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This article presents results on event-by-event elliptic flow fluctuations in Au + Au collisions at
√

sNN =
200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced
to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at
short ranges (|�η|<2). Assuming that non-flow correlations are of the order that is observed in p + p collisions
for long-range correlations (|�η|>2), relative elliptic flow fluctuations of approximately 30–40% are observed.
These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the
initial nuclear overlap region. It is found that the long-range non-flow correlations in Au + Au collisions would
have to be more than an order of magnitude stronger compared to the p + p data to lead to the observed azimuthal
anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

DOI: 10.1103/PhysRevC.81.034915 PACS number(s): 25.75.Ld, 25.75.Gz

I. INTRODUCTION

The characterization of the collective flow of produced
particles by their azimuthal anisotropy has proven to be one of
the more fruitful probes of the dynamics of heavy ion collisions
at the Relativistic Heavy Ion Collider (RHIC). Flow is sensitive
to the early stages of the collision and so the study of flow
affords unique insights into the properties of the hot and dense
matter that is produced, including information about the degree
of thermalization and its equation of state [1].

Elliptic flow, quantified by the second coefficient, v2, of
a Fourier decomposition of the azimuthal distribution of
observed particles relative to the event-plane angle, has been
studied extensively in collisions at RHIC as a function of
pseudorapidity, centrality, transverse momentum, center-of-
mass energy, and system size [2–7]. A detailed comparison
of these results to theoretical models requires a quantitative
understanding of the contributions of other many-particle
correlations, referred to as “non-flow” and event-by-event
elliptic flow fluctuations [8]. In particular, the measurement
of event-by-event fluctuations can pose new constraints on the
models of the initial state of the collision and its subsequent
hydrodynamic evolution [9,10].

Comparison of the elliptic flow measurements in the
Au + Au and Cu + Cu systems at RHIC suggests the existence

of large fluctuations in the initial geometry of heavy ion
collisions [4]. These initial state fluctuations are expected to
lead to event-by-event fluctuations in the measured elliptic flow
signal. The measurement in Au + Au collisions of dynamic
fluctuations in v2, including contributions from event-by-event
elliptic flow fluctuations and non-flow correlations, has yielded
results which are consistent with this expectation [11].

Different methods have been proposed to reduce the
contribution of non-flow correlations to the elliptic flow
measurements [12,13]. However, the application of these
methods to the measurement of elliptic flow fluctuations is
limited due to the complicated interplay between non-flow
correlations and elliptic flow fluctuations [10,12].

Ollitrault et al. have suggested estimating the magnitude of
non-flow from measurements of correlations in p + p colli-
sions [14]. However, this estimation may not be completely
reliable since a richer correlation structure is observed in
Au + Au collisions at RHIC in comparison to the p + p system
(e.g., Refs. [15–18]). We propose a method to separate flow
and non-flow contributions to the second Fourier coefficient
of azimuthal particle pair distributions by studying the three-
dimensional two-particle correlation function in (η1, η2,�φ)
space. This separation relies on the assumption that non-flow
correlations are most prominent in short range (�η≡|η1 −
η2|<2). The presumably small long-range (|�η|>2) non-flow
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correlations are estimated using p + p data, and HIJING and
PYTHIA models. Estimation of non-flow correlations using
these assumptions allows the subtraction of the contribution of
non-flow correlations to the measured dynamic v2 fluctuations
to obtain event-by-event elliptic flow fluctuations.

This article is organized as follows. The experimental data
are described in Sec. II. The measurement of the non-flow
correlations and the corresponding event-by-event elliptic flow
fluctuations are presented in Secs. III and IV. Discussion and
conclusions are included in Sec. V. The numerical relation
among dynamic v2 fluctuations, elliptic flow fluctuations, and
non-flow correlations is addressed in the Appendix.

II. EXPERIMENTAL DATA

The data presented here for Au + Au collisions at
√

sNN =
200 GeV were collected during RHIC Run 4 (2004) using the
PHOBOS detector [19]. The primary event trigger requires a
coincidence between the paddle counters, which are two sets of
16 scintillator detectors located at 3.2 < |η| < 4.5. An online
vertex is determined from the time difference between signals
in two sets of 10 Cerenkov counters located at 4.4 < |η| < 4.9
to select collisions that are close to the nominal vertex position
zvtx = 0 along the beam axis.

