
PHYSICAL REVIEW C 81, 035205 (2010)

Hamiltonian light-front field theory in a basis function approach

J. P. Vary,1 H. Honkanen,1 Jun Li,1 P. Maris,1 S. J. Brodsky,2 A. Harindranath,3 G. F. de Teramond,4 P. Sternberg,5,*

E. G. Ng,5 and C. Yang5

1Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
2Stanford Linear Accelerator Center National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA

3Theory Group, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
4Universidad de Costa Rica, Apartado 2060, San José, Costa Rica
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Hamiltonian light-front quantum field theory constitutes a framework for the nonperturbative solution of
invariant masses and correlated parton amplitudes of self-bound systems. By choosing the light-front gauge
and adopting a basis function representation, a large, sparse, Hamiltonian matrix for mass eigenstates of gauge
theories is obtained that is solvable by adapting the ab initio no-core methods of nuclear many-body theory. Full
covariance is recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the choice
of the orthonormal and complete set of basis functions with convenience and convergence rates providing key
considerations. Here we use a two-dimensional harmonic oscillator basis for transverse modes that corresponds
with eigensolutions of the soft-wall anti-de Sitter/quantum chromodynamics (AdS/QCD) model obtained from
light-front holography. We outline our approach and present illustrative features of some noninteracting systems
in a cavity. We illustrate the first steps toward solving quantum electrodynamics (QED) by obtaining the mass
eigenstates of an electron in a cavity in small basis spaces and discuss the computational challenges.
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I. INTRODUCTION

Nonperturbative Hamiltonian light-front quantum field the-
ory presents opportunities and challenges that bridge particle
physics and nuclear physics. Major goals include predicting
both the masses and transitions rate of the hadrons and their
structures as seen in high-momentum transfer experiments.
Current foci of intense experimental and theoretical research
that could benefit from insights derived within this Hamil-
tonian approach include the spin structure of the proton,
the neutron electromagnetic form factor, and the generalized
parton distributions of the baryons.

Hamiltonian light-front field theory in a discretized momen-
tum basis [1] and in transverse lattice approaches [2–4] have
shown significant promise. Here a basis-function approach is
presented that exploits recent advances in solving the nonrela-
tivistic strongly interacting nuclear many-body problem [5,6].
Both light-front field theory and nuclear many-body theory
face common issues within the Hamiltonian approach: how to
(i) define the Hamiltonian, (ii) renormalize to a finite space,
(iii) solve for nonperturbative observables while preserving
as many symmetries as possible, and (iv) take the continuum
limit. In spite of the technical hurdles, Ken Wilson has assessed
the advantages of adopting advances in quantum many-body
theory and has long advocated the adoption of basis function
methods as an alternative to the lattice gauge approach [7].

There are three main advantages of Hamiltonian light-front
quantum field theory motivating our efforts to overcome the
technical hurdles. First, one evaluates experimental observ-
ables that are nonperturbative and relativistically invariant
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quantities such as masses, form factors, structure functions,
and so on; second, one evaluates these quantities in Minkowski
space; and third, there is no fermion doubling problem.

We begin with a brief overview of recent advances in solv-
ing light nuclei with realistic nucleon-nucleon (NN) and three-
nucleon (NNN) interactions using ab initio no-core methods in
a basis function representation. Then we introduce our basis
function approach to light-front quantum chromodynamics
(QCD) within the light-front gauge. Renormalization and
regularization issues are also addressed. We present illustrative
features of our approach with the example of cavity-mode
quantum electrodynamics (QED) and sketch its extension to
cavity-mode QCD. For a specific QED example, we work in
small basis spaces and solve for the mass eigenstates of an
electron coupled to a single photon in a transverse harmonic
oscillator cavity.

The present work is an expanded version of a recent paper in
which we provided an initial introduction to our approach [8].

II. NO-CORE SHELL MODEL AND NO-CORE FULL
CONFIGURATION METHODS

To solve for the properties of nuclei and self-bound strongly
interacting systems, with realistic Hamiltonians, one faces
immense analytical and computational challenges. Recently,
ab initio methods have been developed that preserve all the
underlying symmetries and converge to an exact result. The
basis function approach adopted here [5,6] is one of several
methods shown to be successful. The primary advantages are
its flexibility for choosing the Hamiltonian, the method of
renormalization and regularization, and the basis space. These
advantages impel us to adopt the basis function approach
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in light-front quantum field theory. Although nonrelativistic
applications in finite nuclei restrict the basis to a fixed number
of fermions, we introduce here the extension to a flexible
number of fermions, antifermions, and bosons.

References [5] and [6] provide examples of the recent
advances in the ab initio no-core shell model (NCSM)
and no-core full configuration (NCFC), respectively. The
former adopts a finite basis-space renormalization method
and applies it to realistic NN and NNN interactions (derived
from chiral effective field theory) to solve nuclei with atomic
numbers A = 10, . . . , 13 [9]. Experimental binding energies,
spectra, electromagnetic moments, and transition rates are well
reproduced. The latter adopts a realistic NN interaction that
is sufficiently soft that renormalization is not necessary and
binding energies obtained from a sequence of finite matrix
solutions may be extrapolated to the infinite matrix limit.
Because of uniform convergence and the variational principle,
one is also able to assess the theoretical uncertainties in the
extrapolated result. One again obtains good agreement with
experiment.

It is important to note the analytical and technical advances
made to solve these problems. First, nonperturbative renormal-
ization has been developed to accompany these basis-space
methods that preserve all the symmetries of the underly-
ing Hamiltonian, including highly precise treatments of the
center-of-mass motion. Several schemes have emerged with
impressive successes, and current research focuses on detailed
understanding of the scheme dependence of convergence rates
(different observables converge at different rates) [10]. Second,
large-scale calculations are performed on leadership-class
parallel computers, at Argonne National Laboratory and at
Oak Ridge National Laboratory, to solve for the low-lying
eigenstates and eigenvectors and to carry out evaluation
of a suite of experimental observables. For example, one
can now obtain the low-lying solutions for A = 14 systems
with matrices of dimension 1−3 × 109 on 8000 to 50,000
processors within a few hours of wall clock time. Since
the techniques are evolving rapidly [11] and computers are
growing dramatically, much larger matrices are within reach.

