detail in Ref. [7], and
comparison of those two models, including some improvement
of the RS model, has been made in Refs. [7] and [8]. The
authors of Refs. [7] and [8] have emphasized that it can
be problematic to use the RS model for Eν <∼ 2 GeV. To
shed some more light on this issue, we consider it useful
to compare different microscopic models. In particular, we
focus here on comparison between our model and the model
of Amaro et al. [7], which is the most sophisticated among the
existing microscopic models for neutrino-induced coherent
pion production.10 The other microscopic calculations in
the literature lack one or more aspects that are obviously
important, such as the distortion of the final pion and the
nonresonant mechanism for the weak currents.

Here, we focus particularly on the elementary amplitudes
for pion production off the nucleon. Our approach employs
the SL model, while Amaro et al. [7] used a model developed
in Ref. [47] (referred to as HNV). Both SL and HNV include
the resonant and nonresonant amplitudes. A point to be noted,
however, is that, although both models reproduce reasonably
well the data for the νµ + N → µ− + π+ + N reactions after
an appropriate adjustment of the axial-N� coupling, the two
models involve rather different reaction mechanisms. In the
SL model, we derive a set of tree diagrams from a given
Lagrangian with the use of a unitary transformation, and then
we embed these tree diagrams in the LS equation, which
is solved exactly to yield a nonperturbative pion production
amplitude that satisfies π -N two-body unitarity. In HNV, on

10A rather extensive comparison of numerical results from various
calculations of neutrino-induced coherent pion production, including
those of Amaro et al. [7], recent PCAC-based models [12,13], and
ours, was presented at NuInt09 by Boyd et al. [46].
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FIG. 19. Flux-convoluted π 0-momentum distribution for ν +
12Cg.s. → ν + π 0 + 12Cg.s.. The neutrino flux is taken from
MiniBooNE [41].

the other hand, a set of tree diagrams is calculated from a chiral
Lagrangian. Then the sum of the contributions of these tree
diagrams is identified with the pion production amplitude. At
the tree level, the SL and the HNV models have essentially
the same nonresonant mechanisms; a contact vertex in HNV
may be interpreted as the vector-meson exchange mechanism
in SL. However, the role of the nonresonant amplitude appears
differently in the two models. In the SL model, the nonres-
onant amplitude contributes constructively (destructively) to
resonant amplitudes below (above) the resonance energy. For
νµ + p → µ− + π+ + p, the interference of the nonresonant
amplitude with the resonant amplitude changes the total cross
sections in the SL model by a factor of 1.5, 1.02, and
0.96 at Eν = 0.5, 1, and 1.5 GeV,11 while the interference
in the HNV always enhances the total cross sections, for
example, enhancement by a factor of 1.1 at Eν = 1.5 GeV.
The difference in the nonresonant mechanism appears also
in the coherent pion production on 12C, where only the
spin and isospin nonflip amplitude contributes. Whereas the
nonresonant amplitude plays an important role in our model

11See footnote 6.
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(as shown in Figs. 5 and 6), it plays essentially no role in the
HNV model. In neutrino CC coherent pion production, the full
(tree) nonresonant amplitude increases the total cross section
by 36% (19%) at Eν = 0.5 GeV and 18% (0.4%) at Eν =
1 GeV in our model. Thus the nonresonant mechanism in the
spin-isospin nonflip amplitude is enhanced by the rescattering
process. In the SL model, the nonresonant and resonant πN

dynamics in the �-resonance region has been tested using
the extensive data on (γ, π ) and (e, e′π ) reactions. Although
the SL model, which provides a unified description of the
electroweak pion production reactions, describes very well
the available data on the (ν, �π ) processes, the current data do
not yet allow testing of the details of the reaction mechanism.

Furthermore, utilizing the consistency of (ν, �π ), (e, e′π ),
and (π, π ) reactions in the SL model, we have developed a
model that treats photo- and neutrino-induced coherent pion
production processes in a unified manner. Thus we were able
to calibrate the reliability of our approach with data for the
photoprocesses, which is an aspect specific to our approach.