Offline vertex reconstruction makes use of information
from different subdetectors. Two sets of double-layered silicon
vertex detectors (VTX) are located below and above the
collision point. PHOBOS also has two spectrometer arms in
the horizontal plane used for tracking and momentum mea-
surement of charged particles. For events in the selected vertex
region, the most accurate z (along the beam) and y (vertical,
perpendicular to the beam) positions are obtained from the
vertex detector, while the position along x (horizontal, perpen-
dicular to the beam) comes primarily from the spectrometer.

The collision centrality is defined through bins of fractional
total inelastic cross section, determined using the energy de-
posited in the paddle counters. In this article, we report results
for 6–45% most central events, for which measured dynamic v2

fluctuations values are available [11]. About 4 million collision
events were selected in this centrality range by requiring that
the primary collision vertex falls within |zvtx | < 6 cm.

The analysis presented in this article is performed using the
reconstructed hits in the large-acceptance PHOBOS octagon
silicon array, covering pseudorapidity −3<η < 3 over almost
the full azimuth. The angular coordinates (η, φ) of charged
particles are measured using the location of the energy
deposited in the single-layer silicon pads of the octagon. After
merging of signals in neighboring pads, in cases where a
particle travels through more than a single pad, the deposited
energy is corrected for the angle of incidence, assuming that
the charged particle originated from the primary vertex. Noise
and background hits are rejected by placing a lower threshold
on the corrected deposited energy. Depending on η, merged
hits with less than 50–60% of the energy loss expected for
a minimum ionizing particle are rejected [20]. Since the
multiplicity array consists of single-layer silicon detectors,
there is no pT , charge, or mass information available for
the particles. All charged particles above a low-pT cutoff of
about 7 MeV/c at η = 3, and 35 MeV/c at η = 0 (which is

the threshold below which a charged pion is stopped by the
beryllium beam pipe) are included on equal footing.

III. MEASUREMENT OF NON-FLOW CORRELATIONS

If the only correlations between particles are due to
elliptic flow, then the distribution of the azimuthal angular
separation between particles (�φ≡φ1 − φ2) is given by
1 + 2V cos(2�φ), where V = v2(η1) × v2(η2). In general,
the second Fourier coefficient of the �φ distribution has
contributions from both flow and non-flow correlations.

Flow and non-flow contributions can be separated with
a detailed study of the η and �η dependence of the �φ

correlation function. Consider the distribution of �φ between
particles selected from two η windows centered at η1 and
η2. We define the quantity v2

2(η1, η2) as the sum of flow and
non-flow contributions to the second Fourier coefficient of the
normalized �φ distribution:

v2
2(η1, η2) ≡ 〈cos(2�φ)〉(η1, η2). (1)

The contributions to the second Fourier coefficient of the
�φ distribution can be parameterized as

〈cos(2�φ)〉 = 〈
v2

2

〉
flow + δ, (2)

where δ is the contribution of non-flow correlations [21]. Using
the fact that elliptic flow leads to a correlation between all
particles in the event and creates a signal which only depends
on pseudorapidity (v2(η)), we can write:

v2
2(η1, η2) = v2(η1)×v2(η2) + δ(η1, η2). (3)

The measurement of non-flow correlations is therefore
achieved in two steps, described in the following sections. First
we measure the three-dimensional (η1, η2,�φ) correlation
function to obtain v2

2(η1, η2). Then we separate the observed
v2

2(η1, η2) distribution to its flow and non-flow components.

A. Two-particle correlations analysis

Two particle correlations have been studied extensively
in (�η,�φ) space using the PHOBOS detector for various
collision systems [16,22]. In this analysis, we extend the same
analysis procedure to (η1, η2,�φ) space.