In an NCSM or NCFC application, one adopts a three-
dimensional (3D) harmonic oscillator for all the particles
in the nucleus (with harmonic oscillator energy �), treats
the neutrons and protons independently, and generates a
many-fermion basis space that includes the lowest oscillator
configurations as well as all those generated by allowing up to
Nmax oscillator quanta of excitations. The single-particle states
are formed by coupling the orbital angular momentum to the
spin forming the total angular momentum j and total angular
momentum projection mj . The many-fermion basis consists
of states where particles occupy the allowed orbits subject
to the additional constraint that the total angular momentum
projection Mj is a preselected value. This basis is referred
to as the m-scheme basis and, in a single run, one obtains
eigenstates with total angular momentum J � Mj . For the
NCSM, one also selects a renormalization scheme linked to
the many-body basis-space truncation, whereas in the NCFC,
the renormalization is either absent or of a type that retains the
infinite matrix problem. In the NCFC case [6], one extrapolates
to the continuum limit as we now illustrate.

FIG. 1. (Color online) Calculated ground-state energy of 12C for
Nmax = 2−8 (discrete points) at selected values of the oscillator
energy, �. For each value of �, the results are fit to an exponential
plus a constant, the asymptote, which is constrained to be the same
for each curve [6]. The experimental ground-state energy and the
common asymptote are displayed.

Figure 1 shows the results for the ground state of 12C as
a function of Nmax obtained with a realistic NN interaction,
JISP16 [12]. The smooth curves portray fits that achieve the
desired independence of Nmax and � to yield the extrapolated
ground-state energy. Our assessed uncertainty in the extrap-
olant is about 2 MeV and there is rather good agreement with
experiment within that uncertainty. The largest cases presented
in Fig. 1 correspond to Nmax = 8, where the matrix reaches a
basis dimension near 600 × 106. Nmax = 10 produces a matrix
near 8 × 109 and its lowest eigenvalues have now been solved
at two values of �. The results of Nmax = 10 follow closely
the curves shown in Fig. 1 and are presented elsewhere.

III. CHOICE OF REPRESENTATION FOR LIGHT-FRONT
HAMILTONIANS

It has long been known that light-front Hamiltonian quan-
tum field theory has similarities to nonrelativistic quantum
many-body theory. We further exploit this connection, in what
we term a basis light-front quantized (BLFQ) approach, by
adopting a light-front single-particle basis space consisting
of the two-dimensional (2D) harmonic oscillator for the
transverse modes (radial coordinate ρ and polar angle φ) and a
discretized momentum space basis for the longitudinal modes.
Adoption of this basis is also consistent with recent devel-
opments in anti-de Sitter/conformal field theory (AdS/CFT)
correspondence with QCD [13–17]. In the present application
to the noninteracting problem, we adopt periodic boundary
conditions (PBCs) for the longitudinal modes and we omit the
zero mode. For the light-front coordinates, we define x± =
x0 ± x3, x⊥ = (x1, x2), and coordinate pair (ρ, φ) includes
the usual cylindrical coordinates in (x1, x2). The variable x+ is

035205-2



HAMILTONIAN LIGHT-FRONT FIELD THEORY IN A . . . PHYSICAL REVIEW C 81, 035205 (2010)

−5
0

5

−5

0

5
0

0.2

0.4

0.6

−5
0

5

−5

0

5
−0.4

−0.2

0

0.2

−5
0

5

−5

0

5
−0.4

−0.2

0

0.2

−5
0

5

−5

0

5
−0.4

−0.2

0

0.2

−5
0

5

−5

0

5
−0.4

−0.2

0

0.2

FIG. 2. (Color online) Modes for n = 0 of the 2D harmonic oscillator selected for the transverse basis functions. The orbital quantum
number m progresses across the rows by integer steps from 0 in the upper left to 4 in the lower right and counts the pairs of angular lobes.
Amplitudes as well as x-axis and y-axis coordinates are in dimensionless units.

light-front time and x− is the longitudinal coordinate. We adopt
x+ = 0, the “null plane,” for our quantization surface.

The 2D oscillator states are characterized by their principal
quantum number n, orbital quantum number m, and harmonic
oscillator energy �. It is also convenient to interpret the 2D
oscillator as a function of the dimensionless radial variable√

M0�ρ, where M0 has units of mass and ρ is the conventional
radial variable in units of length. Thus, the length scale for
transverse modes is set by the chosen value of

√
M0�.

The properly orthonormalized wave functions,
�n,m(ρ, φ) = 〈ρφ|nm〉 = fn,m(ρ)χm(φ), are given in terms
of the generalized Laguerre polynomials, L

|m|
n (M0 �ρ2), by

fn,m(ρ) =
√

2 M0 �

√
n!

(n + |m|)! e−M0�ρ2/2

× (
√

M0 � ρ)|m| L|m|
n (M0 �ρ2), (1)

χm(φ) = 1√
2π

eimφ, (2)

with eigenvalues En,m = (2n + |m| + 1)�. The orthonormal-
ization is fixed by

〈nm|n′m′〉 =
∫ ∞

0

∫ 2π

0
ρ dρ dφ �n,m(ρ, φ)∗�n′,m′ (ρ, φ)

= δn,n′δm,m′ , (3)

which allows for an arbitrary phase factor eiα that we have
taken to be unity. One of the significant advantages of the
2D oscillator basis is the relative ease of transforming results
between coordinate space and momentum space. That is, the
Fourier-transformed wave functions have the same analytic

structure in both coordinate and momentum space, a feature
reminiscent of a plane-wave basis.

To gain an impression of the transverse modes in the
light-front basis, Figs. 2 and 3 present snapshots of selected
low-lying modes. As one increases the orbital quantum
number m, pairs of maxima and minima populate the angular
dependence of the basis function. Also, as one increases the
principal quantum number n, additional radial nodes appear,
as evident in the progression from Fig. 2 to Fig. 3.

