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We build up a model to reproduce the experimentally measured RAA of J/ψ near midrapidty in an Au + Au
collision at

√
sNN = 200 GeV. The model takes into account the J/ψ suppression from the quark-gluon plasma

and hadron gas as well as the nuclear absorption of primordial charmonia and the regeneration effects at the
hadronization stage and hence is a generalization of the two-component model introduced by Grandchamp
and Rapp. The improvements in this work are twofold; the addition of the initial local temperature profile and
a consistent use of QCD next-to-leading order (NLO) formula for both the dissociation cross section in the
hadron gas and the thermal decay widths in the quark-gluon plasma for the charmonium states. The initial local
temperature profile is determined from the assumption that the local entropy density is proportional to a formula
involving the number densities of the number of participants and of the binary collisions that reproduces the
multiplicities of charged particles at chemical freeze-out. The initial local temperature profile brings about a kink
in the RAA curve due to the initial melting of J/ψ . The initially formed fireball, composed of weakly interacting
quarks and gluons with thermal masses that are extracted from lattice QCD, follows an isentropic expansion with
cylindrical symmetry. The fit reproduces well the Au + Au as well as the Cu + Cu data. The same method is
applied to predict the RAA expected from the Pb + Pb collision at Large Hadron Collider (LHC) energy.
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I. INTRODUCTION

Ever since the seminal work by Matsui and Satz [1], J/ψ

has been investigated for a long time as a diagnostic tool
to probe the properties of hot nuclear matter created in the
early stages of a relativistic heavy ion collision. The original
claim stated that J/ψ cannot be formed in the quark-gluon
plasma (QGP) due to color screening between the charm and
anticharm quarks and that such a mechanism will lead to the
suppression of J/ψ production in a heavy ion collision if the
QGP is formed. However, the situation was found to be more
involved as recent lattice QCD results showed that J/ψ might
survive past the critical temperature (Tc) and dissolve only at
a higher temperature (Td ∼ 2Tc) [2,3]. If so, it is important to
know the detailed temperature dependencies of the properties
of the J/ψ above Tc, as a large thermal width, for example,
might still lead to a very small survival rate of the J/ψ [4–6].
Moreover, if the QGP is formed and the number of charm
quarks are large, there is an additional production mechanism
that has to be estimated and comes from the formation of
J/ψ through the regeneration of charm and anticharm that are
well described by statistical approaches [7–10]. A successful
phenomenological model that is able to explain the J/ψ

signals coming from p + p to heavy ion collisions at high
energy should consistently include all the above-mentioned
ingredients.

The commonly measured and calculated nuclear modi-
fication factor RAA shows whether the J/ψ is suppressed
or enhanced in the heavy ion collision [11]. For instance,
if RAA = 1, the number of produced J/ψ in the A + A
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collision is equal to the number of produced J/ψ in the
p + p collision at the same energy, times the number of
binary collisions of nucleons from the two colliding nuclei.
If RAA < 1(> 1), the number of J/ψ dissolved in hot nuclear
matter is larger (smaller) than that regenerated from the QGP
at the hadronization point. Presently RAA of J/ψ is below
unity up to the maximum energy of the Relativistic Heavy Ion
Collider (RHIC) [12].

Phenomenological models were developed to describe RAA

of J/ψ from the Super Proton Synchrotron (SPS) to RHIC
and to predict the upcoming LHC heavy ion data. One of
the successful models to explain the heavy ion data is the
thermal model [13]. Here the J/ψ production follows the
statistical description at the chemical freeze-out point and thus
can be thought of as being regenerated from the QGP at the
hadronization point (∼ Tc). In the so-called two-component
model by Grandchamp and Rapp (GR) [14], one additionally
takes into account the fact that the J/ψ survives past Tc and
dissociates only at a higher temperature Td so that some of
J/ψ produced at the initial stage survives the high temperature
phase and reaches the final stage; these together with those
regenerated from the QGP at the hadronization point constitute
the two components of the observed J/ψ [15]. In a third
model the continuous dissociation and regeneration of J/ψ is
calculated using the Boltzman transport equation from Td to
Tc evolved using the hydrodynamics equation [16].

Crucial quantities in the previous models are the Td ’s for the
charmonia; these are the melting temperatures for the Deby-
screened Coulomb-type of charmonium bound states above Tc.
While initial calculations seemed to suggest that Td ∼ 2Tc for
J/ψ and lower for the excited states [2,3,17], recent studies
claimed that these can be lower due to the large thermal width
the states acquire [4,18]. The current experimental error for
RAA of J/ψ as a function of the number of participants are still
too large to draw any definite conclusions about these different
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temperatures. However, one finds interesting characteristics if
one takes the central values of the experimental data for the
curve of the Au + Au collision at

√
sNN = 200 GeV; there

seems to be two sudden drops [12]. One occurs initially at a
very small number of participants and the other somewhere
between 170 and 210. Assuming that the initial temperature
of the fireball is correlated to the number of participants, the
two drops might be related to two distinct initial temperatures
[19,20]. Indeed, as we will show in our two-component model,
the first sudden drop at a small number of participants can be
related to the dissociation of excited charmonia such as χc

and ψ ′; the initial dissociation of these states will suppress
the expected 30 to 40% feedback production of J/ψ from its
excited states. The second sudden drop is found to be related
to the initial dissociation of J/ψ . In geometrical terms, the
first drop occurs when there appears regions where the initial
temperature is larger than the Td of the excited charmonia and
the second drop when it is larger than Td of J/ψ . Moreover,
if the thermal decay width of J/ψ is not so large these effects
become prominent.

In this work, we generalize the two-component model to
take into account the initial hot region mentioned earlier and
calculate the RAA of J/ψ at midrapidity in the Au + Au
collision at

√
sNN = 200 GeV. We estimate the initial local

temperature with the assumption that local entropy density
is simply the linear combination of the number density of
the number of participants and of the binary collision, a
formula that well reproduces the multiplicities of charged
particles at the chemical freeze-out stage in the scenario of
an isentropically expanding fireball. The average temperature
of the fireball is obtained from equating the entropy den-
sity to that of the QGP calculated using a noninteracting
gas of quarks and gluons with effective thermal masses
extracted from the lattice QCD calculation for the energy
density and pressure [21]. The baryon chemical potential is
obtained from the ratio of the proton and the antiproton and
other chemical potentials from the conservation of respective
flavors.