The inclusive two-particle correlation function in
(η1, η2,�φ) space is defined as follows

Rn(η1, η2,�φ) =
〈

ρII
n (η1, η2,�φ)

ρmixed(η1, η2,�φ)
− 1

〉
, (4)

where ρII
n (η1, η2,�φ) (with unit integral in each η1, η2 bin)

is the foreground pair distribution obtained by taking two
particles from the same event and then averaging over all
pairs in all events and ρmixed(η1, η2,�φ) (with unit integral in
each η1, η2 bin) is the mixed-event background distribution
constructed by randomly selecting two particles from two
different events with similar vertex position and centrality,
representing a product of two single-particle distributions. A
vertex bin size of 0.2 cm is used in the event mixing.

The high occupancies measured in A + A collisions require
us to account for the high probability of multiple particles
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hitting a single pad. Furthermore, secondary effects, such as
δ electrons, γ conversions, and weak decays, cannot be all
rejected directly. Corrections for the high occupancy in the
octagon detector and the secondary effects have been applied
in the same way as in the previous �η,�φ correlation analyses
[16,22].

To correct for the effects of occupancy, each hit is assigned
a weight while calculating the correlation function. The
weight is calculated using the centrality of the event and
pseudorapidity of the hit (which determine the likelihood
of multiple particles passing through a pad for a given
dE/dx value) and the dE/dx information. The details of the
occupancy correction can be found in Ref. [16].

To correct for the secondary detector effects in the data,
correlation functions were calculated for different Monte Carlo
event generators (PYTHIA, HIJING, and a modified PYTHIA
in which all intrinsic correlations have been removed) at√

sNN = 200 GeV both at the generator level for true primary
charged hadrons and with the full GEANT detector simulation
and reconstruction procedure. The overall correlation structure
for the reconstructed Monte Carlo events consists of both
intrinsic and secondary correlations and these two sources
of correlations were found to be largely independent of
each other, i.e., the correlation from secondaries is mostly
determined by sensor thickness, detector geometry, known
cross sections, and decay kinematics [22].

The final correlation function, Rdata
n final(η1, η2,�φ), is calcu-

lated from the raw correlation function, Rdata
nraw(η1, η2,�φ) by

subtracting the contribution from secondary correlations:

Rdata
n final(η1, η2,�φ) = Rdata

n raw(η1, η2,�φ) − S(η1, η2,�φ),

(5)

where the correction factor S(η1, η2,�φ) is calculated by
comparing the generator level correlation function exclud-
ing particles outside the PHOBOS detector acceptance,
RMC

npri,acc(η1, η2,�φ), to the correlation function obtained
with the full GEANT detector simulation and reconstruction
procedure, RMC

nsim(η1, η2,�φ):

S(η1, η2,�φ) = RMC
n sim(η1, η2,�φ) − RMC

n pri,acc(η1, η2,�φ).

(6)

The correction factor S(η1, η2,�φ) is calculated separately
for each centrality bin using a set of HIJING events with
appropriate average multiplicity. More details on the correction
factor S and its dependence on �η and �φ can be found in
Ref. [22].

The second Fourier coefficient of the normalized �φ

distribution is calculated from the correlation function by a
fit in each (η1, η2) bin:

Rdata
n final(η1, η2,�φ) = 2v2

2(η1, η2) cos(2�φ). (7)

The value of v2
2(η1, η2) can also be calculated directly as

v2
2(η1, η2) =

∫
Rdata

n final(η1, η2,�φ) cos(2�φ)d�φ. (8)

The two methods of calculating v2
2(η1, η2) are found to be

equivalent within the systematic uncertainties of the mea-

1η-2
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2 2v
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FIG. 1. Second Fourier coefficient of the correlation function
Rn(�φ, η1, η2) as a function of η1 and η2 for the 40–45% central
Au + Au collisions at

√
sNN = 200 GeV. The ridge along η1 =

η2 represents the region where non-flow contributions are most
prominent.

surement. The resulting v2
2(η1, η2) distribution for 40–45%

centrality bin is shown in Fig. 1.