To provide a perspective on the full 3D basis, we introduce
longitudinal modes ψj defined on −L � x− � L with both
PBCs and antiperiodic boundary conditions (APBC). We also
introduce the following purely real form to be used in a
figure:

ψk(x−) = 1√
2L

ei π
L

kx−
, (4)

ψk(x−) = 1√
πL

sin
π

L
kx−, (5)

where k = 1, 2, 3, . . . for the PBC (neglecting the zero mode)
and k = 1

2 , 3
2 , 5

2 , . . . in Eq. (4) for the APBC. Similarly, k =
1, 2, 3 in Eq. (5) for reflection antisymmetric amplitudes with
box boundary conditions (where the amplitude vanishes at
x− = ±L). The full 3D single-particle basis state is defined
by the product form


k,n,m(x−, ρ, φ) = ψk(x−)�n,m(ρ, φ). (6)

For a first illustration, we select a transverse mode with
n = 1,m = 0 joined together with the k = 1

2 longitudinal
APBC mode of Eq. (4) and display slices of the real part
of this 3D basis function at selected longitudinal coordinates,
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FIG. 3. (Color online) Modes for n = 1 of the 2D harmonic oscillator selected for the transverse basis functions. The orbital quantum
number m progresses across the rows by integer steps from 0 in the upper left to 4 in the lower right and counts the pairs of angular lobes.
Amplitudes as well as x-axis and y-axis coordinates are in dimensionless units.

x− in Fig. 4. For comparison, we present a second example
with Eq. (5) for the longitudinal mode in Fig. 5. Our purpose in
presenting Figs. 4 and 5 is to suggest the richness, flexibility,

FIG. 4. (Color online) Transverse sections of the real part of a 3D
basis function involving a 2D harmonic oscillator and a longitudinal
mode of Eq. (4) with antiperiodic boundary conditions. The quantum
numbers for this basis function are k = 1

2 , n = 1, and m = 0. The
basis function is shown for the full range −L � x− � L.

and economy of texture available for solutions in a basis
function approach. Note that the choice of basis functions
is rather arbitrary, including which boundary conditions are

FIG. 5. (Color online) Transverse sections of a 3D basis function
involving a 2D harmonic oscillator and a longitudinal mode of
Eq. (5) with box boundary conditions (wave function vanishes at
±L). The quantum numbers for this basis function are k = 1, n = 0,
and m = 3. The basis function is shown for positive values of x− and
is antisymmetric with respect to x− = 0.
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imposed, except for the standard conditions of orthonormality
and completeness within the selected symmetries.

Although the choice of basis functions is not dictated
by theory, it is buttressed by the phenomenological success
of the “soft-wall” AdS/QCD model [13,14], which uses a
harmonic oscillator potential in the fifth dimension of AdS
space to simulate color confinement. As shown in Ref. [15],
one can use “light-front holography” [16] to transform the
bound-state equations for the wave function in AdS space [17]
to a corresponding bound-state equation in physical space at
fixed light-front time τ . The resulting light-front equation is
similar in form to the Schrödinger radial wave equation at
fixed t , which describes the quantum-mechanical structure of
atomic systems. However, the formalism at fixed light-front
time is relativistic and frame independent. Thus, for the specific
example of a qq̄ pair, one obtains a relativistic wave equation
applicable to hadron physics, where the light-front coordinate
ζ = b⊥

√
x(1 − x) plays the role of the radial variable r of

the nonrelativistic theory. Here, x is the light-front momentum
fraction of the quark and b⊥ is the magnitude of the transverse
relative separation coordinate. In this example, the meson
eigenvalue equation is [15]

[
− d2

dζ 2
− 1 − 4L2

4ζ 2
+ U (ζ )

]
φ(ζ ) = M2φ(ζ ), (7)

where the complexity of the QCD interactions among con-
stituents is summed up in the addition of the effective potential
U (ζ ), which is then modeled to enforce confinement. The
potential in the soft-wall model is U (ζ ) = κ4ζ 2 + 2κ2(J − 1),
where J is the total angular momentum of the hadron.
Using the substitution φ(ζ ) = ζ 1/2R(ζ ), κζ = √

M0�ρ, and
L = |m|, we arrive at the transverse 2D harmonic oscillator
wave equation whose solution is given in Eq. (1).

There is one additional distinction between our choice of
transverse basis functions and the solutions of the AdS/QCD
model: we adopt single-parton coordinates as the basis func-
tion arguments whereas AdS/QCD adopts a relative coordinate
between the constituents. Our selection is natural for the
applications within an external cavity presented here and
is most convenient for enforcing the boson and fermion
statistics when dealing with arbitrary many partons. In future
work without the external cavity, we may invoke a Lagrange
multiplier method, analogous to the method in the NCSM and
NCFC approaches [5,6], to separate the relative motion from
the total system’s motion in the transverse direction.

The solutions of light-front equation (7) determine the
masses of the hadrons, given the total internal spin S, the
orbital angular momenta L of the constituents, and the index
n, the number of nodes of the wave function in ζ . For example,
if the total quark spin S is zero, the meson bound-state
spectrum follows the quadratic form M2 = 4κ2(n + L). Thus,
the internal orbital angular momentum L and its effect on
quark kinetic energy play an explicit role. The corresponding
wave functions of the mesonic eigensolutions describe the
probability distribution of the qq̄ constituents for the different
orbital and radial states. The separation of the constituent
quark and antiquark in AdS space gets larger as the orbital
angular momentum increases. The pion with n = 0 and L = 0

is massless for zero quark mass, which is in agreement with
general arguments based on chiral symmetry. If the total spin
of the constituents is S = 1, the corresponding mass formula
for the orbital and radial spectrum of the ρ and ω vector
mesons is M2 = 4κ2(n + L + 1/2). The states are aligned
along linear Regge trajectories and agree well with experiment.
The resulting light-front wave functions also give a good
account of the hadron form factors.

The AdS/QCD model, together with light-front hologra-
phy, provides a semiclassical first approximation to strongly
coupled QCD. The BLFQ approach in this article provides a
natural extension of the AdS/QCD light-front wave functions
to multiquark and multigluonic Fock states, thus allowing
for particle creation and absorption. By setting up and
diagonalizing the light-front QCD Hamiltonian on this basis,
we incorporate higher-order corrections corresponding to the
full QCD theory, and we hope to gain insights into the success
of the AdS/QCD model.

IV. CAVITY MODE LIGHT-FRONT FIELD THEORY
WITHOUT INTERACTIONS

For a first application of the BLFQ approach, we consider a
noninteracting QED system confined to a transverse harmonic
trap or cavity. That is, we address systems of spin-1/2 leptons
and spin-1 photons. For simplicity, in this section, we take the
leptons as massless while the photons are massless throughout
this work. The basis functions are matched to the trap, so
we implement a transverse 2D harmonic oscillator basis
with length scale fixed by the trap and finite modes in the
longitudinal direction with APBCs.