In the two-component model, the primordial charmonia,
which have not evolved to the final charmonia yet, first
undergo nuclear absorption. Then after they form into the
initially produced charmonia, they undergo through thermal
decay in the QGP and then hadronic decay in the hadron gas
until the chemical freeze-out stage. However, the regenerated
charmonia only go through the hadronic decay in the hadron
gas. Consequently, another important quantity in the model is
the thermal widths of charmonia in the QGP and in hadron gas.
We improve previous calculations by using the results obtained
using perturbative QCD up to the next-to-leading order (NLO)
in the coupling constant [22]. In our work, this coupling
constant is not a free parameter because it is related to the
screening mass of QGP and sequential melting temperatures
of charmonia. The details are mentioned in Chapter VII. The
relaxation factor of charm quarks in QGP is calculated up to
leading order in perturbative QCD; this factor determines the
fraction of thermalized charm quarks and is used to estimate
the regeneration of charm quarks.

The article is organized as follows. In Sec. II, we discuss
nuclear absorption and introduce the necessary concepts. In

Sec. III, we introduce the initial local temperature profile.
In Sec. IV, we show how the thermodynamic parameters
are determined. In Secs. V and VI we, respectively, discuss
the thermal decay and regeneration of charmonia. In the
last two sections, we give the results and conclusion. In the
Appendix, we summarize the perturbative NLO formula for
the dissociation cross section of charmonium.

II. NUCLEAR ABSORPTION

Within the Glauber model, heavy ion collision can be
described with collisions of the nucleons. The model has two
important scales, the number of participants and the number
of binary collisions. Participants mean the nucleons in both
colliding nuclei that go through inelastic scattering at least
once. The rest are called spectators. Usually the amount of
bulk matter created from heavy ion collisions is proportional
to the number of participants. The number of binary collisions
counts only primary collisions of two nucleons. Usually a hard
particle such as the charmonium is produced through primary
collision because it requires a large energy transfer; hence, its
production number is proportional to the number of binary
collisions. The two numbers are calculated in the Glauber
model as follows [23]

Npart(�b) = A

∫
d2sTA(�s)[1 − {1 − TB(�b − �s)σin}B]

+B

∫
d2sTB(�b − �s)[1 − {1 − TA(�s)σin}A]

Ncoll(�b) = σinAB

∫
d2sTA(�s)TB(�b − �s)

≡ σinABTAB(�b), (1)

where �b is the impact parameter of the two colliding heavy
nuclei and A,B are their mass numbers. σin is the inelastic
cross section of two nucleons, which is about 42 mb at

√
sNN =

200 GeV [11]. TA(B) is called the thickness function defined as

TA(B)(�s) =
∫ ∞

−∞
dzρA(B)(�s, z), (2)

and TAB is called the overlap function. Here, ρA(B)(�r) is the
distribution function of one nucleon in nucleus A(B), for which
we use the following Woods-Saxon model

ρ(r) = ρo

1 + e(r−ro)/C
. (3)

For the Au nucleus, ro = 6.38 fm and C = 0.535 fm [24].
The normalization factor ρo is determined by the requirement∫

d3rρ(r) = 1.
The charm and anticharm quark pair produced through

primary collision is called the primordial charmonia before
they form into on-shell states. Such primordial charmonia can
still be absorbed by nucleons passing through it. The survival
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rate at transverse position �s from the nuclear absorption is

Snuc(�b, �s) = 1

TAB(�b)

∫
dzdz′ρA(�s, z)ρB(�b − �s, z′)

× exp

{
− (A − 1)

∫ ∞

z

dzAρA(�s, zA)σnuc

}

× exp

{
− (B − 1)

∫ ∞

z′
dzBρB(�b − �s, zB)σnuc

}
.

(4)

Here, σnuc is the absorption cross section of primordial
charmonia by a nucleon and is about 1.5 mb at

√
sNN =

200 GeV [15]. z and z′ are the positions where the primordial
charmonium is created in the beam direction from the center
of nucleus A and from the center of nucleus B, respectively.
The second line in Eq. (4) is the absorption factor by nucleus
A and the third by nucleus B. Mass numbers A and B in the
exponents of the second and third lines are both subtracted
by 1 because one nucleon of nucleus A and one nucleon of
nucleus B take part in producing a charm pair and cannot take
part in absorbing the pair.

III. INITIAL LOCAL TEMPERATURE

To build up a model for the suppression, we will closely
follow the space-time picture of nucleus-nucleus collision
generally accepted from hydrodynamic simulations [25]. After
the heavy ions pass through each other, hot nuclear matter
is created with a small net baryon density between the two
receding nuclei. The hot matter is expected to thermalize
early; while the exact thermalization time can be controversial,
we will just take the typical time accepted in hydrodynamic
simulation given as τ0 = 0.6 fm/c [26,27].

The total entropy produced in heavy ion collisions is
estimated from the multiplicity of produced particles. The
multiplicity of charged particles near midrapidity was found to
be well described under the assumption that it is proportional
to a linear combination of the number of participants and the
number of binary collisions. Because both the multiplicity
of particles and the entropy are extensive thermal quantities,
it is assumed that the entropy per pseudorapidity is also
proportional to the same linear combination of number of
participants and binary collisions as the particle multiplicity

dS

dη
= c

dM

dη
= 30.3

{
(1 − x)

Npart

2
+ xNcoll

}
. (5)

In the linear combination for multiplicities of charged
particles, x is 0.09 at

√
sNN = 130 GeV and 0.11 at

√
sNN =

200 GeV; the same values are used for entropy [28,29]. The
overall factor of 30.3 is determined so that multiplicities of
charged particles are well reproduced under the condition
that the ratio between entropy and multiplicity is determined
from the statistical model at the chemical freeze-out point;
c = S/M = s/nM , where S,M (s, nM ) are the total entropy
and multiplicity (density), respectively. The upper figure of
Fig. 4 shows that Eq. (5), which is the solid line, reproduces
the data well, when isentropic expansion of hot nuclear matter
is assumed.