B. Separation of flow and non-flow contributions

The measured v2
2(η1, η2) signal in Fig. 1 shows the features

expected from Eq. (3): a ridge along �η = 0 where the non-
flow signal is most prominent which sits on a plateau which
can be factorized in η1 and η2. Assuming non-flow correlations
are small at large �η separations, it is possible to separate the
v2

2(η1, η2) to its flow and non-flow components.
We start by assuming that non-flow correlations at |�η|>2

(δ|�η|>2) are zero. Then, we can perform a fit

v2
2(η1, η2) = v2(η1)fit × v2(η2)fit ; |η1 − η2| > 2, (9)

where the fit function v2(η)fit is an eighth-order even polyno-
mial. The fit in the selected �η region can be used to extract
the magnitude of correlations due to flow, v2(η1)fit × v2(η2)fit,
in the whole pseudorapidity acceptance. Subtracting the
correlations due to flow, we can extract the contribution of
non-flow correlations:

δ(η1, η2) = v2
2(η1, η2) − v2(η1)fit × v2(η2)fit. (10)

The two components of the v2
2(η1, η2) distribution in Fig. 1 are

shown in Fig. 2.
Different flow measurements with different methods and

pseudorapidity acceptances are influenced differently by the
non-flow correlation signal. To calculate the effects of non-
flow correlation on the measurement of dynamic v2 fluctua-
tions performed by PHOBOS [11], we calculate the average of
the δ(η1, η2) and v2

2(η1, η2) distributions over all particle pairs:

〈δ〉 =
∫

δ(η1, η2) dN
dη1

dN
dη2

dη1dη2∫
dN
dη1

dN
dη2

dη1dη2
(11)

〈
v2

2

〉 =
∫

v2
2(η1, η2) dN

dη1

dN
dη2

dη1dη2∫
dN
dη1

dN
dη2

dη1dη2
, (12)

where dN/dη is the observed charged-particle pseudorapid-
ity distribution in the PHOBOS detector. To cancel scale
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FIG. 2. Flow (left) and non-flow (right) compo-
nents of v2

2(η1, η2) in Fig. 1 obtained by Eqs. (9) and
(10) assuming non-flow correlations at |�η|>2 are
negligible.

uncertainties in these quantities, we calculate the “non-flow
ratio” given by 〈δ〉/〈v2

2〉.
The systematic uncertainty has been evaluated for the

various stages of the non-flow ratio calculation, including the
calculation of the correlation function and the fit to v2

2(η1, η2)
to obtain the non-flow ratio. A “digital” occupancy correction
with only the event-by-event hit density distribution and no
dE/dx information has been used. Hits on the PHOBOS
vertex detector, which has a different granularity from the
octagon detector have been added to the analysis. Monte Carlo
samples with different average multiplicity from the data have
been used in the correction procedure. The �η cut used in the
fit has been varied between 1.2 and 2.7.1 Different fit functions
v2(η)fit have been used from second-order up to eighth-order
polynomials. Finally, the complete analysis chain has been
performed by dividing the data set into 6 × 2-cm-wide vertex
bins. Systematic errors are estimated for different steps in the
analysis using the variation in the results with respect to the
baseline due to these changes in the analysis. The errors in

1The octagon detector with a pseudorapidity coverage of −3<η <

3 allows particle pairs to be studied up to �η = 6. However, in this
study the �η cut is constrained to �ηc < 3 such that particles from
all η values contribute in the fit to obtain v2(η).

the different steps are added in quadrature to obtain the 90%
confidence interval on the measurement of non-flow ratio.

So far, we have assumed that long-range (|�η|>2) non-
flow correlations can be neglected. However, studies of the
correlation function in p + p collisions show that non-flow
correlations do extend out to |�η|>2 in elementary collisions
[22]. Furthermore, a rich correlation structure in high pT -
triggered correlations that extend out to |�η|>2 has been
observed in 200 GeV Au + Au collision at RHIC [18] after
the estimated flow signal is subtracted. However, due to the
inherent uncertainty in the flow subtraction, it is not possible
to determine the second Fourier coefficient of this correlation
structure precisely.

The study of the non-flow ratio as a function of the �η cut
(�ηc) for the v2(η)fit fit carries important information on the
magnitude of non-flow at large �η separations. If non-flow
correlations are short ranged, we expect that the fits should
yield non-flow ratio results that saturate for large values of
�ηc. The extracted value of 〈δ〉/〈v2

2〉 is plotted as a function
of the �ηc, where it is assumed that δ is zero for |�η| > �ηc,
for different centrality bins in Fig. 3. The saturation expected
if non-flow correlations are short range is indeed observed.
However, it should be noted that the same saturation pattern
could also be observed with a finite magnitude of non-flow
that has little �η dependence in the region �η > 1.2.