Because we are ultimately interested in the self-bound states
of the system, we anticipate adoption of the NCSM method for
factorizing the eigensolutions into simple products of intrinsic
and total momentum solutions in the transverse direction [5].
That is, with a suitable transverse momentum constraint
such as a large positive Lagrange multiplier times the 2D
harmonic oscillator Hamiltonian acting on the total transverse
coordinates, the low-lying physical solutions would all have
the same expectation value of total transverse momentum
squared. Therefore, following Ref. [1], we introduce the total
invariant mass-squared M2 for these low-lying physical states
in terms of a Hamiltonian H times a dimensionless integer for
the total light front momentum, K:

M2 + P⊥P⊥ → M2 + const = P +P − = KH, (8)

where we absorb the constant into M2. The Hamiltonian H

for this system is defined by the sum of the occupied modes i

in each many-parton state with the scale set by the combined
constant �2 = 2M0�:

H = 2M0P
−
c = 2M0�

K

∑
i

2ni + |mi | + 1

xi

. (9)

We adopt symmetry constraints and two cutoffs for our
many-parton states. For symmetries, we fix the total charge
Z, the total azimuthal quantum number Mt , and the total spin
projection S along the x− direction. For cutoffs, we select
the total light-front momentum, K , and the maximum total
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quanta allowed in the transverse mode of each many-parton
state, Nmax. For the longitudinal modes, we select those with
PBCs from Eq. (4). The chosen symmetries and cutoffs are
expressed in terms of sums over the quantum numbers of the
single-parton degrees of freedom contained in each many-
parton state of the system in the following way:∑

i

qi = Z, (10)

∑
i

mi = Mt, (11)

∑
i

si = S, (12)

∑
i

xi = 1 = 1

K

∑
i

ki , (13)

∑
i

2ni + |mi | + 1 � Nmax, (14)

where, for example, ki is the integer that defines the PBC
longitudinal modes of Eq. (4) for the ith parton. The range
of the number of fermion-antifermion pairs and bosons is
limited by the cutoffs in the modes (K and Nmax). Because
each parton carries at least one unit of longitudinal momentum,
the basis is limited to K partons. Furthermore, because each
parton carries at least one oscillator quantum for transverse
motion, the basis is also limited to Nmax partons. Thus, the
combined limit on the number of partons is min(K,Nmax). In
principle, one may elect to further truncate the many-parton
basis by limiting the number of fermion-antifermion pairs or
the number of bosons, but we have not elected to do so here.

We may refer to the quantity K as the inverse longitudinal
harmonic resolution. We reason that as we increase K , higher
longitudinal momenta states become available to the partons,
thus allowing finer detail in the features of the longitudinal
coordinate structure to emerge.

In a fully interacting application, the actual choice of
symmetry constraints depends on those dictated by the
Hamiltonian. For example, with QCD we would add color
and flavor attributes to the single-particle states and apply
additional symmetries such as requiring all many-parton states
to be global color singlets, as discussed below. Another
example, which we adopt for the interacting QED example that
follows, is the choice to conserve total Mj = Mt + S rather
than conserving Mt and S separately. It is straightforward,
but sometimes computationally challenging, to modify the
symmetries in a basis function approach such as that adopted
here. However, to approach the continuum limit (all cutoffs are
removed) as closely as possible with limited computational
resources, one works to implement as many of the known
symmetries as possible.

A. Basis space dimensions

For our defined noninteracting cavity mode problem, we
now illustrate the exponential rise in basis-space dimensions
with increasing Nmax at fixed K , with increasing K at fixed
Nmax, and with simultaneous increase in both cutoffs. The first

FIG. 6. (Color online) State density as a function of dimension-
less state energy E from BLFQ for noninteracting QED in a trap
with no net charge and for a selection of Nmax values at fixed
K = 6. The dimensions of the resulting matrices are presented in
the legend. The states are binned in groups of five units of energy
(quanta), where each parton carries energy equal to its 2D oscillator
quanta (2ni + |mi | + 1) divided by its light-front momentum fraction
(xi = ki/K). The dashed line traces an exponential in the square root
of energy that reasonably approximates the histogram at larger Nmax

values.

two situations involve a parton number cutoff defined by K and
Nmax, respectively. Only the case with simultaneous increase
in cutoffs keeps the problem physically interesting at higher
excitations because this is the only case with an unlimited
number of partons as both cutoffs go to infinity.

Figure 6 presents the state density in BLFQ for massless
QED in the zero coupling limit for the case with no net
charge, Z = 0 (i.e., for zero lepton number). Thus, the cavity
is populated by many-parton states consisting of fermion-
antifermion pairs and photons. The chosen symmetries are
M = 0 and S = 0. We show results for K = 6 at various values
of Nmax spanning a range (Nmax = 8, 13, 18, 23). The states
are grouped to form a histogram according to their energy
calculated from the chosen Hamiltonian in Eq. (9), where
we omit the constant preceding the summation for simplicity.
Similarly, in Fig. 7 we present the state densities for Z = 3,
Mt = 0, and S = 1/2 at the same selected values of Nmax.

Figures 6 and 7 both demonstrate the saturation of low-lying
modes with increasing Nmax. That is, in each case, one may
observe an excitation energy at which the state density reaches
a value that no longer changes with increasing Nmax. The
energy at which this saturation occurs increases with Nmax.
We show only the lower sections of some of the state density
distributions, but it is clear that all distributions must fall off
at sufficiently high energy for fixed Nmax and K .

Figure 8 presents the state density in BLFQ for QED in
the zero coupling limit again for the case with no net charge
Z = 0 but with increasing K at fixed Nmax = 8. In this case,
the many-parton states at low energy continue to increase
in number with increasing K . This is understandable from
the definition of the Hamiltonian in Eq. (9). In particular, a
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FIG. 7. (Color online) State density as a function of dimension-
less state energy E from BLFQ for noninteracting QED in a trap
with net charge of 3 and for a selection of Nmax values at fixed
K = 6. The dimensions of the resulting matrices are presented in
the legend. The states are binned in groups of five units of energy
(quanta), where each parton carries energy equal to its 2D oscillator
quanta (2ni + |mi | + 1) divided by its light-front momentum fraction
(xi = ki/K). The dashed line traces an exponential in the square root
of energy that reasonably approximates the histogram at larger Nmax

values.

typical fermion-antifermion state with each parton’s light-front
momentum fraction close to xi = 1

2 achieves a low energy.
Correspondingly, as one increases K , the population of states
at low E grows because there are more pairs of values of xi

near 1
2 to employ for minimizing the energy. This reasoning

easily extends to states with increasing numbers of partons, so
the net result is an increasing level density with increasing K

at fixed low E and fixed Nmax.
For the final example of state densities, we consider the

case where both K and Nmax increase simultaneously. For
simplicity, we continue with the Z = 0 sector and take K =
Nmax. The state densities for this example are presented in
Fig. 9. Here, we observe trends similar to those shown in Fig. 8
where there is no saturation in state density at low energy.