Dividing Eq. (5) by the volume, entropy density per
pseudorapidity has the form

dS

V dη
≡ ds

dη
= 30.3

{
(1 − x)

npart

2
+ xncoll

}
, (6)

where npart, ncoll are volume densities of the number of
participants and binary collisions, respectively. These densities
at thermalization time τo, which is taken to be 0.6 fm/c in this
work, are given, respectively, as

npart(�s) = ATA(�s)[1 − {1 − TB(�b − �s)σin}B]/τo

+BTB (�b − �s)[1 − {1 − TA(�s)σin}A]/τo (7)

ncoll(�s) = σinABTA(�s)TB(�b − �s)/τo,

where �s is the position vector on the transverse plane and
homogeneous densities in beam direction is assumed.

Near midrapidity, the rapidity is approximated to the
longitudinal velocity

y ≡ 1

2
ln

E + pz

E − pz

≈ βz, (8)

and is further assumed to be equal to the pseudorapidity.
Supposing that the rapidity interval of interest is �y, the
total entropy within the interval is (dS/dη)�y. Ignoring
longitudinal acceleration, the longitudinal size of nuclear
matter within �y is τoβz ≈ τo�y at thermalization time τo.
Therefore, the entropy density at thermalization time is

ds

dη
�η ≈ dS

dη

�y

Aτo�y
= 1

Aτo

dS

dη
, (9)

where A is the transverse area.
The equation of state is required to extract the temperature

from the entropy density. In the quasiparticle picture, the
strongly interacting massless particles are replaced by the non-
interacting massive particles, whose properties are determined
from the condition that they reproduce the thermal quantities
such as energy density and pressure of the strongly interacting
massless particles. The thermal quantities of strongly inter-
acting quarks and gluons are simulated by lattice QCD. In
this work, we will use the parametrization for the effective
thermal masses of quark and gluon extracted by Levai and
Heinz from lattice QCD data for pure gauge for Nf = 2 and
for Nf = 4 [21]. They fix the degrees of freedom of quarks
and gluon to those in the vacuum and use the forms of leading
order (LO) perturbative QCD for their masses, parameterizing
the the nonperturbative effects into a temperature dependent
coupling g(T )

m2
g =

(
Nc

3
+ Nf

g

)
g2(T )T 2

2
,

(10)

m2
q = g2(T )T 2

3
,

where

g2(T ) = 48π2

(11Nc − 2Nf ) ln F 2(T , Tc,
)
, (11)

F (T , Tc,
) = 18

18.4e(T/Tc)2/2 + 1

T

Tc

Tc



. (12)
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FIG. 1. Entropy density vs. temperature in the hadron gas (solid
line) and in the QGP with parameters extracted from lattice QCD
with two flavors (dotted line) and with four flavors (dashed line).

Tc = 260, 140, and 170 MeV and Tc/
 = 1.03, 1.03, and 1.05
for pure gauge Nf = 2 and Nf = 4 cases, respectively. Here
we choose the case of Nf = 4 for thermal masses because its
critical temperature is more reasonable than that of Nf = 2.

With these effective thermal masses and the equation of
state obtained by assuming a gas of weakly interacting quarks
and gluons, the entropy density is related to temperature as
given below

s = − 1

V

∂�

∂T

∣∣∣∣
V,µ

= 1

6π2T 2

∑
i

∫
dkk4 eEi/T

(eEi/T ± 1)2
. (13)

The entropy density of QGP has a term proportional to
the derivative of the squared thermal mass with respect to
temperature because thermal masses depend on temperature.
But the term is to be canceled by the term induced from
bag pressure to maintain thermodynamic consistency [30].
The summation i includes gluons and quarks of three flavors,
although the lattice data are extracted for Nf = 4, we use the
realistic number of flavors to get a more realistic magnitude
for the entropy. The signs in the denominators are minus for
gluons and plus for quarks. The dashed and dotted lines in
Fig. 1 show the entropy density as a function of the temperature
in QGP, respectively, for parameters extracted from lattice
QCD for Nf = 4 and Nf = 2.

From the entropy density of Eq. (6) and the relation between
entropy density and temperature given in Eq. (13), the initial
local temperature distribution at τ = τo is obtained as given in
Figs. 2 and 3. The y axis is the direction of the impact parameter
and the x axis is perpendicular to the beam and y axes.
Figure 2 shows temperature profiles along the y axis at various
impact parameters. As we can see, the maximum temperature
becomes lower as the impact parameter increases. Figure 3
shows isothermal lines on a transverse plane. In the head-on
collision case, the transverse radius of QGP is about 7.0 fm
at thermalization time. This size decreases as the collision
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FIG. 2. Profiles of temperature along the y axis at var-
ious impact parameters. The solid line is for b = 0 fm,
the dashed line for b = 4 fm, the dotted line for b = 8 fm,
and the dot-dashed line for b = 12 fm.

becomes peripheral. More importantly, the equithermal line of
T = 380 MeV exists at b = 0, 4 fm, but does not at b = 8 fm.
If the melting temperature of J/ψ is 380 MeV, the region
where J/ψ cannot be formed exists at b = 0 and at b = 4 fm,
but does not at b = 8 fm, which, as will be seen later, leads to
a sudden drop to the RAA curve of J/ψ as a function of the
number of participants.

IV. THERMAL QUANTITIES IN EXPANDING HOT
NUCLEAR MATTER

The hot nuclear matter created through a heavy ion collision
expands in time; assuming isentropic expansion, the entropy
density and the temperature decreases along with it. Once
the critical temperature is reached, the phase of the matter
changes from QGP to the hadron gas. It is known that the phase
transition is a crossover at a small baryon chemical potential
and that there is a critical point where the phase transition
changes from a crossover to the first order as baryon chemical
potential increases. While the exact location of the point is not
certain yet, the phase transition is expected to be still at the
rapid crossover region at RHIC and at LHC energies.

The statistical model is very successful in reproducing
the observed particle ratios with two free parameters: the
temperature and the baryon chemical potential at the chemical
freeze-out stage. The other chemical potentials are obtained
from the condition that each flavor must be conserved, which
can be written as follows:

V
∑

j

njBj = Z + N,

V
∑

j

nj I3j = Z − N

2
, (14)

V
∑

j

njSj = 0.

