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Relation between equal-time and light-front wave functions
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The relation between equal-time and light-front wave functions is studied using models for which the four-
dimensional solution of the Bethe-Salpeter wave function can be obtained. The popular prescription of defining the
longitudinal momentum fraction using the instant-form free kinetic energy and third component of momentum
is found to be incorrect except in the nonrelativistic limit. One may obtain light-front wave functions from
rest-frame, instant-form wave functions by boosting the latter wave functions to the infinite momentum frame.
Despite this difficulty, we prove a relation between certain integrals of the equal-time and light-front wave
functions.
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I. INTRODUCTION

Light-front hadronic wave functions are used to interpret
a variety of high-energy hadronic processes and experimen-
tally observable quantities, including electromagnetic form
factors [1–4], estimates of weak decay rates [5,6], quark
recombination in heavy-ion collisions [7–9], coherent pion
production of dijets [10–12], single-spin asymmetries in
semi-inclusive deep inelastic scattering [13,14], computing
various high-energy scattering amplitudes using the color
dipole approach [15–18], computing the cross sections for
electromagnetic production of vector mesons [19–21], and
heavy-quark fragmentation in the quark-gluon plasma [22].
The common feature of all of these processes is that the
observed matrix elements involve a correlation function in
which a quark removed at a point is replaced by one separated
from the first by a lightlike separation: �z + �t = 0. In
this case, the front-form time t + z = 0 is a constant, and
it is therefore natural to simplify a four-dimensional problem
into a three-dimensional problem [involving the coordinates
(t − z, x, y)]. Therefore, it is useful to understand how to
obtain light-front wave functions from a fundamental point
of view.

There is a large body of knowledge regarding techniques,
models, and insights related to the equal-time rest-frame
(ETRF) formalism. For example, spectroscopy is typically
handled using this formalism. It is therefore natural to try
to relate the ETRF wave function with the light-front wave
function. One popular method uses a recipe to convert
the spatial momenta of the constituents, ki , into light-front
momenta (xi, ki⊥). To be concrete, consider a bound state
composed of two equal-mass constituents without spin. In this
case, the ETRF wave function depends on the momentum
k of one constituent. The recipe for converting the ETRF
wave function to a light-front wave function is to introduce
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the longitudinal momentum fraction by the relation

x = k+

P + = Ek + k3

2Ek
= 1

2
+ k3

2
√

k2
⊥ + (k3)2 + m2

, (1)

where the single-particle energy is given by

Ek =
√

k2 + m2, (2)

and P + is the plus component of the total momentum, P , of
the bound state.1 Using the recipe in Eq. (1) on a function of
the single-particle energy invokes the change of variables

f (k2 + m2) −→ f

[
k2

⊥ + m2

4x(1 − x)

]
.

The latter form looks like the argument of a light-front
wave function. The recipe for constructing a light-front wave
function from an ETRF wave function often also includes
a Jacobian factor,

√
J =

√
∂k3/∂x, to preserve the wave-

function normalization.
The relation in Eq. (1), however, appears to neglect any

binding effect. While it is true in general that the plus
momentum is additive [23], P + = ∑

i k
+
i , the energy of the

bound state is not, P 0 �= ∑
i Eki

. This leads one to suspect
that there is nothing fundamental about making light-front
wave functions by following the popular recipe. In fact,
the issue can be resolved, because the formal relationship
between the ETRF and the light-front wave functions has
been known for a long time. Both involve energy integrals of
the four-dimensional Bethe-Salpeter wave function, �(k, P ):
over k0 in the case of the ETRF, and over k− in the case of
the light-front formulation. Given the covariant wave function

1For any Lorentz four-vector Aµ, we define light-cone coordinates,
A±, by A± = A0 ± A3. Readers who employ a factor of 1/

√
2 to

define their light-cone coordinates should note that only one equation
in this work depends on the choice of convention. This equation is an
intermediate step appearing in Eq. (59).
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�, one can study the relationship between the ETRF and
light-front wave functions. The purpose of this article is to
provide such a study for a set of simple models. Although the
treatment of particles with spin can be handled after suitable
regularization [24,25], we consider only spin-zero systems
made of two spinless constituents of equal mass throughout to
simplify the presentation.

Here is an outline of our approach and summary of our
findings. Section II is concerned with two-body bound states
in covariant field theory and the Bethe-Salpeter equation. In
particular, the explicit relation between the light-front (LF) and
rest-frame instant-form wave functions (IF) and the solution
of the Bethe-Salpeter equation is discussed. Next, in Sec. III
an exactly soluble model involving pointlike coupling of a
hadron to two scalar constituents is introduced to compare
the light-cone and familiar instant-form wave functions. We
find the simple transformation in Eq. (1) does not relate the
IF wave function to the LF wave function, except in
the nonrelativistic limit. Further, it is verified that boosting
the ETRF wave function to infinite momentum produces the
light-front wave function. Section IV investigates solutions of
the Bethe-Salpeter wave function by means of the Nakanishi
integral representation. Similarly, we find that the IF wave
function is not related to the LF wave function by Eq. (1). For
the general class of models of the Nakanishi type, we are able to
show that the ETRF and light-front wave function agree in the
nonrelativistic limit and that boosting the ETRF wave function
to infinite momentum produces the light-front wave function.
In Sec. V, we summarize our work and show that, despite the
failure of the recipe to relate IF and LF wave functions, certain
integrals of these wave functions are identical.