We take three cases depicted in Fig. 9 to illustrate the
distribution of many-parton states over the sectors of the Fock
space. The distributions for the examples using Nmax = K =
8, 10, and 12 are shown in Table I. With increasing cutoff,
there is a rapid growth in the number of basis states within
each Fock-space sector. Overall, there is approximately a
factor-of-20 increase in the total many-parton basis states with
each increase of two units in the coordinated cutoff.

Specific cases in Table I where no basis states may appear in
a given Fock-space sector may seem puzzling at first. However,
they are understandable once the symmetries and constraints
are examined. For example, with Nmax = K = 8, there are no
states with four f f̄ pairs since the Pauli principle excludes
more than two pairs from occupying the lowest Nmax and K

modes. Because two f f̄ pairs must be in higher modes, either
the total K = 8 or Nmax = 8 constraint would be violated by
having a total of four f f̄ pairs.

FIG. 8. (Color online) State density as a function of dimen-
sionless state energy E from BLFQ for noninteracting QED in a
trap with no net charge and for a selection of K values at fixed
Nmax = 8. The dimensions of the resulting matrices are presented in
the legend. The states are binned in groups of five units of energy
(quanta), where each parton carries energy equal to its 2D oscillator
quanta (2ni + |mi | + 1) divided by its light-front momentum fraction
(xi = ki/K).

All level density results are shown as a function of the
dimensionless energy. For the noninteracting theory in the
BLFQ approach, only the kinetic term of the Hamiltonian
contributes and the scale is available through an overall factor
�2 = 2M0�, as described earlier. Without interactions and
the associated renormalization program, one cannot relate the
scales at one set of (K,Nmax) values to another. Ultimately,
one expects saturation should arise with interaction and

FIG. 9. (Color online) State density as a function of dimension-
less state energy E from BLFQ for noninteracting QED in a trap with
no net charge and for K = Nmax. The dimensions of the resulting
matrices are presented in the legend. The states are binned in groups of
five units of energy (quanta), where each parton carries energy equal
to its 2D oscillator quanta (2ni + |mi | + 1) divided by its light-front
momentum fraction (xi = ki/K).

035205-7



J. P. VARY et al. PHYSICAL REVIEW C 81, 035205 (2010)

TABLE I. Number of many-parton basis states in each Fock-space sector for two of the Nmax = K cases depicted in Fig. 9. The counts
are organized according to the number of fermion-antifermion (f f̄ ) pairs and the number of bosons in each sector. The first line in each f f̄

row corresponds to the Nmax = K = 8 case, which has a total of 22,457 states, while the second line corresponds to the Nmax = K = 10 case,
which has a total of 440,039 states. The third line in each f f̄ row corresponds to the Nmax = K = 12 case, which has a total of 8,422,971
states. In this last case, there is a single 12-boson state not listed to save space. The last column provides the total for that row.

f f̄ Pairs Bosons Total

0 1 2 3 4 5 6 7 8 9 10

0 0 0 210 0 1122 0 67 0 1 0 0 1400
0 0 495 0 11318 0 2936 0 69 0 1 14819
0 0 1001 0 73600 0 63315 0 4027 0 69 142013

1 420 1932 8190 1040 588 8 2 0 0 0 0 12180
990 10512 86856 33632 36672 1604 640 8 2 0 0 170916

2002 40810 574860 503040 929064 99962 60518 1770 644 8 2 2212680

2 5961 1560 1133 4 1 0 0 0 0 0 0 8659
64240 59240 97584 4040 1513 4 1 0 0 0 0 226622

427730 942240 2806624 381608 249825 4928 1565 4 1 0 0 4814525

3 218 0 0 0 0 0 0 0 0 0 0 218
25584 1528 554 0 0 0 0 0 0 0 0 27666

808034 222336 200676 2592 602 0 0 0 0 0 0 1234240

4 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 16

19325 168 20 0 0 0 0 0 0 0 0 19513

renormalization physics included as one increases the set of
(K,Nmax) values.

These state densities could serve as input to model the
statistical mechanics of the system treated in the microcanon-
ical ensemble. Of course, interactions must be added to make
the model realistic at low temperatures, where correlations
are important. After turning on the interactions, the challenge
is to evaluate observables and demonstrate convergence with
respect to the cutoffs (Nmax and K). Independence of the
basis scale, �, must also be obtained. These are the standard
challenges of taking the continuum limit. These topics will be
addressed in a separate investigation. For the current effort, we
present a smooth representation for selected histograms—an
exponential fit adopted from the well-known Bethe formula,

ρ(E) = b exp(
√

aE), (15)

where the precise values of the fitted constants are provided in
the legends. We provide these exponential fits in Figs. 6 and 7
where the low-lying state density exhibits saturation.

B. Distribution functions

To illustrate the potential value of the BLFQ approach, we
present light-front momentum distribution functions for two
simple toy models, based on results presented in Fig. 9. In
the first example, we consider a model for a weak coupling
regime; in the second example, we consider a model for strong
coupling behavior. In both cases we introduce a simple state
that is an equally weighted superposition of basis states. In
the weak coupling case, we retain all basis states below a
cutoff (Ecut = 25) in the dimensionless energy scale of Fig. 9
for a given value of K = Nmax. That is, we imagine a situation
where only the low-lying unperturbed many-parton basis states

mix equally to describe a low-lying physical state of a weakly
coupled physical system. In the strong coupling case, we retain
all basis states of Fig. 9 with equal weights for a given value
of K = Nmax. Here, we imagine the coupling is strong enough
to overwhelm the unperturbed spectrum and to produce a
simple low-lying physical state with equal admixtures of all
available basis states. These states, labeled |
w〉 and |
s〉,
where the w (s) represents “weak” (“strong”), are written as
normalized sums over their respective sets of many-parton
basis states |�j 〉 as

|
a〉 = 1√
Da

∑
j

|�j 〉, (16)

where a represents “w” or “s” and the sum runs over the Da

respective many-parton states. For our present application to
probability distribution functions, the phases of the individual
terms in expansion are not relevant, so we choose all of them
to be positive for simplicity.