034914-4



RAA OF J/ψ NEAR MIDRAPIDITY IN HEAVY . . . PHYSICAL REVIEW C 81, 034914 (2010)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Y
 (

fm
)

X (fm)
(c)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Y
 (

fm
)

X (fm)
(b)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8
Y

 (
fm

)

X (fm)
(a)

FIG. 3. Isothermal lines on transverse plane at τ = τo for
(a) b = 0 fm, (b) b = 4 fm, and (c) b = 8 fm. The solid line, dashed
line, dotted line, and dot-dashed line correspond to T = 170, 240,
310, and 380 MeV, respectively.

Here V is the volume of the hot nuclear matter of interest,
Z and N the number of protons and neutrons in that
volume, respectively, and j the constituents of the matter: The
constituents are the quarks and gluons in the QGP, while they
are the mesons and baryons in the hadron gas. For hadron gas,
all mesons and baryons whose masses are less than 1.5 and
2.0 GeV, respectively, are included in the sum. These upper
limits for the hadron masses are taken such that inclusion of
hadrons with masses higher than the upper bounds will not
change the result; for example, if the upper limit of meson
mass is set at 2.0 GeV, much more mesons are to be included,
but their contribution is small. nj is the number density of
particle j in the grandcanonical ensemble. Bj , I3j , and Sj

are the baryon number, the third component of isospin, and
strangeness of particle j , respectively.

In our work, V will represent the volume in the midrapidity
region, which is defined by |y| < 0.35. To determine all the
chemical potentials from Eq. (14), we have to know the two
numbers Z and N . The two numbers are determined from
two constraints: The first is that the ratio Z/N should be
the same as in the original combined nuclei and the second
is that the observed ratio of proton to antiproton within the
rapidity is well reproduced. The second constraint needs
some more explanation. Instead of solving Eq. (14) for each
Npart, we will try to find the best fit for the experimentally
observed p/p̄ ratio as a function of Npart by assuming that
Z + N appearing in the right-hand side of the first equation in
Eq. (14) is equal to the total number of participants in the
collision divided by a constant number; the constant number
is found to be 20.5.

The relation between Z + N and the ratio of proton and
antiproton is as following. If Z + N is very large, the nuclear
matter with volume V will have much more baryons than
antibaryons and thus the baryon chemical potential will be
large and positive; in this case, the proton to antiproton ratio
will be much larger than 1. However, if Z + N is very small,
the ratio will be close to 1. As one can see in the lower figure
of Fig. 4, the best fit shown as the solid curve well reproduces
the experimental data.

For the volume V , the following cylindrical form is used
for simplicity

V = 2β(τo + τ )π
(
ro + 1

2a⊥τ 2
)2

. (15)

The factor 2 is multiplied to take into account the forward
and the backward expansion in the beam direction, β is the
longitudinal velocity of nuclear matter, which is approximately
equal to the rapidity near midrapidity, τo is thermalization time,
and ro is the initial radius of QGP on the transverse plane. As
can be seen in Fig. 3, the shape of QGP is not a circle but
almond-like except for the head-on collision case.

In this work, the almond shape is transformed to a circle
with the same area. a⊥ is the transverse acceleration of QGP,
which is set to 0.1 c2/ fm [15]. The acceleration is turned off
when the transverse velocity reaches 0.6 c. The initial total
entropy of the QGP is calculated from a modified version of
Eq. (5), where the Npart and Ncoll are not the total number
of participants and total number of binary collisions, but are,
respectively, the number of participants and the number of
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FIG. 4. (a) Multiplicities of charged particles per pseudorapidity
divided by a half number of participants and (b) the ratios of antiproton
and proton near midrapidity at

√
sNN = 200 GeV.

binary collisions within QGP. Then, the entropy density is
obtained by dividing the total entropy of the QGP by the initial
volume as given in Eq. (15) at τ = τ0. Finally, the entropy
density at a later invariant time is obtained by assuming the
expansion to be isentropic and that the volume expands as
given in Eq. (15).

With the chemical potentials obtained from Eq. (14), the
entropy density determines temperature. The evolution of the
temperature of the QGP is obtained by equating the expression
for the entropy density given in Eq. (13) to the previously
determined entropy density at a later time. In contrast to the
case for the QGP, it is assumed that the masses of all hadrons do
not change at finite temperature. As we discussed previously,
the order of the phase transition that we probe at RHIC seems
to be a strong cross over. However, the equation of states
for the QGP and the hadron gas that we use gives a first
order transition. Nevertheless, we will still use these equation
of states because they are simple, physically intuitive, and
easy to manipulate. Moreover, although at the physical quark
masses, the order of the phase transition is a rapid cross over,
the change occurs at a very small temperature range so that

effectively we can approximate the transition with a simple
first order transition.

The solid line in Fig. 1 shows the correspondence between
the entropy density to the temperature in the hadron gas.
As can be seen in Fig. 1, the entropy density of the hadron
gas is higher than that of QGP at high temperature. These
curves cross at around T = 210 MeV below which the entropy
density of hadron gas is lower than that of QGP. But the
curve of hadron gas and curves of QGP are very close to
each other, which means that the phase transition from QGP to
hadron gas is fast. As hot nuclear matter expands, its entropy
density and temperature decreases along the curve of QGP in
Fig. 1. At critical temperature, the nuclear matter transfers
from the curve of QGP to that of hadron gas. If two curves
meet at critical temperature and their derivatives with respect
to temperature are the same, the phase transition is a crossover.
If two curves meet but their derivatives are different, the
phase transition is second order. But two curves in Fig. 1
do not meet at critical temperature so the phase transition is
first order. However, the phase transition takes a short time
because two curves are close at critical temperature. This time
interval is the period of mixed phase where two phases coexist.
The upper figure of Fig. 5 shows time dependence of the
average temperatures of the hot nuclear matter in a head-on
collision.

The lifetime of QGP phase in a head-on Au + Au
collision at

√
sNN = 200 GeV is 5.63 fm/c. Mixed phase

lasts for 1.44 fm/c. The temperature for chemical freeze-out
is set at 161 MeV, as motivated by thermal models. After
chemical freeze-out, the number of particles of each species
is assumed to remain constant. Multiplicities of charged
particles and proton to antiproton ratio are all calculated at this
temperature. Hadron gas phase lasts for 1.52 fm/c to chemical
freeze-out.