II. BETHE-SALPETER EQUATION AND BOUND STATES

We first discuss two-body bound states in covariant field
theory. In terms of fully covariant operators, the Lippmann-
Schwinger equation for the two-particle transition matrix T

appears as

T = K + KGT. (3)

In Eq. (3), K is the irreducible two-particle scattering kernel
and G is the completely disconnected two-particle propagator,
which is merely the product of two single-particle propagators.
A pole in the T matrix (at some value of the total momentum-
squared, P 2 = M2, say) corresponds to a two-particle bound
state of mass M . Investigation of the pole’s residue gives an
equation for the bound state vertex �,

� = KG� (4)

(see Fig. 1). The bound-state amplitude � is defined as G� and
hence satisfies a similar equation, the Bethe-Salpeter equation

P
k1

k2 =

P

k2

k1

K

FIG. 1. Diagrammatic representation of the Bethe-Salpeter equa-
tion. The solid circle represents the vertex function �, and the total
momentum is P .

(BSE) [26–28]:

� = GK�. (5)

In the momentum representation and using the notation of
Ref. [29], the BSE for two spinless particles reads

�(k, P )=G

(
k+ P

2
, k − P

2

)∫
d4k′

(2π )4
iK(k, k′, P )�(k′, P ).

(6)

The total momentum of the bound state is P , while the
momenta of the constituents are k1 = k + 1

2P , and k2 =
k − 1

2P . The relative momentum of the two constituents is
then k = 1

2 (k1 − k2). This form makes manifest the symmetry
between the two particles. We also find it convenient to utilize
a form of the BSE that is asymmetric. In this alternate form,
we denote the bound-state amplitude by �(k1, P ), where k1 is
the momentum of one of the particles. The relation between
the two amplitudes is

�(k1, P ) = �

(
k1 − P

2
, P

)
. (7)

We will often treat the subscript as implicit.
Armed with the Bethe-Salpeter amplitude �(k1, P ), one

can calculate field-theoretic bound-state matrix elements by
taking the appropriate residues of four-point Green’s functions.
These matrix elements may ultimately require knowledge
of higher-point functions, which then must be solved for
consistently in the same dynamics. The Bethe-Salpeter am-
plitude �(k1, P ) is in some ways the covariant analog of the
Schrödinger wave function. While the features of relativistic
field theory (in particular, particle creation and annihilation,
retardation effects) make the exact analogy impossible, in the
nonrelativistic limit, one can show that the BSE reduces to the
Schrödinger equation.

The preceding discussion contains a graphical derivation of
the BSE. It is useful to recall the field-theoretic coordinate-
space definition of the Bethe-Salpeter wave function,

�(x1, x2, P ) = 〈0|T {φ(x1)φ(x2)}|P 〉, (8)

where the constituent fields are denoted by φ. One obtains the
relation with �(k1, P ) by appealing to space-time translational
invariance,

�(x1, x2, P ) = � ′(x1 − x2, P ) exp[−iP · (x1+x2)/2], (9)

and realizing that the Fourier transform is the amplitude
�(k, P ) mentioned previously, namely,

�(k, P ) =
∫

d4z� ′(z, P ) exp(ik · z). (10)

Projecting the constituents onto states of definite four-
momentum, we indeed find∫

d4x1d
4x2�(x1, x2, P ) exp(ik1 · x1 + ik2 · x2)

= (2π )4δ(4)(P − k1 − k2)�(k1, P ). (11)

The relation between three-dimensional wave functions and
the Bethe-Salpeter wave function emerges from restricting the
latter function to the corresponding initial boundary. In the case
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of light-front dynamics, the boundary surface is customarily
defined on the plane x+ = 0, while for instant-form dynamics,
the boundary surface is specified by the origin of time, x0 = 0.
To carry out the projection onto the light front, one starts
from an integral I (k1, k2, P ) that restricts the variation of the
arguments of the latter function to the light-front plane. This
plane is generally defined by the condition ω · x = 0, where
ω is an arbitary four-vector with ω2 = 0 [30]. The light-front
integral I (k1, k2, P ) is defined by the equation

I (k1, k2, P ) ≡
∫

d4x1d
4x2δ(x+

1 )δ(x+
2 )�(x1, x2, P )

× exp(ik1 · x1 + ik2 · x2). (12)

This integral does not produce the covariant momentum-space
Bethe-Salpeter amplitude, rather the projection

I (k1, k2, P ) = (2π )3δ(+,⊥)(P −k1−k2)
∫ ∞

−∞

dk−
1

2π
�(k1, P ).

(13)

The preceding δ function is three-dimensional, δ(+,⊥)(k) ≡
δ(k+)δ(k⊥).