〉2 2v〈/
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〉2
〈/
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〉2 2v〈/
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〈/
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〉
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0.2 40-45%

c
η∆0 1 2 3
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0.1

0.2

c
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35-40%

c
η∆0 1 2 3
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η∆0 1 2 3

15-20%

30-35%

c
η∆0 1 2 3

c
η∆0 1 2 3

10-15%

25-30%

c
η∆0 1 2 3

c
η∆0 1 2 3

6-10%

FIG. 3. Measured value of the non-flow ratio (〈δ〉/〈v2
2〉) as a function of the �η cut (�ηc) where non-flow correlations are assumed to be

zero for |�η| > �ηc for different centrality bins. The black circles (one for each panel) show values for �ηc = 2.1 with the gray band denoting
the 90% C.L. systematic errors on those results as described in the text. The gray squares show values for 1.2 � �ηc � 2.7, which are used in
the systematic error estimation. Open squares show values for �ηc < 1.
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η∆
0 2 4

)η∆(δn

0

0.2

0.4

p+p data

p+p Pythia

Au+Au Hijing 40-45%

Au+Au Hijing 10-15%

FIG. 4. The magnitude of non-flow correlations (δ) scaled by the
charged particle multiplicity (n) in the pseudorapidity range |η| < 3 as
a function of particle pair pseudorapidity separations (�η) for p + p

data and different Monte Carlo generators with no flow correlations at√
sNN = 200 GeV. The results for p + p data (squares) with 90% C.L.

systematic errors are obtained from two particle �η,�φ correlations
[22]. Statistical errors are not shown.

To quantitatively assess the effect of nonzero non-flow
correlations at large �η separations, we analyze the correlation
functions obtained from Monte Carlo event generators. In
p + p collisions, the magnitude of non-flow correlations, δ,
can be directly calculated as the second Fourier coefficient
of �φ correlations since elliptic flow is not present [22]. If
A + A collisions were a superposition of p + p collisions, the
value of δ would be diluted due to the presence of uncorrelated
particles. To compare the strength of non-flow correlations in
HIJING (Au + Au) and PYTHIA (p + p) models and p + p

collisions, we calculate the value of δ scaled by the average
event multiplicity, shown in Fig. 4.2 Both models are observed
to roughly reproduce the strength of non-flow correlations in
p + p collisions at large �η. Due to large systematic un-
certainties in the p + p data, HIJING simulations are used
to model the long range non-flow correlations in Au + Au
collisions by assuming non-flow correlations in data are
some multiplicative factor, m, times the non-flow in HIJING
(δMC(η1, η2)) for |�η|>2. This can be incorporated by
modifying Eq. (9):

v2
2(η1, η2) − mδMC(η1, η2)

= v2(η1)fit × v2(η2)fit; |�η| > 2. (13)

The resulting non-flow ratio, 〈δ〉/〈v2
2〉, found by applying

Eqs. (10)–(12) with the modified v2(η)fit results, is plotted as a
function of centrality in Fig. 5 for different assumptions on the
magnitude of non-flow at |�η|>2. If non-flow correlations
are assumed to be present only in |�η|<2 (m = 0), it is found
that they account for approximately 10% of the observed
v2

2 signal averaged over |η| < 3. The results do not change
significantly if the long range non-flow correlations (δ|�η|>2)
are taken to be the same as the correlations in HIJING (m = 1
instead of m = 0).