Charmonia produced outside the hot region where initial
temperature is higher than dissociation temperature of char-
monia go through thermal decay caused by interactions with
surrounding particles, which are the quarks and the gluons
in the QGP and the hadrons in the hadron gas or both in the
mixed phase. Once thermal quantities of hot nuclear matter are
given as functions of time, one needs to know the properties
of charmonia in hot nuclear matter to calculate how many
charmonia survive the thermal dissociation.

V. THERMAL DECAY OF CHARMONIA

The thermal decay width of charmonia at temperature T can
be calculated using the following factorization formula [31]


(T ) =
∑

i

di

∫
d3k

(2π )3
vrel(k)ni(k, T )σ diss

i (k, T ), (16)

where i repents the quark or the gluon in the QGP, or the
baryons and the meson in the hadron gas. di is the degeneracy
factor of particle i, ni the number density of particle i in the
grand canonical ensemble, vrel the relative velocity between
the charmonium and the particle i, and σ diss

i the dissociation
cross section of charmonium by particle i. It is assumed that
thermal width in the mixed phase is a linear combination of
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FIG. 5. (a) The time evolution of average temperature and
(b) chemical potentials of hot nuclear matter at b = 0 fm. The solid
line, dotted line, and dashed line in the lower figure are baryon,
strangeness, and isospin chemical potentials, respectively.

contributions from the QGP and from the hadron gas as given
in the following form


 = f 
HG + (1 − f )
QGP, (17)

where f is the fraction of the hadron gas in the mixed phase.

A. Dissociation cross section

The crucial quantity in Eq. (16) is the dissociation cross
section. As emphasized previously, one of the improvements in
our work over the previous two-component-model calculations
is the consistent application of the NLO perturbative formula
to calculate the dissociation of charmonia both in the QGP [32]
and in the hadron gas [22]. In fact, it is difficult to describe
the dissociation of charmonia both in the QGP and in the
hadron gas with the same approach. As an example, GR in
Ref. [14] uses a meson exchange model for estimating the
dissociation of charmonia in the hadron gas and a quasifree

particle approximation for charm quark inside the J/ψ in
the QGP. Binding energies of charmonia become very small
at high temperature so that the charm and anticharm quarks
inside the charmonia indeed can be approximated by quasifree
particles. With this idea, GR approximate the dissociation
cross section of charmonia with the elastic cross section of
charm or anticharm quark, once the energy transfer is larger
than the binding energy of charmonium.

However, as we show in the Appendix, such a contribution
constitutes only the leading monopole contribution, whose
contribution from the charm and anticharm quarks cancel as
they have opposite charges. A consistent calculation shows
that the dissociation cross section is of the dipole type and
only sensitive to the size of the wave function 〈r2〉1/2 as is
expected of a system composed of a quark and an antiquark
system with opposite charges.

B. Thermal width in the hadron gas

The dissociation cross section of charmonium by hadron i

can be calculated by the following factorization formula

σ diss
i (s) =

∑
j

∫
dxnij (x,Q2), (18)

where nij (x,Q2) is the distribution function of parton j in
hadron i. x is the longitudinal momentum fraction of parton
j in hadron i, which is a value between 0 and 1. Q is
the renormalization scale of the parton distribution function.
Suppose that a gluon is emitted from a light quark in a hadron.
If transverse momentum of the gluon is smaller than Q, the
parton distribution function absorbs this splitting process. But
if the transverse momentum is larger than Q, this splitting
process has to be calculated in σj (xs,Q2) of Eq. (18). In other
words, dissociation cross section of charmonia by hadron i, the
left-hand side of Eq. (18), is composed of a nonperturbative
part, which is the parton distribution function, and perturbative
part, which is the dissociation cross section of charmonia
by parton j . That is why Eq. (18) is called the factorization
formula.

The factorization formula also shows how collinear diver-
gence is removed. If a massless gluon is emitted in the same or
opposite direction from the original light quark or a massless
gluon, then the propagator will have a pole and induce a
collinear divergence. In this case, transverse momentum of
the emitted gluon is smaller than Q and thus the divergence
can be absorbed by the parton distribution function. The
elementary cross section σj as well as the parton distribution
function nij depends on the scale Q2, but the final result,
σ diss

i does not depend on the scale in principle. There are
several parton distribution functions available. However, the
minimum scales Q above which they are defined, are all
larger than the binding energies of charmonia, which is the
renormalization scale for σj (xs,Q2). For the case of heavy
quark scattering, the separation scale Q can be taken to be
the transferred energy or the mass of heavy quark. But in the
case of heavy quarkonium, the separation scale is the binding
energy of heavy quarkonium.
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We use the Bethe-Salpeter amplitude to describe the bound
state of quarkonium in which the generated potential becomes
Coulombic in the heavy quark limit; in principle, a consistent
counting and renormalization is possible in such a limit.
Although the phenomenological heavy quark potential for
strong force is composed of the Coulombic potential part and
the linearly rising string potential energy [33], in the heavy
quark limit, the distance between quark and antiquark is very
small and the effect of the linearly rising string part of the
potential is not felt by the quarks. In such a limit, the binding
energy of J/ψ , which is the 1S state, can be estimated using
the mass difference to its first excited 2S state, which will
also be Coulombic. Although the charm quark mass is not so
large, we can still approximate the states to be Coulombic and
obtained the binding energy of J/ψ to be 780 MeV [34,35].
Unfortunately, no parton distribution functions are defined in
such a low Q.

For our purpose, we just take the MRSSPI parton distri-
bution function [36] of the pion at

√
5 GeV and use it for

all hadrons as the pion is the most abundant particle in the
hadron gas stage. The minimum scale Q of MRSSPI is still
much larger than the binding energy of J/ψ . In fact, for this
reason, it was found that combining the parton distribution
function at larger Q value than the scale of the scattering
cross section in Eq. (18) we found inconsistent results for the
charmonium states where the cross section becomes negative
at some incoming energies [22]. Therefore, we will first apply
the approach to calculate the dissociation cross section for the
bottom system, the perturbative QCD approach always gives
a positive cross section [22] and then extrapolate the result to
the J/ψ case by the following dipole approximation,

σJ/ψ (
√

s) =
(

RJ/ψ

Rϒ

)2

σϒ (
√

s ′). (19)

Here, RJ/ψ, Rϒ are the radii of J/ψ and ϒ , respectively.
In the Coulombic potential, the radius R = 1/

√
mεo, where

m is the mass of the constituent heavy quark of quarkonium,
1.94 GeV for charm, 5.1 GeV for bottom, and εo is the binding
energy of quarkonium. The difference in the renormalization
scales of the couplings appearing in the J/ψ and ϒ cross
section appearing in Eq. (19) is neglected. Two different
energy scales

√
s,

√
s
′ are assumed to have the relation√

s ′ = (mc/mb)
√

s, where mc,mb are masses of constituent
charm and bottom quarks.