We can obtain another expression for I (k1, k2, P ) involving
the light-front wave function and thereby deduce the relation
with the covariant wave function. The valence light-front wave
function is the coefficient of the valence state in the Fock-space
expansion of |P 〉 ≡ |P +, P⊥〉. On the light front, the bound
state |P 〉 is chosen to satisfy the covariant normalization
condition, 〈P ′|P 〉 = 2P +(2π )3δ(+,⊥)(P ′ − P ), and has the
light-front Fock space expansion

|P 〉 = 1√
2Q

∫
dk+

1 dk1⊥
2k+

1 (2π )3

dk+
2 dk2⊥

2k+
2 (2π )3

ψLF(k1, k2, P )

× 2P +(2π )3δ(+,⊥)(P − k1 − k2) a
†
k1

a
†
k2

|0〉. (14)

The light-front, Fock-space operator a
†
ki

creates an on-shell

constituent, a
†
ki
|0〉 = |k+

i , ki⊥〉. The light-front wave function
ψLF(k1, k2, P ) is symmetric under the interchange of the
constituent’s momenta and by virtue of the momentum-
conserving δ function always appears in the form ψLF(k1, P −
k1, P ). We shall use schematic notation and write this simply
as ψLF(k1, P ), or even ψLF(x1, k1⊥) in the hadron’s rest
frame, where P⊥ = 0, with x1 = k+

1 /P +. While there are
higher Fock-state contributions to the covariant bound-state
wave function, we use a two-particle truncation throughout.
The factor Q appearing in the Fock-space decomposition is
the charge, which enters the normalization condition

Q = 1

(2π )3

∫
dxdk⊥

2x(1 − x)
|ψLF(x, k⊥)|2. (15)

Using the number density operator, the natural choice for the
total charge is Q = 2.

Using light-front quantized fields, we can derive an expres-
sion for I (k1, k2, P ) using the Fock-space expansion of Eq. (8).
This yields

I (k1, k2, P ) = (2π )3δ(+,⊥)(P −k1−k2)
2P +

2k+
1 2k+

2

ψLF(k1, P ).

(16)

Comparing with Eq. (13), we find

ψLF(k, P ) = k+(P + − k+)

πP +

∫ ∞

−∞
dk−�(k, P ). (17)

The factors involving plus components of momentum arise
from treating the phase space covariantly in the Fock-state
expansion.

By contrast, the bound state |P〉 in the instant-time formula-
tion is chosen to satisfy the covariant normalization, 〈P ′|P〉 =
2P 0(2π )3δ(P ′ − P), and has the Fock-space expansion

|P〉 = 1√
2Q

∫
dk1

2Ek1 (2π )3

dk2

2Ek2 (2π )3
ψIF(k1, k2, P )

× 2P 0(2π )3δ(P − k1 − k2) a
†
k1

a
†
k2

|0〉. (18)

The instant-form, Fock-space operator a
†
ki

creates an on-shell

constituent a
†
ki

= |ki〉. Although we use a similar notation
for Fock-space operators in the instant and light-front forms,
they are not related by a finite Lorentz transformation (only
by a boost to infinite momentum). The instant-form wave
function, ψIF(k1, k2, P ), is symmetric under interchange of
the constituent’s momenta and by virtue of the momentum
conserving δ function always appears in the form ψIF(k1, P −
k1, P ). We shall use schematic notation and write this simply as
ψIF(k1, P), or ψIF(k1) in the hadron’s rest frame, P = 0. The
total charge Q enforces the rest-frame normalization condition

Q = 1

(2π )3

∫
dk

2E2
k

|ψIF(k)|2. (19)

In general, the Fock-state expansion is expected to be much
more complicated in the instant form because of the need to
deal with vacuum fluctuations.

In the instant form of dynamics, the energy and Lorentz
boosts are dynamical operators, and the initial conditions are
sepcified on the boundary x0 = 0. Thus, we define an instant
form version, I 0(k1, k2, P ), of the integral I (k1, k2, P ):

I 0(k1, k2, P ) ≡
∫

d4x1d
4x2δ

(
x0

1

)
δ
(
x0

2

)
�(x1, x2, P )

× exp(ik1 · x1 + ik2 · x2). (20)

This integral produces a projection of the covariant Bethe-
Salpeter wave function analogous to that in Eq. (13). Using the
instant-form Fock state expansion [Eq. (18)], the instant-form
wave function ψIF(k, P) is given by

ψIF(k, P) = EkEP−k

πP 0

∫ ∞

−∞
�(k, P )dk0. (21)

Our aim is to elucidate the differences and connections
between ψLF and ψIF.

III. TOY MODEL

We have discussed the covariant BSE for two-body bound
states. In this section, we consider a toy model for the BSE
that is exactly soluble. The solution will enable us to compare
and contrast instant-form dynamics and light-front dynamics
all while maintaining exact covariance.
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= · · ·

FIG. 2. Bethe-Salpeter equation for a point interaction. The state
is bound by the infinite chain of bubbles.

One can obtain the simplest soluble BSE by choosing a
pointlike interaction for the kernel K(k, k′; P ) in Eq. (6),
namely, K(k, k′; P ) = g, where g is a coupling constant. The
two scalar particles that make up the scalar bound state thus
interact infinitely many times according to the BSE to bind the
state. For the pointlike interaction, a bubble chain is generated
by the BSE and is shown in Fig. 2. With this choice of
interaction, the bound-state equation simplifies tremendously.
Because the kernel is independent of momentum, the only k′
dependence that remains in Eq. (6) is in �(k′, P ), and this
quantity is subsequently integrated over all k′. The integration
merely produces a constant that can be absorbed into the
overall normalization of the wave function. Thus, we are left
with the solution

�(k, P ) = ig G(k, P − k), (22)

where a proportionality constant is set to unity. The Bethe-
Salpeter equation for the vertex �(k, P ) also determines
the mass, M2 = P 2, of the bound state via the consistency
equation

1 = ig

∫
d4k

(2π )4
G(k, P − k). (23)

For simplicity, we do not discuss the necessary regularization
and treat the coupling g as a renormalized parameter.