IV. CONCLUSIONS

We have developed a microscopic dynamical model for de-
scribing neutrino-induced coherent pion production on nuclei.
Because experimental data for neutrino (both elementary and
nuclear) processes are rather limited, it is not straightforward to
assess the reliability of theoretical calculations. A reasonable
strategy seems to develop a model that describes strong and
electroweak processes in a unified way and then to test the
model extensively by comparison with a large collection of
data for the strong-interaction and photo-induced processes
and with limited available data for weak processes. We have
carried out this program here for the case of the neutrino-
induced coherent pion production process. By virtue of the
mentioned strategy, our model is probably the most extensively
tested among the existing models for this process. To achieve
the stated goal, we need a theoretical framework that provides
a unified description for the elementary (π, π ′), (γ, π ), and
(ν, �π ) processes on a single nucleon. We have adopted the
SL model, which is known to give satisfactory descriptions

of these elementary amplitudes. We then have combined the
SL model with the �-hole model to construct a theoretical
framework that can describe pion-nucleus scattering and
electroweak coherent pion production in a unified way.
The unified nature of this approach allows us to fix free
parameters in the model using the data for pion-nucleus
scattering, which in turn enables us to make parameter-free
predictions of electroweak coherent pion production off a
nucleus. Another benefit of the present unified approach is that
we can assess the reliability of our model by comparing the
results for coherent pion photo-production with the data. Our
model is found to describe reasonably well both pion-nucleus
scattering and coherent photoprocesses, which establishes
a basis for applying the same model to neutrino-induced
processes.

Comparing our numerical results with the recent data on
neutrino-induced coherent pion production, we have found
that the result for the CC process is consistent with the
upper limit from K2K [1] and that the result for the NC
process is somewhat smaller than the preliminary experimental
value from MiniBooNE [42]. However, as discussed in the
literature, MiniBooNE’s analysis may have overestimated the
cross section owing to the use of the RS model in their
analysis. We have examined to what extent the various aspects
of physics involved in our model individually affect the cross
sections. We have shown that the medium effect on the � (the
spreading potential effect, in particular) and the FSI change
the cross sections significantly. It is to be noted, however,
that these rather drastic changes in the cross sections owing to
medium effects are well under control because (i) the spreading
potential and the pion distorted-wave function have been fitted
to and tested by the empirical total and elastic cross sections
for pion-nucleus scattering in and around the � region, and
(ii) medium effects of a similar magnitude for the photoprocess
have been shown to bring our calculation into good agreement
with the data.

An interesting feature of our model is that the unitarized
nonresonant amplitudes make a significant contribution to
the cross sections. This is in sharp contrast with the results
of previous calculations; for instance, the calculations in
Refs. [7] and [16], which considered a tree-level nonresonant
mechanism, found almost no contribution from it. It is worth
emphasizing that this noticeable difference should not be taken
as a measure of uncontrollable model dependence because
(as we have confirmed) the difference arises largely from
unitarization of the nonresonant amplitude, which clearly
needs to be implemented.

We have re-examined the nonlocal effect in � propagation
in nuclei. It was emphasized in Ref. [21] that this nonlocal
effect, despite its large size, was not considered explicitly
in any of the existing models for neutrino-induced coherent
pion production (whether based on a microscopic model or
the RS model). The authors of Ref. [21] made this remark
based on their calculation that only included the � mechanism.
Our present calculation, which additionally incorporates the
spreading potential and FSI, also indicates that the non-locality
has a large effect. Thus, regardless of the level of sophistication
in the treatment of medium effects, one should always include
the nonlocality effect explicitly.
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Because it is expected that the SciBooNE and the Mini-
BooNE collaborations will report more detailed data on (anti-)
neutrino-induced coherent CC and NC pion productions, we
have presented numerical results relevant to these experiments.