The upper figure of Fig. 6 shows the dissociation cross
section of J/ψ by the π obtained using the method above. The
present cross section is still smaller than that estimated using
the meson-exchange model [37,38] or the quark-exchange
model [39].

The cross section obtained above is now put to Eq. (16) to
get the thermal width of J/ψ by π . For more simplicity, the
thermal width in hadron gas is simplified as following


(T ) = A

∫
d3k

(2π )3
vrel(k)nπ (k, T )σ diss(k, T ), (20)

where vrel is the relative velocity between charmonium and the
pion in rest frame of charmonium, and σ diss is the dissociation
cross section of charmonium by the pion. A is the ratio of

√s (GeV) 

σJ/
ψ

+
π
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b

)

0.001

0.01

0.1

1

10

100

1000

100 150 200 250 300 350

FIG. 6. (a) The dissociation cross section of J/ψ by π and
(b) the thermal widths of J/ψ(solid line), χc(dotted line), and
ψ ′(dashed line) in the hadron gas and in the QGP obtained in the
perturbative QCD approach.

number density integrated in momentum space of all hadrons,
whose masses are less than 1.5 GeV for mesons and 2.0 GeV
for baryons, and that of the pion. The integrated number density
of the pion is about 0.16 fm−3 at the temperature of chemical
freeze-out, and that of all hadrons is about 0.43 fm−3.

To calculate the dissociation cross section of charmonia in
the perturbative QCD approach, we have to know their wave
functions [22,32]. For J/ψ in hadron gas, the wave function
of the 1S Coulombic bound state is used [22]. For excited
charmonia in hadron gas, it is assumed that the cross section is
proportional to the squared radius. According to the screened
Cornell potential [33], vacuum screening masses for J/ψ , χc,
and ψ ′ are 0.18, 0.18, and 0.26 GeV, from which the radii
are found to be 0.563, 0.778, and 1.504 fm, respectively. As
a result, the dissociation cross section of χc (ψ ′) is 1.9 (7.1)
times larger than that of J/ψ in the hadron gas.

C. Thermal width in the QGP

The thermal width depends on the charmonium wave
function. Here we use the Cornell potential with a temperature-
dependent screening mass. The form of the screened Cornell
potential is given as

V (r, T ) = σ

µ
(1 − e−µr ) − α

r
e−µr , (21)
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FIG. 7. (a) Wave functions of J/ψ , (b) χc, and (c) ψ ′ in
momentum space, at screening masses, 289 (solid line), 306 (dotted
line), 323 (dashed line), and 340 MeV (dot-dashed line).

where σ is 0.192 GeV2 and α = 0.471. The screening mass
µ in QGP depends on temperature. In the limit that µ goes
to zero, the screened potential becomes the normal Cornell
potential. Figure 7 shows the wave functions of charmonia in
momentum space at various screening masses. We can see that
the wave functions of χc and ψ ′ are sensitive to the change of

screening mass, while that of J/ψ is not and is more localized
at the origin in momentum space.

For the temperature dependence of the screening mass,
we simply use the leading order pQCD result, µ =√

(Nc/3) + (Nf /6)gT . The coupling constant g is 1.47 in the
case of QGP, which is obtained from the best fit for RAA data
in our formalism. The details for g in QGP will be explained
later. In the case of QGP, the dissociation cross section does
not have divergence because the effective thermal masses of
partons play the role of cutoff in momentum space; in a sense
the quasiparticles are the asymptotic states of the QGP that
can perturbatively scatter with the charmonium states. As
long as the temperature scale is smaller than the separation
scale, such a description can be thought of as an effective
factorization formula, where all the soft physics are included
in the quasiparticles.

The lower figure of Fig. 6 shows the thermal widths
of charmonia both in the hadron gas and in the QGP,
calculated using our NLO formula. We see that the thermal
widths of charmonia suddenly increase by about an order
of magnitude at the critical temperature. There are several
reasons for such a sudden increase of the thermal widths.
One of them is the difference in kinetic energies of partons.
The kinetic energy of a parton has to be larger than the
binding energy of the charmonium states for the breakup
to take place. Such energy are readily available for massive
quarks and gluons at finite temperature. However, for pions,
the temperatures have to be higher. Moreover, there is a
large increase in the degree of freedom as phase transition
occurs.

Another important factor for the survival rate of J/ψ is
the feed-down contribution from its excited states such as the
χc, ψ ′. Some J/ψ is produced directly but some of them are
produced through the decay of its excited states. It is not clear
yet what fractions of J/ψ are produced through feed-down.
Here it is assumed that 25% and 8% of J/ψ are fed down from
χc and ψ ′, respectively, which is the world average [40]. Then
the survival rate of J/ψ from thermal decay is

Sth(�b, �s) = 0.67S
J/ψ

th (�b, �s) + 0.25S
χc

th (�b, �s) + 0.08S
ψ ′
th (�b, �s),

(22)

where

S
j

th(�b, �s) = exp

{
−

∫ τcf

τo


j (τ ′)dτ ′
}

(�s ∈ Hj )

= 0 (�s � ∈Hj ).

The superscript j in the lower equation is species of
charmonia and τcf the upper limit of the integration is the
proper time for the chemical freeze-out. Hj is the hot
region where the initial temperature is over the dissociation
temperature of each charmonia.

VI. THE REGENERATION OF CHARMONIA

As discussed previously, results from hydrodynamics sug-
gest that hot nuclear matter created in relativistic heavy ion
collision is thermalized very fast. Moreover particle yields
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and their ratios from relativistic heavy ion collision are well
reproduced using the grand canonical ensemble. If the number
of charm and anticharm quarks are also thermalized, the total
number of charm pairs produced NAB

cc̄ (τ ) from the collision of
nucleus A and B will satisfy the following equation [8]

NAB
cc̄ (τ ) = {

1
2no(τ ) + nh(τ )

}
V (τ ). (23)

Here, no and nh are the number density of open and hidden
charms, respectively, and V is the volume of hot nuclear
matter; all are a function of the proper time τ .