The single-particle propagator has the basic Klein-Gordon
form, so the two-particle disconnected propagator is a product
of these Klein-Gordon propagators. By virtue of Eq. (22), the
covariant Bethe-Salpeter wave function is

�(k, P ) = −ig[k2 − m2 + iε]−1[(P − k)2 − m2 + iε]−1.

(24)

Here we have labeled the constituent mass by m. This is
a four-dimensional analog of the usual Schrödinger wave
function. There is, however, an important distinction. We also
know the time dependence of the wave function—the time evo-
lution governed by the Hamiltonian operator is automatically
included because of the necessity of covariance. Moreover,
we know from the Poincaré algebra that there are other
dynamical operators besides the energy. As to which operators
are kinematical depends upon the form of dynamics chosen.

A. Rest-frame wave functions

We shall next compute the instant-form wave function using
Eq. (21) as evaluated in the rest frame. Given our solution to the
BSE [Eq. (24)], we can carry out this projection onto the initial
surface. The integration can be done using the residue theorem
bearing in mind the four poles of the integrand: k0 = ±Ek ∓ iε

and M ± Ek ∓ iε. We find

ψIF(k, 0) = −2g

M

√
k2 + m2

M2 − 4(k2 + m2)
. (25)

Notice the wave function is manifestly rotationally invariant.
This is indicative of the kinematic nature of the generators of
rotations in the instant form.

In the front form of dynamics, one is interested in the
properties of physical states along the advance of a wave front
of light. The objects of front-form dynamics are the light-cone
wave functions which are projections onto the initial surface
x+ = 0. In analogy with the instant form, one refers to x+
as light-cone time and its Fourier conjugate k− as light-front
energy. In the front form, the energy is a dynamical operator
along with two rotation operators corresponding to two inde-
pendent rotations of the wave front of light. In contrast with
the instant form, light-front Lorentz boosts are kinematical.
We use Eq. (17) and work in the hadronic rest frame, P⊥ = 0,
to define ψLF(x, k⊥), with x = k+

1 /P + = k+/P +. The light-
cone wave function corresponding to Eq. (24) is found by
contour integration of Eq. (17) to be

ψLF(x, k⊥) = −g
θ [x(1 − x)]

M2 − k2
⊥+m2

x(1−x)

. (26)

Note that the full rotational symmetry of the rest-frame wave
function is not manifest.

We now inquire as to how the IF and LF wave functions
are related to each other. In the literature, the rest frame IF
wave function is converted into the rest frame the light-cone
wave function by introducing an auxiliary variable, x, using
Eq. (1). This variable has a physical interpretation as the
fractional plus component of momentum in the center of mass
system of two free particles. Inverted, this relation between x

and k3 reads [31]

k3 =
(

x − 1

2

) √
k2

⊥ + m2

x(1 − x)
. (27)

Simple algebra yields the relation

4(k2 + m2) = k2
⊥ + m2

x(1 − x)
, (28)

from which we deduce

ψIF(k, 0) → ψIF(x, k⊥) = − g

M

√
k2

⊥ + m2

x(1 − x)

1

M2 − k2
⊥+m2

x(1−x)

.

(29)

This bears a resemblance to the front-form wave function in
the rest frame [Eq. (26)], but the instant-form wave function
carries an additional factor of Ek/M . This is a clear and major
difference. One cannot interpolate between the instant form
and the light-front form of the wave function.

One suspects that the two forms become equivalent in
the nonrelativistic limit. This limit is defined by replacing√

k2 + m2 with m, so that Eq. (1) becomes

x → 1

2
+ k3

2m
. (30)

In the nonrelativistic limit, we write the bound-state mass in
terms of the constituent masses and a small binding energy
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B > 0, namely, M = 2m − B. Expanding about B = 0 to
linear order and replacing the factors Ek that appear in the
relativistic phase space by m, Eq. (29) then becomes

ψIF(x, k⊥) → −g
θ [x(1 − x)]

M2 − k2
⊥+m2

x(1−x)

, (31)

the same as Eq. (26). The θ function appears as a result of
Eq. (28). We see that the wave functions of the two forms

become identical only in the nonrelativistic limit. However,
there is no reason to suspect that this limit should be valid
because the wave functions fall off very slowly in momentum
space. The only way to tell is to look at specific matrix
elements.

It has been convenient to examine electromagnetic form
factors. Truncating at the lowest Fock state, the expression
for the electromagnetic form factor in terms of the front-form
wave function is given by [1,2]

FLF(Q2) = 1

(2π )3

∫
ψLF(x, k⊥)ψ∗

LF(x, k⊥ + (1 − x) Q⊥)
dxdk⊥

2x(1 − x)
, (32)

where the momentum transfer appears as q2 = −Q2 = − Q2
⊥,

in a frame where q+ = 0. A virtue of the light-front for-
mulation is that the boost required between initial and final
states in Eq. (32) is kinematical. The instant-form expression
also requires a boosted wave function; however, instant-form
boosts are dynamical. This complicates the interpretation of
the form factor in terms of instant-form quanta. For example,
it is well-known that boosting does not conserve particle
number. With initial and final states differing in particle
number, the instant-form form factor consequently cannot
be the Fourier transform of a charge density. However, because
of the kinematic nature of light-front boosts, the form factor
has an interpretation in terms of the transverse charge density
of quanta in the infinite momentum frame [32–37].