Finally, we have made a comparison of the elementary
amplitude (HNV [47]) used by Amaro et al. [7] and ours (SL
[17,18]) to clarify similarities and differences between them.
The noteworthy points are as follows. (i) At tree level, both the
SL and the HNV models have essentially the same nonresonant
mechanism. (ii) In the SL model, a unitary pion production
amplitude is obtained by solving the LS equation in which the
tree diagrams are embedded, whereas in the HNV model, the
sum of the tree diagrams is identified with the pion production
amplitude. (iii) The nonresonant amplitudes of SL and HNV
work differently both for the elementary processes (e.g.,
νµ + p → µ− + π+ + p) and for coherent pion production.
(iv) In the SL model, the rescattering contribution contained
in the nonresonant amplitude considerably enhances the cross
section for coherent pion production.
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APPENDIX A: MULTIPOLE AMPLITUDES

The amplitudes FV
i and FA

i in Eqs. (4) and (5) are expressed
in terms of multipole amplitudes E

V,A
l± , M

V,A
l± , S

V,A
l± , and LA

l±
as

FV
1 =

∑
l

[
P ′

l+1E
V
l+ + P ′

l−1E
V
l− + lP ′

l+1M
V
l+

+ (l + 1)P ′
l−1M

V
l−

]
. (A1)

FV
2 =

∑
l

[
(l + 1)P ′

l M
V
l+ + lP ′

l M
V
l−

]
, (A2)

FV
3 =

∑
l

[
P ′′

l+1E
V
l+ + P ′′

l−1E
V
l− − P ′′

l+1M
V
l+ + P ′′

l−1M
V
l−

]
,

(A3)

FV
4 =

∑
l

[−P ′′
l EV

l+ − P ′′
l EV

l− + P ′′
l MV

l+ − P ′′
l MV

l−
]
,

(A4)

FV
5 =

∑
l

[
(l + 1)P ′

l+1L
V
l+ − lP ′

l−1L
V
l−

]
, (A5)

FV
6 =

∑
l

[−(l + 1)P ′
l L

V
l+ + lP ′

l L
V
l−

]
, (A6)

FV
7 =

∑
l

[−(l + 1)P ′
l S

V
l+ + lP ′

l S
V
l−

]
, (A7)

FV
8 =

∑
l

[
(l + 1)P ′

l+1S
V
l+ − lP ′

l−1S
V
l−

]
, (A8)

and

FA
1 =

∑
l

[
P ′

l E
A
l+ + P ′

l E
A
l− + (l + 2)P ′

l M
A
l+

+ (l − 1)P ′
l M

A
l−

]
, (A9)

FA
2 =

∑
l

[
(l + 1)P ′

l+1M
A
l+ + lP ′

l−1M
A
l−

]
, (A10)

FA
3 =

∑
l

[
P ′′

l EA
l+ + P ′′

l EA
l− + P ′′

l MA
l+ − P ′′

l MA
l−

]
, (A11)

FA
4 =

∑
l

[−P ′′
l+1E

A
l+ − P ′′

l−1E
A
l− − P ′′

l+1M
A
l+ + P ′′

l−1M
A
l−

]
,

(A12)

FA
5 =

∑
l

[−(l + 1)P ′
l L

A
l+ + lP ′

l L
A
l−

]
, (A13)

FA
6 =

∑
l

[
(l + 1)P ′

l+1L
A
l+ − lP ′

l−1L
A
l−

]
, (A14)

FA
7 =

∑
l

[
(l + 1)P ′

l+1S
A
l+ − lP ′

l−1S
A
l−

]
, (A15)

FA
8 =

∑
l

[−(l + 1)P ′
l S

A
l+ + lP ′

l S
A
l−

]
. (A16)

PL(x) is the Legendre function and x = k̂ · q̂; k and q are the
pion momentum and the momentum transfer to the nucleon,
respectively.