Selected light-front momentum distributions n(x) for these
two model states are shown in Figs. 10 and 11. The fermion
and antifermion distributions are the same in these limiting
examples. Light-front momentum distributions are probability
distributions emerging after integration over transverse de-
grees of freedom. With the present selection of basis states, the
light-front momenta take discrete values leading to discrete-
valued distributions (histograms). However, for convenience,
smooth distributions generated by spline interpolations are
presented in Figs. 10 and 11.

The parton distributions at fixed Nmax = K satisfy both the
normalization condition,∑

i

∫ 1

0
ni(x)dx = 1

K

∑
i,k

ni(xk) = 1, (17)
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FIG. 10. (Color online) Light-front momentum distribution func-
tions for states representing a weak coupling paradigm. The top panel
displays the distributions at Nmax = K = 8. The antifermion distri-
bution is the same as the fermion distribution. The total momentum
fraction carried by the fermion plus antifermion distribution is 0.66,
while the boson distribution carries the remaining fraction of 0.34.
The bottom panel displays the boson distributions at three different
values of Nmax = K that are labeled.

and total light-front momentum conservation,

∑
i

∫ 1

0
xni(x)dx = 1

K

∑
i,k

xkni(xk) = 1. (18)

The index i runs over the parton species (fermion, antifermion,
boson) and the index k runs over the discrete values of light-
front momenta corresponding to the integers in Eq. (4) where
xk = k

K
.

The top panels of Figs. 10 and 11 display the light-front
momentum distributions at Nmax = K = 8 for the weak and
strong coupling models, respectively. The lower panels present
the boson distribution functions for three Nmax = K values
ranging from 8 to 12 for the same models.

The fermion distributions are found to track the boson
distributions with increasing Nmax = K and are not shown

FIG. 11. (Color online) Light-front momentum distribution func-
tions for states representing a strong coupling paradigm. The top panel
displays the distributions at Nmax = K = 8. The antifermion distri-
bution is the same as the fermion distribution. The total momentum
fraction carried by the fermion plus antifermion distribution is 0.65,
while the boson distribution carries the remaining fraction of 0.35.
The bottom panel displays the boson distributions at three different
values of Nmax = K that are labeled.

in the lower panels. We also comment that the total mo-
mentum distribution fractions carried by the separate parton
species appear approximately independent of Nmax = K over
the range 8–12. About two-thirds of the total light-front
momentum is carried by the fermions plus antifermions.
This division is characteristic of both the weak and strong
coupling models over the Nmax = K = 8–12 range we
examined.

The top panel of Fig. 11 indicates a peak in the vicinity
of the minimum light-front momentum fraction carried by
a single parton in this basis, x = 1

8 , for both the fermions
and the bosons. This appears to be a characteristic of this
strong coupling toy model and is illustrated in the lower panel
of the same figure, where the peaks in the boson light-front
momentum distributions appear to track well with the inverse
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of Nmax = K . Clearly, with this toy model the distribution
functions do not converge with increasing Nmax and K .

For comparison, we note that in the weak coupling toy
model the peaks of the boson distributions shown in Fig. 10
appear to be stable with increasing Nmax and K , and the
distribution function appears to be reasonably well converged
at Nmax = K = 12. Based on these observations, we anticipate
good convergence for weakly interacting theories like QED.

The lack of convergence of our strong coupling toy model
may be worrisome for applications in QCD, but one should
keep in mind that this toy model is far from realistic: all
basis states are retained with equal weight. Nevertheless,
it is interesting to consider the trends of this model with
increasing Nmax = K . For background, one may recall that
deep-inelastic lepton scattering from a hadron in the scaling
region Q2 → ∞ provides a measure of the hadron’s charged
quark distribution functions. With more detailed resolution
provided by the virtual photon exchange (increasing Q leads
to shorter wavelengths), experiments reveal that the charged
quark distributions evolve to lower values of light-front
momentum fraction, x. The pattern shown in the lower
panel of Fig. 11 with increasing Nmax = K is reminiscent
of this experimental trend with increasing Q. Given the
simplicity of the strong interaction model, one may infer
that the evolution of multiparton phase space with increasing
Nmax = K could play a significant role in the evolution of
light-front momentum distribution functions with improved
resolution through increasing Q.

C. Extension to color

We can extend the approach to QCD by implementing the
SU(3) color degree of freedom for each parton—three colors
for each fermion and eight for each boson. For simplicity,
we restrict the present discussion to the situation for which
identical fermions occupy distinct space-spin single-particle
modes. The case for which we allow multiple space-spin
occupancies by identical fermions leads to color space restric-
tions. This additional complexity is addressed in a subsequent
investigation.

We consider two versions of implementing the global color-
singlet constraint for the restricted situation under discussion
here. In both cases we enumerate the color space states to
integrate with each space-spin state of the corresponding
partonic character.

In the first case, we follow Ref. [18] by enumerating parton
states with all possible values of SU(3) color. Thus, each
space-spin fermion state goes over to three space-spin-color
states. Similarly, each space-spin boson state generates a
multiplicity of eight states when SU(3) color is included.
We then construct all many-parton states having zero color
projection. Within this basis are both global color singlet and
color nonsinglet states. The global color-singlet states are then
isolated by adding a Lagrange multiplier term in many-parton
color space to the Hamiltonian so that the unphysical color
nonsinglet states are pushed higher in the spectrum, away
from the physical color single states. To evaluate the increase
in basis-space dimension arising from this treatment of color,

we enumerate the resulting color-singlet projected color space
states and display the results as the upper curves in Fig. 12.

In the second case, we restrict the basis space to global
color singlets and this results in the lower curves in Fig. 12.
The second method produces a typical factor of 30–40
lower multiplicity at the upper ends of these curves at the
cost of increased computation time for matrix elements of
the interacting Hamiltonian. That is, each interacting matrix
element in the global color-singlet basis is a transformation
of a submatrix in the zero color projection basis. Either
implementation dramatically increases the state density over
the case of QED, but the use of a global color-singlet constraint
is clearly more effective in minimizing the explosion in
basis-space states.

We note that, for the pure multifermion basis-space sector
shown in the upper left panel of Fig. 12, we could have
produced the lower curve using methods introduced and
applied successfully in (1 + 1)-dimensional QCD [19]; that is,
the number of global color singlets for a given fermion-only
basis state, with other (noncolor) quantum numbers specified,
is independent of the number of spatial dimensions, provided
there is at least one.