For our toy model (TM), we use Eq. (26) in the preceding
expression to find

F TM
LF (Q2) = g2

(2π )3

∫
1

M2 − k2
⊥+m2

x(1−x)

1

M2 − [k⊥+(1−x) Q⊥]2+m2

x(1−x)

× dxdk⊥
2x(1 − x)

. (33)

However, the use of the ersatz light-front wave function
Eq. (29) in Eq. (32) would lead the appearance of a factor

1

x(1 − x)

√
(k2

⊥ + m2){[k⊥ + (1 − x) Q⊥]2 + m2}

in the integrand of Eq. (33). This would lead to divergences in
the integrals over both x and dk⊥. The form factor of this toy
model was studied extensively for several different situations
in Ref. [38]. There, it was shown that the equal-time wave
function in the rest frame has no direct connection with the
form factor, but the exact covariant evaluation of the form
factor is indeed obtained using Eq. (33). In the nonrelativistic
limit, the light-front and equal-time form factors do coalesce
to the same result. However, this limit is satisfied for very
limited kinematics, B/M < 0.002. Thus, the correspondence
embodied by using the simple expression Eq. (1) does not
work for the simplest possible toy model.

An additional ingredient common to the popular recipe
for making a light-front wave function involves including a
Jacobian factor to preserve the normalization of the wave

function. The normalization of the ETRF wave function in
Eq. (19) will pick up a Jacobian, J = ∂k3/∂x, if we view
Eq. (27) as a change of variables. Taking into account the
relativistic phase space factors, Eq. (19) will have exactly the
form of Eq. (15) provided we make the identification

ψJIF(x, k⊥) ≡
√

M

[
k2

⊥ + m2

x(1 − x)

]−1/4

×ψIF(x, k⊥) −→ ψLF(x, k⊥). (34)

For the toy model, however, the Jacobian modified instant-
form wave function (JIF),

ψJIF(x, k⊥) = − g√
M

[
k2

⊥ + m2

x(1 − x)

]1/4
1

M2 − k2
⊥+m2

x(1−x)

, (35)

is still not the light-front wave function ψLF(x, k⊥) in Eq. (26).
A factor of the Jacobian squared, J 2, will produce the
light-front wave function in this model; however, there is no
justification to include two powers of the Jacobian.

To properly derive the instant-form expression for the
form factor in the toy model, one starts from the covariant
triangle diagram and performs the projection onto equal time
by integrating over the loop energy, k0. The time-ordered
diagrams that result (see, for example, Ref. [39]) contain non-
wave-function terms. The presence of such terms demonstrates
that the form factor in the instant-form dynamics cannot be
related to the Fourier transform of a charge density. In the
toy model, the instant-form boost leads to nontrival effects,
which nonetheless can be determined explicitly. In QCD,
in contradistinction, the boost is too complicated to allow a
general solution, although there has been progress for small
momentum [40].

B. Boosting to the infinite momentum frame

One way to relate the IF and LF wave functions is by
boosting the IF wave function to the infinite momentum frame.
In that frame, it becomes the same as the LF wave function [41].
The way to see this is to obtain the IF wave function in a
frame in which the 3 component of the momentum takes on
an arbitrary value, and then let this value approach infinity.
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To do this, we must first re-evaluate the expression Eq. (21)
in a frame in which the system is moving with momentum
P in a direction associated with the 3 axis. With the bound
state energy P 0 given by P 0 = √

P2 + M2, evaluation of
the contour integration of Eq. (21) using the toy model wave
function �(k, P ) in Eq. (24) yields the wave function

ψIF(k, P)=− g

2P 0

[
1

P 0−Ek−EP−k
− 1

P 0+Ek+EP−k

]
.

(36)

The first term in Eq. (36) corresponds to a time-ordered graph
with particle propagation, while the second term corresponds
to particles propagating backward in time.

We wish to take the limit of P → ∞. To this end, define the
third component of k to be xP , so that the third component of
of P − k is (1 − x)P . In the limit that |P | approaches infinity,
the wave function of Eq. (36) vanishes unless 0 < x < 1. In
that case, the following limits hold:

lim
P→∞

Ek = xP + k2
⊥ + m2

2xP
, (37)

lim
P→∞

EP−k = (1 − x)P + k2
⊥ + m2

2(1 − x)P
, (38)

lim
P→∞

P 0 = P + M2

2P
. (39)

For large values of P , only the first (or wave function) term
of Eq. (36) is nonvanishing. Taking the limit of Eq. (36) as P

approaches infinity leads immediately to the result

lim
P→∞

ψIF(k, P) = ψLF(x, k⊥). (40)

While we have demonstrated this result using the toy model
wave function, we remark that the instant-form Fock space
expansion in Eq. (18) can be boosted to infinite momentum.
One arrives at Eq. (14), which demonstrates the equivalence
in Eq. (40) more generally.

IV. OTHER MODELS

We study more elaborate models defined by interactions
other than pointlike coupling, using the formalism of Ref. [29].
In the BSE, the interaction kernel K is given by irreducible
Feynman diagrams. Using any finite set of them is an
approximation to the theory under consideration. If the kernel
is given by a set of Feynman graphs [42,43], the Minkowski
space BS amplitude Eq. (6) is found in terms of the Nakanishi
integral representation [44]:

�(k; P ) = − i√
4π

∫ 1

−1
dz

×
∫ ∞

0
dγ

g(γ, z)[
γ + m2 − 1

4M2 − k2 − P · k z − iε
]3 .