2The large uncertainty in the p + p data at �η = 0 is due to δ

electrons and γ conversions, which may not be completely described
by GEANT simulations [22].

partN
0 100 200 300

〉2 2v〈
 / 

〈δ
〉

0

0.2

0.4

0.6

0.8  for the assumptions:〉2
2

v〈/〈δ〉
no flow fluctuations

 = 10x Hijing
>2η∆δ

 = 3x Hijing
>2η∆δ

 = 1x Hijing
>2η∆δ

 = 0
>2η∆δ

FIG. 5. The non-flow ratio (〈δ〉/〈v2
2〉) in the PHOBOS octagon

detector acceptance as a function of number of participating nucleons
(Npart) in Au + Au collisions at

√
sNN = 200 GeV. The black squares

show the results with the assumption that non-flow correlations are
negligible at |�η|>2. The shaded band shows the 90% confidence
systematic errors. The lines show different assumptions about non-
flow at |�η|>2. The open circles with 90% C.L. systematic errors,
show the upper limit on 〈δ〉/〈v2

2〉 obtained by assuming that the
measured dynamic fluctuations in v2 are due to non-flow alone.

The upper limit on the non-flow ratio, also shown in Fig. 5,
is drawn from the measurement of dynamic v2 fluctuations [11]
assuming that the observed fluctuations are all due to non-flow
correlations. The calculation of this limit is described in the
Appendix. This limit corresponds to non-flow correlations in
Au + Au collisions that are more than an order of magnitude
higher than the expected correlations from p + p collisions
for |�η|>2 (m > 10).

IV. ELLIPTIC FLOW FLUCTUATIONS

An event-by-event measurement of the anisotropy in heavy
ion collisions yields fluctuations from three sources: statistical
fluctuations due to the finite number of particles observed,
elliptic flow fluctuations and non-flow correlations. We have
previously measured the dynamic fluctuations in v2 by taking
out the statistical fluctuations with a study of the measurement
response to the input v2 signal [11]. The new results on the
magnitude of non-flow correlations presented in the previous
section can be used to decouple the contributions of genuine
elliptic flow fluctuations and non-flow correlations to the
measured dynamic fluctuations.

Let us denote the observed distribution of the event-by-
event anisotropy as g(vobs

2 ), the distribution of the intrinsic
elliptic flow value as f (v2) and the expected distribution of vobs

2
for a fixed value of v2 as K(vobs

2 , v2). We assume f (v2) to be a
Gaussian in the range v2 > 0 with two parameters, mean (〈v2〉)
and standard deviation (σ ). The dynamic fluctuations in v2,
can be calculated by unfolding the experimental measurement
gexp(vobs

2 ) with a response function K
exp
n (vobs

2 , v2) which
accounts for detector effects and statistical fluctuations:

gexp
(
vobs

2

) =
∫ 1

0
Kexp

n

(
vobs

2 , v2
)
fdyn(v2)dv2. (14)

The calculation of intrinsic flow fluctuations (fflow(v2)) from
measured dynamic fluctuations (fdyn(v2)) can be summarized
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by the following equation:∫ 1

0
Kn

(
vobs

2 , v2
)
fdyn(v2)dv2 =

∫ 1

0
Kn,δ

(
vobs

2 , v2
)
fflow(v2)dv2,

(15)

where Kn(vobs
2 , v2) and Kn,δ(vobs

2 , v2) are the response func-
tions for an ideal detector with and without non-flow corre-
lations, respectively. Equation (15) gives the distribution of
observed anisotropy for an ideal detector g(vobs

2 ), such that,
on the left-hand side, the non-flow correlations are encoded in
the dynamic v2 fluctuations and, on the right-hand side, they
are accounted for in the response function Kn,δ(vobs

2 , v2). The
response functions Kn(vobs

2 , v2) and Kn,δ(vobs
2 , v2) are given by

a Bessel-Gaussian distribution [23] defined as

BG
(
vobs

2 ; v2, σs

) ≡ vobs
2

σ 2
s

exp

(
−

(
vobs

2

)2 + v2
2

2σ 2
s

)
I0

(
vobs

2 v2

σ 2
s

)
,

(16)

where I0 is the modified Bessel function. The fluctuation term
σs in the response function is a quadratic sum of statistical
fluctuations (σn = 1/

√
2n) due to finite number of particles

(n) observed in the detector and a contribution from non-flow
correlations (σδ = √

δ/2).
Equation (15) cannot be simplified analytically. However,

it can be solved numerically to calculate relative elliptic flow
fluctuations (σflow/〈v2〉flow) that correspond to the measured
dynamic v2 fluctuations (σdyn/〈v2〉) and the non-flow ratio
(〈δ〉/〈v2

2〉) for different assumptions on non-flow at |�η|>2.
The details of the numerical calculation are given in the
Appendix. It has been suggested that the relation between these
quantities can be approximated as σ 2

dyn = σ 2
δ + σ 2

flow [14].
We have found that this approximation does not hold in the
range of our experimental results (σdyn/〈v2〉 > 0.3).