The multipole amplitudes from isovector currents are
further decomposed according to the total isospin (T ) in the
final πN state as

X
V,A
l± =

∑
T =1/2,3/2

X
(T )V,A
l± T

ij , (A17)

with X being E, M , L, or S. We have introduced the projection
operator T

ij defined by


3/2
ij = 2δi,j − iεijkτk

3
, (A18)


1/2
ij = δi,j + iεijkτk

3
, (A19)

where the indexes i and j refer to the final pion isospin
state and the component of the isovector current, respectively.
For electromagnetic or NC processes, M

(0)V
l± τi , which is

attributable to an isoscalar current, is also added to Eq. (A17).
In the text we sometimes use the notation X

V (A),ζ
l± , where ζ

collectively denotes the pion charge and the nucleon isospin
state; X

V (A),ζ
l± is a matrix element (in isospin space) of

Eq. (A17). Because we are only concerned with coherent pion
production, the specification of the pion charge determines i

and j in Eq. (A17). We can find the matrix element (in isospin
space) of Eq. (A17) by specifying the nucleon isospin state.
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APPENDIX B: LORENTZ TRANSFORMATION
FROM ACM TO 2CM

In coherent pion production in neutrino-nucleus scattering
(ν� + t → �− + π+ + t), the elementary process is W+(qA) +
N (pN ) → π+(kA) + N (p′

N ), where the four-momenta in the
pion-nucleus center-of-mass frame (ACM) are given in paren-
theses. We suppose here that the pion momentum is on-shell.
In a prescription we employ, the nucleon momenta are fixed
as

pN = −qA

A
− A − 1

2A
(qA − kA),

(B1)
p′

N = − kA

A
+ A − 1

2A
(qA − kA),

and the invariant mass (W ) of the pion and nucleon is

W =
√(

p0
N + q0

A

)2 − ( pN + qA)2, (B2)

where p0
N is the nucleon energy on the mass shell. We note

that W depends on xA (≡ k̂A · q̂A) as well as |qA| and |kA|.
For convenience, we write W (|qA|, |kA|, xA).

We perform the standard Lorentz transformation from ACM
to the πN CM frame (2CM). An arbitrary four-momentum in
2CM (p2) is written with the corresponding four-momentum
in ACM (pA) as

p2 = pA − p0
A

W
P + P 0 − W

W
( pA · P̂ )P̂ ,

(B3)
p0

2 = P 0p0
A − pA · P

W
,

with P = pN + qA.
We now consider a case in which the pion momentum is off-

shell (k′
A). We encounter this situation when we consider the

FSI in the coherent process. As before, the nucleon momenta
are fixed using Eq. (B1) with kA replaced by k′

A. However, we
do not use the nucleon energy on the mass shell. Instead, we
take p0

N so that

W (|qA|, |k′
A|, x ′

A) = W (|qA|, |kA|, xA) for x ′
A = xA,

(B4)

where W is obtained with Eq. (B2). With the nucleon
four-momentum (pN ) obtained in this way, we can perform
the Lorentz transformation as Eq. (B3). This prescription
greatly reduces the amount of labor involved in our numerical
calculation, because the SL amplitudes need to be calculated
at each value of W . With the variables just obtained, we can
calculate 	2AL used in Eqs. (35) and (42):

	2AL =
√

ω′
π,2p

′ 0
N,2p

0
N,2

ω′
π,Ap′ 0

N,Lp0
N,L

, (B5)

with ω′
π,A = √

k′
A + m2

π .
Finally, we discuss the factor 	χ , used in Eqs. (35) and

(42), which originates from the pion wave function owing
to the Lorentz transformation. Among the FSIs, the simplest
process is the scattering of the pion off a single nucleon,
π (k′

A) + N (p′′
N ) → π (kA) + N (pf

N ), where the variables in
ACM are shown in parentheses; only kA is on-shell. Similarly

to Eq. (B1), we fix the nucleon momenta as

p′′
N = − k′

A

A
− A − 1

2A
(k′

A − kA),
(B6)

pf

N = − kA

A
+ A − 1

2A
(k′

A − kA).