(41)

The weight function g(γ, z) itself is not singular, whereas
the singularities of the BS amplitude are fully reproduced by
this integral. For example, if one sets g(γ, z) = √

4πg and

calculates the integral, the result is the product of two free
propagators appearing in Eq. (24).

The wave function in the ETRF is obtained by using Eq. (41)
in Eq. (21), with the result

ψIF(k, 0) = − 1√
4π

3(k2 + m2)

8M

∫ 1

−1
dz

×
∫ ∞

0
dγ

g(γ, z)[
γ + k2 + m2 − 1

4M2(1 − z2)
]5/2

.

(42)

The light-front wave function ψLF(k⊥, x) is defined as before
by an integration over k−, as in Eq. (17). Substituting Eq. (41)
into Eq. (17), the two-body light-front wave function is found
to be [29]

ψLF(k⊥, x) = − 1√
4π

∫ ∞

0

x(1 − x)g(γ, 1 − 2x)dγ

[γ + k2
⊥ + m2 − x(1 − x)M2]2

.

(43)

Our next task is to compare the expressions in Eq. (42)
and Eq. (43). It is possible to show in general that the
nonrelativistic (NR) limit of these equations is the same, and
boosting the ETRF wave function to the infinite momentum
frame results in the light-front wave function. We handle this
former first. Using the replacement Eq. (30) in the light-front
wave function Eq. (43), and keeping terms linear in the
binding energy, one obtains

ψNR
LF (k) = − 1

4
√

4π

∫ ∞

0

g(γ, 0)dγ(
γ + k2 + m2 − 1

4M2
)2 . (44)

We next work with the instant-form wave function [Eq. (42)].
The mass-squared, M2 ≈ 4m2 − 4mB, is a large quantity in
the nonrelativistic limit. Thus, we may use g(γ, z) ≈ g(γ, 0)
so that the integral over z can be performed. Note also that
energies appearing in phase-space factors are replaced by
constituent masses in the NR limit. Then we have

ψNR
IF (k, 0)

= − 1√
4π

m2

M

∫ ∞

0

[
M2 + 6(γ + k2 + m2 − 1

4M2)
]

[
M2 + 4(γ + k2 + m2 − 1

4M2)
]3/2

× g(γ, 0)dγ(
γ + k2 + m2 − 1

4M2
)2 . (45)

The ratio of bracketed terms in Eq. (45) reduces to 1/(2m)
in the NR limit. In that case, the results of Eqs. (45) and (44)
become identical. Thus, in general, the correspondence
between the instant-form and front-form wave functions
is obtained when the nonrelativistic limit is valid. This
is expected because in the nonrelativistic limit the wave
functions are frame-independent.

To demonstrate the equivalence of the light-front wave
function and the equal-time wave function in the infinite
momentum frame, we return to Eq. (41) to derive the
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equal-time wave function in an arbitrary frame. We find

ψIF(k, P) = − 1√
4π

3EkEP−k

8P 0

∫ 1

−1
dz

∫ ∞

0
dγ g(γ, z)

×
[
γ + k2 − (1 − z)k · P + 1

4
(1 − z)2 P2

+ m2 − 1

4
(1 − z)2M2

]−5/2

. (46)

Using the limits in Eqs. (37)–(39), the wave function vanishes
as 1/P 4 when P → ∞. This is true for all values of z, except
in the region around z = 1 − 2x. To obtain the nonvanishing
contribution in the infinite momentum frame, we must thus
replace g(γ, z) = g(γ, 1 − 2x). This replacement enables us
to perform the z integration explicitly and subsequently take
the P → ∞ limit. This procedure yields the equivalence

lim
P→∞

ψIF(k, P) = ψLF(x, k⊥) (47)

for any wave function for which the Nakanishi integral
representation Eq. (41) is valid. To compare the ETRF wave
function to the light-front wave function using the recipe in
Eq. (1), however, we need to know about the functional form
of g(γ, z). This is most easily done using specific models, to
which we now turn.

A. Rotationally invariant light-front model

To investigate further the relation between the wave func-
tions in Eqs. (42) and (43), we adopt a model. We may enforce
rotational invariance RI in the light-front wave function by
choosing g(γ, z) to have a particular form,

gRI(γ, z) = 4g0δ(γ )(1 − z2), (48)

where g0 is a constant. Using Eq. (48) in Eq. (43) leads to the
light-front wave function

ψRI
LF(k⊥, x) = − g0√

4π

16[
M2 − k2

⊥+m2

x(1−x)

]2 . (49)

With the help of the variable κ , defined by

κ2 = m2 − 1
4M2, (50)

we can cast the light-front wave function into a suggestive
form. Using the inverse of the recipe [Eq. (27)], we can
introduce the variable k3 to make the light-front wave function
appear as a rotationally invariant instant-form wave function

ψRI
LF(k⊥, x) → − g0√

4π

1

(k2 + κ2)2
. (51)

This wave function has the same form as that for the lowest s

state of a hydrogenic atom.
The corresponding rest-frame, instant-form wave function

is obtained by using Eq. (48) in Eq. (42):

ψRI
IF (k) = − g0√

4π

2

M

√
k2 + m2

(k2 + κ2)2
. (52)

In this case, one can compare the two forms [Eqs. (52)
and (51)], having already used Eq. (1). It is readily apparent

that the two forms are very different. For example, for large
values of k2, the former falls as 1/|k|3, while the latter falls
as 1/k4. Once again, we see that the relation between the
rest-frame wave function and the light-front wave function
cannot be seen using a simple transformation.