The systematic error in the magnitude of relative elliptic
flow fluctuations is obtained by propagating the errors in the
measured quantities σdyn/〈v2〉 and 〈δ〉/〈v2

2〉 and by varying
the procedure to calculate σflow/〈v2〉flow from these quantities.
The errors from different sources are added in quadrature to
obtain the 90% confidence interval. The error propagated from
the uncertainty in σdyn/〈v2〉 is the dominant contribution to the
uncertainty in σflow/〈v2〉flow.

The relative fluctuations in the event-by-event elliptic
flow, corrected for contribution of non-flow correlations are
presented in Fig. 6 as a function of the number of participating
nucleons, in Au + Au collisions at

√
sNN = 200 GeV for

6–45% most central events. The elliptic flow fluctuations are
found to be roughly 30–40% if the magnitude of non-flow
correlations are assumed to be small for |�η|>2. The ob-
served values of relative elliptic flow fluctuations correspond
to 87–97% (79–95%) of the previously measured dynamic
v2 fluctuations [11] if non-flow correlations at |�η|>2 are
assumed to be zero (three times the magnitude in HIJING).

Also shown in Fig. 6 are relative fluctuations in the
participant eccentricity obtained from MC Glauber [11] and
color glass condensate (CGC) [24] calculations. The measured
values of elliptic flow fluctuations are observed to be consistent
with both models over the centrality range under study if
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FIG. 6. Relative elliptic flow fluctuations (σflow/〈v2〉flow) as a
function of number of participating nucleons (Npart) in Au + Au
collisions at

√
sNN = 200 GeV. The black circles show the results with

the assumption that non-flow correlations are negligible at |�η|>2.
The shaded band shows the 90% confidence systematic errors. The
thin lines show results for different assumptions on the magnitude
of non-flow at |�η|>2. The continuous and dashed thick lines show
σ (εpart)/〈εpart〉 values calculated in Glauber MC [11] and CGC [24]
models, respectively.

the long range non-flow correlations are neglected. The same
conclusion holds if the long range correlations are assumed to
be three times stronger than in p + p collisions, as modeled
by HIJING.

V. SUMMARY AND CONCLUSIONS

We have presented new data on the magnitude of non-flow
correlations and the event-by-event elliptic flow fluctuations
corrected for non-flow correlations in Au + Au collisions at√

sNN = 200 GeV. The measurement of non-flow correlations
is achieved by utilizing a new correlation analysis with the
assumption that non-flow correlations are of the order that
is observed in p + p collisions for long-range correlations
(|�η|>2). The non-flow correlations averaged over the
PHOBOS octagon acceptance (−3<η<3) are found to
be large, constituting approximately 10% of the measured
v2

2 signal. Studying the dependence of expected azimuthal
anisotropy fluctuations due to non-flow correlations, it is found
that the long-range non-flow correlations in Au + Au collisions
would have to be more than an order of magnitude stronger
compared to the p + p data for non-flow correlations to lead
to the observed azimuthal anisotropy fluctuations with no
intrinsic elliptic flow fluctuations. The method presented in this
article can be generally applied in large acceptance detectors
to study the contribution of non-flow correlations to the flow
signal measured with different approaches.