V. CAVITY-MODE LIGHT-FRONT FIELD THEORY:
ELEMENTS OF THE INTERACTING THEORY

Now we briefly address the interacting theory for which a
primary concern is to manage the divergent structure of the
theory. For this application, we adopt at total Hamiltonian
consisting of the noninteracting cavity-mode Hamiltonian of
the previous section, including a fermion mass contribution,
plus light-front QED vertices for the fermion to fermion-boson
vertex

Vf →f b = g

∫
dx+d2x⊥
(x)γ µ
(x)Aµ(x)

∣∣∣∣
x+=0

, (19)

and the instantaneous fermion-boson interaction,

Vf b→f b = g2

2

∫
dx+d2x⊥ 
γ µAµ

γ +

i∂+ (γ νAν
)

∣∣∣∣
x+=0

.

(20)

There are two possible locations for divergences in a
Hamiltonian basis function approach: (i) the matrix elements
themselves diverge or (ii) the eigenvalues diverge as one or
more cutoffs are removed. In our cavity field theory appli-
cations with interactions, we manage these divergences with
the help of suitable counterterms, coupling constant and mass
renormalizations, and boundary condition selections. The
development of counterterms is expected to be straightforward,
as seen, for example, in Ref. [3]. The infrared divergences in
light-front momentum arising in both the fermion to fermion-
boson vertex and the instantaneous fermion-boson interaction
are expected to be well managed by previously defined
counterterms [3] suitably transcribed for the transverse basis
functions we have adopted. We anticipate this prescription
would work because the longitudinal modes we adopt are
similar to those used in Ref. [3]. Finally, we expect the
transverse ultraviolet divergences to be suitably managed with
our basis function selection.
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FIG. 12. (Color online) Number of color space states that apply to each space-spin configuration of selected multiparton states for two
methods of enumerating the color basis states. The upper curves are counts of all color configurations with zero color projection. The lower
curves are counts of global color singlets.

Because we are introducing a basis function approach
for the transverse degrees of freedom, we must investigate
convergence rates with increased cutoff of the transverse
modes Nmax. Here, in a simple set of examples, we outline how
we can search for additional sources of divergence with the
help of a perturbation theory analysis.

Consider the second-order energy shift, �E, induced on a
single parton in the transverse mode (n,m) by its coupling V

to partons in higher-energy transverse modes (n′,m′):

�En,m =
∑
n′,m′

|〈n,m|V |n′,m′〉|2
En,m − En′,m′

� 0, (21)

�En,m ≈
∫ |〈n,m|V |n′,m′〉|2

En,m − En′,m′
ρ(n̄′)dn̄′, (22)

where we use the following notation and properties of the 2D
harmonic oscillator

n̄′ = 2n′ + |m′|, (23)

En′,m′ = (n̄′ + 1)�, (24)

ρ(n̄′) = n̄′ + 1, (25)

and we convert the sum to an integral taking the degeneracy
into account with ρ.

Thus, according to perturbation theory, we expect a UV
divergence if the matrix element falls off too slowly with
increasing n̄′. In particular, if the matrix element falls approx-

imately as (n̄′)−
1
2 , then we expect a logarithmic divergence

because the integrand will have a net (n̄′)−1 dependence. If
the falloff is even slower, then a more serious divergence is
encountered.

Another possible source of a log divergence could arise
within the selected sum over m′ in which case ρ, the level
density factor in the integrand, is unity. Then, if the matrix
elements for fixed n, n′ are approximately constant with
increasing m′, we again find a log divergence in the sum
over m′.

For a first investigation, we have examined the behavior of
various sets of matrix elements for the fermion to fermion-
boson vertex in Eq. (19). For the purpose of this investigation,
we adopt periodic (antiperiodic) boundary conditions for the
longitudinal modes of the bosons (fermions) and we hold
spin projections fixed for initial and final states. We then
adopt specific values for the longitudinal momentum fractions,
observing the conservation rule. The trends we examine should
not be sensitive to the specific values adopted.

To date, no matrix element trends with increasing transverse
energy have been found that would imply new divergences. All
such matrix element sets we examined, within a perturbative
analysis, fall faster than the inverse square root of the principal
quantum number n′. Also, we found no sets that remained
constant with increasing m′ (and thus m) holding n, n′ fixed.

Figures 13 and 14 portray representative sequences of how
these off-diagonal matrix elements behave as one increases
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FIG. 13. (Color online) Behavior of representative fermion to
fermion-boson matrix elements in the BLFQ approach. The quantum
numbers specifying the parton transverse modes (ni, mi) in the
matrix elements are given in the legend. Only the transverse mode
contributions to the matrix elements are shown. Results are also
shown with a multiplicative factor of

√
n + 1 applied to help search

for a logarithmic divergence by obtaining a resulting flat behavior,
when it occurs. Overall matrix element normalization depends on
the specific values of light-front momentum fractions carried by the
interacting partons.

the difference in the initial- and final-state principal quantum
numbers. We also portray two interesting cases in which the
fermion and fermion-boson principal quantum numbers track

1 3 5 7 9
n (odd)

-0.02

-0.015

-0.01

-0.005

0.0

0.005

0.01

m
at

ri
x

el
em

en
t

<n2m2n3m3|V| n1 m1>:

<n0n0|V|n0>
<n0n0|V|n0>*(n+1)

1/2

<0000|V|n0>
<0000|V|n0>*(n+1)

1/2

f fb
spin flip

FIG. 14. (Color online) Behavior of representative fermion to
fermion-boson matrix elements in the BLFQ approach. The quantum
numbers specifying the parton transverse modes (ni, mi) in the
matrix elements are given in the legend. Only the transverse mode
contributions to the matrix elements are shown. Results are also
shown with a multiplicative factor of

√
n + 1 applied to identify

logarithmic divergence by a resulting flat behavior, when it occurs.
Note that, for one of the cases shown, the resulting matrix elements
vanish with increasing n while the other case shows a constant trend
but does not enter a second-order perturbative analysis. Overall matrix
element normalization depends on the specific values of light-front
momentum fractions carried by the interacting partons.

each other—cases that do not enter a perturbative analysis.
Note that we have limited the illustrations to the transverse
components of our matrix elements. We also select cases where
the fermion spin is flipped—cases that are proportional to
the fermion mass. We set the fermion mass to unity so the
results are expressed in units of the fermion mass.