In general, if the creation or annihilation of charm pairs
is considered during the expansion of hot nuclear matter, the
number of charm quark pairs will be a function of proper
time τ . Moreover, if the lifetime of hot nuclear matter is
sufficiently longer than the thermalization time, the number
of charm pairs will become thermalized and satisfy Eq. (23);
thermalization will proceed through the processes such as
c + c̄ ↔ q + q̄, c + c̄ ↔ g + g. However, estimates based
on perturbative QCD suggests that the lifetime of hot nuclear
matter is not long enough for the number of charm pairs to
be thermlized because the cross section for the creation or
annihilation of charm pairs is small with respect to the lifetime
of the fireball.

Therefore, taking into account the off-equilibrium effects
for the heavy quarks, the number of charm pairs given in
Eq. (23) will be modified as follows

NAB
cc̄ (τ ) = {

1
2γ no(τ ) + γ 2nh(τ )

}
V (τ ), (24)

where γ is called the fugacity [8]. If the number of charms
is more (less) then what it will be if the charm quarks are
thermalized, fugacity is larger (smaller) than unity. In the
central collision of RHIC the initial temperature of created hot
nuclear matter is very high and the fugacity at τ = τ0 is smaller
than 1. As the system cools down, the fugacity increases.
This fact can, in fact, be simply understood qualitatively as
follows; assuming isentropic expansion, V (τ ) ∝ 1/nL where
nL is the density of light partons, substituting this into
Eq. (24) gives NAB

cc̄ (τ ) ∝ { 1
2γ no(τ )

nL
+ γ 2 nh(τ )

nL
}, since no(τ )

nL
≈

exp(−mc/T ), where mc is the mass of the charm quark
and assuming the number of charm quarks does not change
during the expansion, we can conclude that the fugacity should
increase as the temperature decreases during the expansion.
The final value of fugacity at Tc as a function of Npart is shown
in the lower figure of Fig. 8.

In Eq. (24) the number density of an open charm is
multiplied by γ and hidden charm by γ 2 because open charm
has one charm or anticharm quark while hidden charm has
both charm and anticharm quarks. It may be assumed that the
number of charm pairs does not change during the expansion
of hot nuclear matter because the creation and annihilation
cross section of the pair is very small. Then the left-hand side
of Eq. (24) dose not change and its initial value is calculable
with Glauber model as in the following

NAB
cc̄ (�b) = σNN

cc̄ AB

∫
d2sTA(�s)TB(�b − �s)

= σNN
cc̄ ABTAB(�b), (25)
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FIG. 8. (a) Canonical suppression factor and (b) fugacity with
respect to number of participants.

where σNN
cc̄ is the cross section for cc̄ pair production in p + p

collision, which is 63.7 µb per rapidity near midrapidity at√
s = 200 GeV in perturbative QCD [13,41].
Another correction is about system size. So far grandcanon-

ical ensemble is used for number densities of particles. Canon-
ical ensemble, however, is to be used technically, because
quantum numbers of the system are to be conserved. Quantum
numbers of the system are fixed in canonical ensemble, while
they are not in grandcanonical ensemble. The function of
probability density with respect to quantum number is a delta
function in canonical ensemble, while it is a gaussian type
distribution in the grandcanonical ensemble. As the system
size is large, the width of function of probability density in
grandcanonical ensemble is narrow. In the thermodynamical
limit, where the system size is infinite, the function becomes
like a delta function. Therefore, grandcanonical ensemble and
canonical ensemble are equal in thermodynamical limit. The
equality seems to be true in central collisions of heavy ions,
because the number of produced charm or anticharm are not
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small. However it is questionable for peripheral collisions.
The quantum number in the grandcanonical ensemble can
be converted to that in a canonical ensemble by simply
multiplying modification factors as follows

NAB
cc̄ =

{
1

2
γ no(τ )

I1(γ no(τ )V (τ ))

Io(γ no(τ )V (τ ))
+ γ 2nh(τ )

}
V (τ ), (26)

where Io and I1 are modified Bessel functions and their ratio
that depends on the number of charm quarks is called the
canonical ensemble correction [9].

The upper figure of Fig. 8 is the canonical ensemble
corrections at hadronization. In central collisions, the number
of produced charm quarks are not small so that the correction
is almost unity. However, the correction rapidly decreases in
peripheral collisions because the number of produced charm
quarks becomes small. In other words, the difference between
the grandcanonical ensemble and canonical ensemble becomes
serious.

Fugacity γ is calculated from Eqs. (25) and (26). The
lower figure of Fig. 8 shows the fugacity at hadronization.
The fugacity is about 6 at the central collision and remains
constant until Npart decreases to about 100, and then rapidly
increases. The rapid decrease of canonical ensemble correction
causes fugacity to rapidly increase at small Npart.

So far it is assumed that charm quarks are thermalized
kinetically. In other words, it is assumed that the kinetic
energy of the charm quarks follow thermal distribution. This
thermalization is attained through elastic scattering of charm
quarks with the surrounding partons. However the elastic,
as well as the inelastic, cross sections of the heavy quarks
are smaller than those of the light quarks. The formation of
charmonium states through recombination are more probable
when the charm and anticharm quarks are randomly distributed
in momentum space. Therefore, to estimate the regeneration
effect, it is important to know how much charm quarks
and anticharm quarks are thermalized kinetically at the
hadronization point.

To estimate this effect, one defines the relaxation factor as
follows [14]

R ≡ 1 − exp

(
−

∫ τQGP

τo

dτ

τeq

)
, (27)

where τQGP is the proper time the QGP phase terminates.
Relaxation time, τeq, is defined as follows

τeq(T ) ≡ 1/

( ∑
i

∫
dk3

(2π )3
vrel(k)ni(k, T )σi(k)

)
, (28)

where ni is the number density of parton i in the QGP and
σi is the elastic cross section of a charm or anticharm quark
by parton i in the charm or anticharm rest frame. The cross
section multiplied by number density of partons is the mean
free path of a charm or anticharm quark. Therefore τeq is the
average elastic collision time of charm or anticharm quarks
with the light partons. The elastic cross section is calculated
to leading order in perturbative QCD. The effective thermal
masses of partons extracted from the lattice by Levi and Heinz
are used [21,42]. The relaxation factor R is about 0.25 at

the central collision and decreases as the collision becomes
peripheral.