The magnitude of event-by-event elliptic flow fluctuations
were calculated by subtracting the contribution of non-flow
correlations to the measured values of dynamic v2 fluctuations.
If the inclusive long-range non-flow correlations in A + A

collisions are assumed to be of the order of magnitude that is
observed in p + p collisions, the magnitude of event-by-event
elliptic flow fluctuations are found to be in agreement with
predicted fluctuations of the initial shape of the collision
region in both Glauber and CGC models. Therefore these
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results support conclusions from previous studies on the
importance of geometric fluctuations of the initial collision
region postulated to relate elliptic flow measurements in the
Cu + Cu and Au + Au systems [4].
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APPENDIX: NUMERICAL CALCULATIONS RELATING
MEASURED QUANTITIES TO ELLIPTIC FLOW

FLUCTUATIONS

In this section, we describe the numerical calculations
performed to relate the measured values of dynamic v2 fluc-
tuations (σdyn/〈v2〉) and non-flow ratio (〈δ〉/〈v2

2〉) to intrinsic
elliptic flow fluctuations (σflow/〈v2〉flow).

We start by assuming the mean value of the elliptic flow
distribution and the magnitude of statistical fluctuations to
be given as 〈v2〉flow = 0.06 and σn = 0.6 × 〈v2〉flow = 0.036
[see Eq. (16)]. Then, for given values of σflow/〈v2〉flow and
〈δ〉/〈v2

2〉, the expected distribution of the observed event-by-
event anisotropy vobs

2 can be calculated as

g
(
vobs

2

) =
∫ 1

0
Kn,δ

(
vobs

2 , v2
)
fflow(v2)dv2, (A1)

where fflow(v2) is a Gaussian in the range v2 > 0 with mean
and standard deviation values given by 〈v2〉flow and σflow,
respectively, and Kn,δ(vobs

2 , v2) is given by a Bessel-Gaussian
[see Eq. (16)],

Kn,δ

(
vobs

2 , v2
) = BG

(
vobs

2 ; v2, σs

)
. (A2)

The fluctuations encoded in the response function
Kn,δ(vobs

2 , v2) are given as σ 2
s = σ 2

n + σ 2
δ , where σδ can be

calculated from 〈v2〉flow, σflow, and 〈δ〉/〈v2
2〉:

2σ 2
δ = 〈δ〉 (A3)

= 〈δ〉 × 〈v2〉2
flow + σ 2

flow〈
v2

2

〉 − 〈δ〉 (A4)

= 〈δ〉/〈
v2

2

〉
1 − 〈δ〉/〈

v2
2

〉 × (〈v2〉2
flow + σ 2

flow

)
. (A5)
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FIG. 7. Dynamic v2 fluctuations (σdyn/〈v2〉) as a function of
elliptic flow fluctuations (σflow/〈v2〉flow) and the non-flow ratio
(〈δ〉/〈v2

2〉) for σn/〈v2〉flow = 0.6. The observed values of dynamic
v2 fluctuations are roughly given by σdyn/〈v2〉 ≈ 40% [11].

In this derivation, it has been noted that the 〈v2
2〉 defined in

Eq. (12) includes contributions from flow fluctuations and non-
flow correlations.

Next, we calculate the dynamic fluctuations in the measured
vobs

2 distribution, g(vobs
2 ), by using a response function which

incorporates only statistical fluctuations but not non-flow
correlations,

g
(
vobs

2

) =
∫ 1

0
Kn

(
vobs

2 , v2
)
fdyn(v2)dv2. (A6)

Assuming the dynamic v2 fluctuations are described by a
Gaussian, fdyn(v2), in the range v2 > 0 with mean and standard
deviation values given by 〈v2〉 and σdyn, the value of σdyn/〈v2〉
can be obtained by fitting Eq. (A6).

The resulting distribution of σdyn/〈v2〉 as a function
of σflow/〈v2〉flow and 〈δ〉/〈v2

2〉 is shown in Fig. 7. The
value of σflow/〈v2〉flow corresponding to measured values of
σdyn/〈v2〉 and 〈δ〉/〈v2

2〉 can be extracted from this distribution.
Furthermore, the values for σflow/〈v2〉flow = 0 can be used
to set an upper limit on the magnitude of the non-flow
ratio.

Since the related quantities are given as ratios, the value
of 〈v2〉flow set at the beginning is arbitrary. It was observed
that σn/〈v2〉 is roughly given by 0.6 for the dynamic v2

fluctuations measurement for all centrality bins in the centrality
range studied. The calculation was repeated for values of
σn/〈v2〉flow = 0.4 and 0.8. The differences in results, which
were found to be small, are incorporated in the systematic
errors.
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