As with the toy model, including the Jacobian factor in
converting the instant-form wave function, as in Eq. (35), does
not produce the light-front wave function. The ratio of the
Jacobian modified instant-form wave function to the true light-
front wave function is not unity,

ψRI
JIF(x, k⊥)

ψRI
LF(x, k⊥)

= 1√
M

[
k2

⊥ + m2

x(1 − x)

]1/4

. (53)

Curiously enough, this ratio, while not unity, is the same in
the RI model as in the toy model of Sec. III. This coincidence
owes to the simplicity of the models considered, however, not
an underlying principle, as the final example demonstrates.

B. Wick-Cutkosky (WC) model

Let us consider a field theoretic example. Exact solutions
to the Bethe-Salpeter equation in the ladder approximation are
known. In the WC model [45,46], two scalars are bound by
scalar exchange, and the function g(γ, z) has the form

gWC(γ, z) = δ(γ )λ(1 − |z|), (54)

with the constant λ defined in terms of parameters of the model,
λ = 26π

√
mκ5/2. Given this form for g(γ, z), we evaluate the

instant and light-front wave functions by using Eq. (54) in
Eqs. (42) and (43). We find the instant-form wave function to
be

ψWC
IF (k) = − λ√

4πM3

√
k2 + m2

(k2 + κ2)2

[
k2 + κ2 + 1

2
M2

−
√

(k2 + m2)(k2 + κ2)

]
. (55)

In the nonrelativistic limit, this wave function becomes iden-
tical to that of the ground-state hydrogenic atom. Away from
this limit, the wave function contains relativistic phase-space
factors, and the effects of retardation. In the asymptotic limit,
the wave function has the behavior

lim
|k|→∞

ψWC
IF (k) = 3λ

8
√

4πM

1

|k|3 . (56)

We find the light-front wave function to be given by

ψWC
LF (k⊥, x) = − λ√

4π

1 − |1 − 2x|
x(1 − x)

1[
M2 − k2

⊥+m2

x(1−x)

]2
. (57)

Immediate inspection indicates that the wave functions of
Eq. (55) and Eq. (57) are very different. The light-front wave
function falls off faster than the instant-form wave function
at large transverse momentum. We can try to relate the two
wave functions by using the relation in Eq. (28). The ratio of
the transformed instant-form wave function to the light-front
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wave function is considerably different than unity:

ψWC
IF (x, k⊥)

ψWC
LF (x, k⊥)

= 2

M3

x(1 − x)

1 − |1 − 2x|

√
k2

⊥ + m2

x(1 − x)

×
⎧⎨
⎩ k2

⊥ + m2

x(1 − x)
+M2−

√√√√ k2
⊥ + m2

x(1 − x)

[
k2

⊥ + m2

x(1 − x)
− M2

]⎫⎬
⎭ .

(58)

A simple substitution as given by Eq. (1) cannot relate
the instant and light-front wave functions. Including the
Jacobian factor via Eq. (35) does not simplify the ratio
ψWC

JIF (x, k⊥)/ψWC
LF (x, k⊥). This ratio, moreover, is consider-

ably different than the common value [Eq. (53)] found in the
two simpler toy models.

V. SUMMARY

We use simple covariant models for which the solutions
of the Bethe-Salpeter equation can be obtained. This allows
us to explore both the instant and the front-form wave
functions. The structure of these wave functions is related to
the respective kinematic subgroups of the Poincaré algebra.
Moreover, a fully covariant starting point allowed us a simple
way to correctly formulate three-dimensional dynamics. We
find that it is not possible to use the simple transformation
in Eq. (1) to relate the rest-frame instant-form wave function
with the light-front wave function. Instead, one may do this
by boosting the rest-frame instant-form wave function to the
infinite momentum frame.

There is an interesting relation between integrals of IF
and LF wave functions that can be derived; similar relations
have been suggested in Refs. [35,47]. The projection onto the
space-time point x0 = x3 = 0 is a unique place where the IF
wave function can be related to the LF wave function. This is
because at this point we also have x+ = x− = 0, so that equal
time also corresponds to equal light-front time. Consider the
bound state in an arbitrary frame with P µ = (

√
P2 + M2, P).

Integrating the IF wave function over the third component of
momentum projects onto x3 = 0. Carrying out this projection,

we find∫ ∞

−∞
dk3 P 0

EkEP−k
ψIF(k, P)= 1

π

∫ ∞

−∞
dk0dk3�(k, P )

= 1

2π

∫ ∞

−∞
dk−dk+�(k, P )

=
∫ 1

0

dx

x(1−x)
ψLF(x, k⊥−x P⊥),

(59)

which shows that integrals over the IF and LF wave functions
are identical. This relation also elucidates why the IF and LF
wave functions vanish with different powers of |k⊥|.