We further limit our presentation to the case where all
partons remain in the orbital projection quantum number zero
state and the 2-parton (fermion-boson) states have each parton
in the same transverse state. For the nonperturbative illustrative
cases, we display the matrix element trends for which all
partons remain in the same transverse mode, (n, 0).

When the single fermion state has an even value of the
principal quantum number n as shown in Fig. 13, the matrix
elements appear to be well-behaved either when the 2-parton
configuration is the lowest accessible case (〈0000|) or when
the each of the two partons resides in the state with the same
principal quantum number as the single fermion state. We
demonstrate anticipated good convergence with increasing
n by showing that the matrix elements, when multiplied by√

n + 1, still fall with increasing n.
For the case when the single fermion state has an odd value

of the principal quantum number n as shown in Fig. 14, the situ-
ation is somewhat different. For the matrix element set entering
a perturbative analysis, the matrix elements fall to zero with
increasing n sufficiently fast that multiplying by

√
n + 1 does

not significantly distort the trend to zero. However, the large n

behavior of the fermion-boson matrix element, with all partons
at the same n, is seen to go approximately as

√
n + 1. This is

best seen in Fig. 14 where the matrix elements are multiplied
by

√
n + 1 and the result appears to be a nonzero constant

at large n. Since this trend does not appear in a second order
perturbation theory analysis, we must await the full Hamito-
nian diagonalization in sufficiently large basis spaces to better
understand its role in the convergence with increasing Nmax.

As a result of this initial analysis, we anticipate that
straightforward adoption of counterterm methods previously
introduced [3] should be sufficient for managing the identified
divergences in the BLFQ approach. However, it seems advis-
able to have an alternative scheme for comparison. Therefore,
we plan to adopt a second approach that involves a recently
proposed sector-dependent coupling constant renormalization
scheme [20]. Another alternative that we may adopt uses the
Pauli-Villars regulator [21].

Even without regulating the possible divergencies in the
Hamiltonian, it is possible to get some idea of how the cutoffs
for the basis-space dimensions, as discussed in the previous
section, affect the eigenvalue spectra of the Hamiltonian.
Figure 15 shows the eigenvalues (multiplied by K) for a light-
front QED Hamiltonian in a basis space limited to the fermion
and fermion-boson sectors. For this particular example, we
chose the harmonic oscillator parameters as � = 0.1 MeV
and M0 = 0.511 MeV, and the fermion mass was chosen to
be equal to M0. The interaction terms include the fermion
to fermion-boson vertex and the instantaneous fermion-boson
interaction. We chose the basis space such that the basis states
have total Mj = Mt + S = 1

2 , and we simultaneously increase
the K and Nmax cutoffs. As a result, the size of the Hamiltonian
matrices increases rapidly. For K = Nmax = 2, 3, 4, 5, 6, the
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FIG. 15. (Color online) Eigenvalues (multiplied by K) for a
nonrenormalized light-front QED Hamiltonian which includes the
fermion-boson vertex and the instantaneous fermion-boson inter-
action without counterterms. The basis is limited to fermion and
fermion-boson states satisfying the symmetries. The cutoffs for
the basis-space dimensions are selected such that K increases
simultaneously with the Nmax. The harmonic oscillator parameters
were chosen as � = 0.1 MeV and M0 = 0.511 MeV, and the fermion
mass was chosen to be equal to M0.

dimensions of the corresponding matrices are 2 × 2, 12 ×
12, 38 × 38, 99 × 99, and 208 × 208, respectively.

The number of the single fermion basis states increases
slowly with increasing K = Nmax cutoff. For K = Nmax =
2, 3, 4, 5, 6, the number of single fermion basis states is
1, 2, 2, 3, 3, respectively. Our lowest-lying eigenvalues corre-
spond to solutions dominated by these states and they appear
with nearly harmonic separations in Fig. 15, as would be
expected at the coupling of QED.

The higher eigenstates are the ones dominated by the
fermion-boson basis states that interact with each other in lead-
ing order through the instantaneous fermion-boson interaction.
Their multiplicity increases rapidly with increasing K = Nmax,
and they exhibit significant mixing with each other as well as
weak mixing with the lowest-lying states. The eigenvalues
dominated by the fermion-boson basis states cluster in nearly
degenerate groups above the lowest-lying states.

Further progress requires that we implement our renormal-
ization program as well as a major expansion in the basis-space
size. These efforts are under way and will be presented in a
subsequent paper.

VI. CONCLUSIONS AND OUTLOOK

Following successful methods of ab initio nuclear many-
body theory, we have introduced a basis light-front quantiza-
tion (BLFQ) approach to Hamiltonian quantum field theory
and illustrated some of its key features with a cavity-mode
treatment of massless noninteracting QED.

Cavity-mode QED, with a 2D harmonic oscillator for the
transverse modes and longitudinal modes chosen with periodic
boundary conditions, exhibits the expected dramatic rise in
many-parton basis states as the cutoffs are elevated. With
the noninteracting cavity-mode Hamiltonian, we obtain the
state density distributions at various choices of the regulators.
These basis state densities provide initial elements of a
quantum statistical mechanics approach to systems treated
in the BLFQ approach. We then illustrated the access to
light-front momentum distribution functions in this approach
with simple models of wave functions that reflect possible
interaction effects.

To extend our method to QCD, we have evaluated two
methods for treating the color degree of freedom. Because
large sparse matrices would emerge, we argue that it is more
efficient in storage requirements to adopt multiparton basis
states that are global color singlets, and we presented sample
measures of the efficiency gains over basis states with color-
singlet projection alone. To achieve this savings in storage
(reduced matrix size) we incur an increase in the computational
effort for the nonvanishing matrix elements.

We have also outlined our approach to managing the
expected divergences that preserve all the symmetries of
the theory. An initial inspection of the interaction vertices
of QED in the BLFQ approach shows smooth behaviors
that, following a second-order perturbative analysis, are not
expected to lead to divergences. It appears that the cavity-
mode treatment, with the type of basis spaces we have
selected, encounters the divergences in a more subtle fashion
as cutoffs are elevated. For illustration, we presented an
initial example in QED, without renormalization, of the mass
spectrum for a single electron in a transverse cavity coupled
to single photon modes. The computational requirements
of the BLFQ approach are substantial, and we foresee
extensive use of leadership-class computers to obtain practical
results.
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