We assume here that the energies of all the nucleons are on the
mass shell. For the Lorentz transformation from ACM to LAB
specified in this way, we can calculate the Lorentz factor as

	χ =
√√√√ωπ,AE′′

N,AE
f

N,A

ωπ,LE′′
N,LE

f

N,L


√

ωπ,A

ωπ,L

, (B7)

Although the actual FSI includes multiple scattering processes,
it is beyond our framework to calculate 	χ with multiple
scattering taken into account. We therefore use 	χ calculated
for the elementary process in Eqs. (35) and (42). Actually, the
Lorentz factor for the plane-wave term in Eq. (58) is given by
the rightmost expression in Eq. (B7). Because the approximate
equality in Eq. (B7) is quite accurate for k′

A = kA, we use the
middle expression in Eq. (B7) to evaluate the matrix elements
in Eqs. (35) and (42).

APPENDIX C: EXPRESSIONS FOR SOME COMPONENTS
IN THE � PROPAGATOR

1. Pauli correction to the � self-energy

We follow Ref. [26] to calculate the Pauli correction to
the � self-energy (�Pauli). The πN� coupling is from the SL
model.

�Pauli = mN

W

[
2θ (kF − β)

∫ kF −β

0
dqq2

× ωπ (q)F bare
πN�(q)FπN�(q)

K2 − q2 + iε

+
∫ kF +β

|kF −β|
dqq2

(
1 − q2 + β2 − k2

F

2qβ

)

× ωπ (q)F bare
πN�(q)FπN�(q)

K2 − q2 + iε

]
, (C1)

where θ (x) is the step function, kF is the Fermi momentum
[Eq. (31)], W is the πN invariant mass [Eq. (21)], ωπ (q) =√

q2 + m2
π , and

K2 = mN

W

[
(W − mN )2 − m2

π

]
. (C2)

Furthermore, for electroweak pion production amplitude
[Eq. (35)],

β = mN

W
( pN + qA), (C3)

where pN is fixed using Eq. (20), and qA is the momentum
transfer to a nucleus in ACM; for the optical potential
[Eq. (52)], qA is replaced with kA (the incoming pion
momentum). We use the on-shell pion momentum to fix pN .
The dressed πN� vertex (FπN�) is taken from Eq. (14), and
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the bare πN� vertex, denoted F bare
πN�, is given as [17]

F bare
πN�(q) = −i

fπN�

mπ

√
EN (q) + mN

24π2EN (q)ωπ (q)

(
2

πN�

2
πN� + q2

)2

q.

(C4)

2. � spreading potential

We consider the following spreading potential consisting
of the central and the LS parts:

�spr = VC

ρt (r)

ρt (0)
+ VLSfLS(r)2L� · ��, (C5)

fLS(r) = µr2e−µr2
, (C6)

with µ = 0.3 fm−2. We have two complex coupling constants,
VC and VLS, which are fitted to pion-nucleus scattering
data. The radial dependence of the LS spreading potential
is taken from Ref. [48]. We implement the spreading potential
[Eq. (C5)] in the � propagator after evaluating the doorway-

state expectation value of the LS term. Thus, the LS term
provides an L-dependent shift of the resonance mass and width
as [48]

�L
LS

= −5VLS
〈φL|ρtfLSk

2 − (ρtfLS)′ d
dr

+ L(L+1)
2r

(ρtfLS)′|φL〉
〈φL|ρtk2 − (ρt )′ d

dr
|φL〉 ,

(C7)

with the plane-wave pion function φL(r) = jL(kr).

3. � (nucleon) potential

V�(r) = V (r) = (−55 MeV)

(
ρt (r)

ρt (0)

)
. (C8)

4. � Coulomb potential

(r � Re) (r < Re) (C9)

V C
� (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(Z − 1)α
r , − (Z − 1)αr2

R3
e

+ 3(Z − 1)α
Re

(π+ + p → �++),

Zα
r , −Zαr2

2R3
e

+ 3Zα
2Re

(π+ + n → �+),

0, 0 (π− + p → �0),

−Zα
r , Zαr2

2R3
e

− 3Zα
2Re

(π− + n → �−).

In Eq. (C9) Z is the atomic number. The equivalent square
well radius, denoted Re, is related to the mean square radius

(〈r2〉) of a nucleus by

Re =
√

5

3
〈r2〉. (C10)
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