In the rest frame, P = 0, one can derive a relation for the
impact-parameter-dependent LF wave function, ψLF(x, b⊥),
defined by

ψLF(x, b⊥) =
∫

dk⊥
(2π )2

eib⊥·k⊥ψLF(x, k⊥). (60)

From Eq. (59), we find∫ ∞

−∞
dk3

∫ ∞

−∞

dk⊥
(2π )2

M

k2 + m2
eib⊥·k⊥ψIF(k)

=
∫ 1

0

dx

x(1 − x)
ψLF(x, b⊥), (61)

which is similar to the transversity relation found in Ref. [48].
As a consistency check, it is trivial to verify this identity using
the Nakanishi integral representation of the IF and LF wave
functions. Although there is no simple recipe for cooking up
a light-front wave function from an equal-time, rest-frame
wave function, Eqs. (59) and (62) provide rigorous relations
between their integrals. Given the phenomenological utility
of light-front wave functions, we intend to explore whether
further such relations exist.

ACKNOWLEDGMENTS

This work is supported by the US Department of Energy,
under Grant Nos. DE-FG02-97ER-41014 (G.A.M.) and
DE-FG02-93ER-40762 (B.C.T.). B.C.T. acknowledges the
partial support of the Institute for Nuclear Theory during a visit
that initiated this project. G.A.M. acknowledges discussions
with J. Arrington.

[1] S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 24, 181 (1970).
[2] G. B. West, Phys. Rev. Lett. 24, 1206 (1970).
[3] G. P. Lepage and S. J. Brodsky, Phys. Lett. B87, 359 (1979).
[4] O. C. Jacob and L. S. Kisslinger, Phys. Rev. Lett. 56, 225

(1986).
[5] S. J. Brodsky and D. S. Hwang, Nucl. Phys. B543, 239

(1999).
[6] H.-M. Choi and C.-R. Ji, Phys. Rev. D 75, 034019 (2007).
[7] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys. Rev.

Lett. 90, 202303 (2003).
[8] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, Phys. Rev. C

68, 044902 (2003).

[9] B. Hong, C.-R. Ji, and D.-P. Min, Phys. Rev. C 73, 054901
(2006).

[10] L. Frankfurt, G. A. Miller, and M. Strikman, Phys. Lett. B304,
1 (1993).

[11] L. Frankfurt, G. A. Miller, and M. Strikman, Found. Phys. 30,
533 (2000).

[12] L. Frankfurt, G. A. Miller, and M. Strikman, Phys. Rev. D 65,
094015 (2002).

[13] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B530,
99 (2002).

[14] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys. Rev. D
77, 094016 (2008).

035201-8



RELATION BETWEEN EQUAL-TIME AND LIGHT-FRONT . . . PHYSICAL REVIEW C 81, 035201 (2010)

[15] B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov,
JETP Lett. 33, 595 (1981).

[16] A. H. Mueller, Nucl. Phys. B335, 115 (1990).
[17] B. Z. Kopeliovich, I. Schmidt, and M. Siddikov, Phys. Rev. D

80, 054005 (2009).
[18] B. Z. Kopeliovich, E. Levin, A. H. Rezaeian, and I. Schmidt,

Phys. Lett. B675, 190 (2009).
[19] A. V. Radyushkin, Phys. Lett. B385, 333 (1996).
[20] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal, Phys. Rev.

D 60, 094017 (1999).
[21] S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50, 829

(2007).
[22] R. Sharma, I. Vitev, and B.-W. Zhang, Phys. Rev. C 80, 054902

(2009).
[23] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rept. 301,

299 (1998).
[24] B. C. Tiburzi and G. A. Miller, Phys. Rev. D 67, 113004

(2003).
[25] B. C. Tiburzi, W. Detmold, and G. A. Miller, Phys. Rev. D 70,

093008 (2004).
[26] J. S. Schwinger, Proc. Natl. Acad. Sci. USA 37, 452 (1951).
[27] M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
[28] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
[29] J. Carbonell, V. A. Karmanov, and M. Mangin-Brinet, Eur. Phys.

J. A 39, 53 (2009).

[30] J. Carbonell, B. Desplanques, V. A. Karmanov, and J. F. Mathiot,
Phys. Rep. 300, 215 (1998).

[31] B. C. Tiburzi and G. A. Miller, Phys. Rev. C 63, 044014 (2001).
[32] D. E. Soper, Phys. Rev. D 15, 1141 (1977).
[33] M. Burkardt, Phys. Rev. D 62, 071503(R) (2000).
[34] M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003).
[35] G. A. Miller, Phys. Rev. Lett. 99, 112001 (2007).
[36] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. Lett. 100,

032004 (2008).
[37] G. A. Miller, Phys. Rev. C 79, 055204 (2009).
[38] G. A. Miller, Phys. Rev. C 80, 045210 (2009).
[39] M. Sawicki, Phys. Rev. D 44, 433 (1991).
[40] M. G. Rocha, F. J. Llanes-Estrada, D. Schuette, and S. V. Chavez,

arXiv:0910.1448.
[41] B. C. Tiburzi, Ph.D. thesis, University of Washington, 2004,

arXiv:nucl-th/0407005.
[42] N. Nakanishi, Prog. Theor. Phys. Suppl. 43, 1 (1969).
[43] N. Nakanishi, Prog. Theor. Phys. Suppl. 95, 1 (1988).
[44] N. Nakanishi, Phys. Rev. 130, 1230 (1963).
[45] G. C. Wick, Phys. Rev. 96, 1124 (1954).
[46] R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
[47] W. Broniowski, E. R. Arriola, and K. Golec-Biernat, Phys. Rev.

D 77, 034023 (2008).
[48] W. Broniowski, S. Prelovsek, L. Santelj, and E. R. Arriola,

arXiv:0911.4705.

035201-9