The number of regenerated J/ψ can now be written as

NAB
regJ/ψ = γ 2

{
nJ/ψS

J/ψ

th−H + Br(χc → J/ψ)nχc
S

χc

th−H

+Br(ψ ′ → J/ψ)nψ ′S
ψ ′
th−H

}
V R, (29)

where Br(χc → J/ψ) and Br(ψ ′ → J/ψ) are branching
ratios from χc to J/ψ and from ψ ′ to J/ψ , respectively.
Canonical ensemble correction is not multiplied because
charmonia are hidden charms. S

J/ψ

th−H , S
χc

th−H , and S
ψ ′
th−H are,

respectively, the survival rates of J/ψ , χc, and ψ ′ from thermal
decay in hadron gas defined as follows

Si
th−H = exp

{
−

∫ τcf

τH


i(τ ′)dτ ′
}
. (30)

Here, τH is the proper time the hadronization is completed.

VII. RESULTS

J/ψ is a massive particle produced through hard collision
of two nucleons from each colliding nucleus. If there is no
nuclear modification, the number of produced J/ψ in a heavy
ion collision will be proportional to the number of binary
collisions as follows,

NGlauber
J/ψ (�b) = σNN

J/ψA2TAA(�b). (31)

Here, σNN
J/ψ is the cross section for J/ψ production in p + p

collision, which is recently measured to be 0.774 µb per
rapidity near midrapidity at

√
s = 200 GeV [13,43]. TAA is

the thickness function defined in Eq. (1).
The nuclear modification factor RAA is defined as follows

RAA(�b) = NAA
J/ψ (�b)

σNN
J/ψA2TAA(�b)

. (32)

The numerator in the right-hand side of the above equation
is the actual number of J/ψ produced in A + A collision,
while the denominator is the expected number of J/ψ

production in the same collision. However, nuclear absorption
and thermal decay of charmonia suppress the actual number
of produced J/ψ so that these effects suppress RAA. On the
contrary, regeneration of charmonia enhances the number so
that it raises RAA. Considering these effects altogether, the
nuclear modification factor is from Eqs. (4), (22), and (32)

RAA(�b) =
∫

d2sSnuc(�b, �s)Sth(�b, �s) + NAA
regJ/ψ (�b)

σNN
J/ψA2TAA(�b)

.

(33)

The first term of the right-hand side represents nuclear
absorption and thermal decay of J/ψ , which includes the
convolution in the transverse plane that takes into account
the initial suppression if the local temperature is larger than
the charmonium dissociation temperature and the second term
regeneration of J/ψ .
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FIG. 9. The figure (a) compares RAA from the experiment [12] to
that calculated from Eq. (33). The dashed line is the nuclear absorption
and thermal decay, the dotted line the regeneration effect, and the solid
line their sum. As for the figure (b), the experimental data and the
solid line are the same as in the upper figure, but the dashed line
shows the result when the initial suppression of J/ψ in the hot region
is not taken into account.

A. Results for Au + Au

The upper figure of Fig. 9 shows that Eq. (33), with a
best-fit coupling g = 1.47, reproduces the experimental data
of RAA [12] well. The dashed line is Snuc Sth, the dotted line
R

reg
AA, and the solid line their sum. The coupling constant g is

an important parameter in the result. It determines the thermal
widths of charmonia, their dissociation temperatures, and the
relaxation factor R. When the coupling constant increases, the
thermal widths of charmonia become wider, the dissociation
temperatures of charmonia become lower, and the relaxation
factor R larger, and vice versa. While perturbative QCD
formulas are used, it is known that the QGP from Tc up to about
2 Tc is nonperturbative. In this sense, the coupling constant g

is kind of a free parameter fitted to reproduce the experimental
data.

In our approach the value of the coupling g also determines
the position of a kink on an RAA curve. At present, the
experimental uncertainties in RAA are still too large to extract
any detailed structure as a function in Npart. Nevertheless,
taking the central experimental data of RAA seriously, there
seems to be two drops. The first one appears at a small
number of participants and the second one between 170
and 210 Npart.

There are two important thermal effects on charmonia
production: One is the initial suppression, which occurs when
the local initial temperature of the hot region is higher than
the dissociation temperature, the other is thermal decay of
charmonia through interaction with surrounding particles.
Two effects occur at different temperatures, which are well
distinguished in the lower figure of Fig. 6. From the critical
temperature to the dissociation temperature, which are respec-
tively identified by the sudden increase and the divergence
of the thermal width, the thermal width of charmonium
increases monotonically; in the lower figure of Fig. 6, the
divergence is represented by the termination point. For the
initial suppression effect, the survival rate of charmonium is 0,
while for the effect coming from thermal decay, it depends on
the temperature and lifetime of the QGP relevant for thermal
decay.

It should be noted that the survival rate will change
appreciably only when the thermal width becomes large
because the lifetime of QGP in heavy ion collision is not so
long. In fact, as can be seen from Fig. 5, the temperature region
near Tc is more important, which last almost 2 to 3 fm/c. This
means that the thermal width has to be of the order 100 MeV to
have an appreciable suppression effect. Therefore, there will
be a critical change in the survival rate depending on whether
or not the initial temperature is larger than the dissociation
temperature because that condition corresponds to having
either an infinite or finite thermal width. This critical change in
survival rate will appear as a sudden change of RAA along the
axis of number of participants because the initial temperature
rises as the number of participants increases. Therefore, if
at some future point the error bars in the experimental data
are reduced and one indeed finds the sudden kink, it will
strongly imply that the J/ψ dissociation takes place at the
corresponding point. Moreover, an initial kink can appear
when the initial temperature is higher than the dissociation
temperatures of excited charmonia, such as χc and ψ ′. It should
be kept in mind, however, that when the thermal decay width is
in the order of few hundred MeV just above the deconfinement,
the sudden kink can also have occurred due to the thermal
decay.

Again, taking the central values of RAA seriously, the
second kink can be translated to a dissociation temperature
of 386 MeV; this can be obtained from Fig. 2 and the Glauber
model given in Eq. (1) that links Npart to the impact parameter.
Now, solving the Schrödinger equation with the screened
Cornell potential, one finds that the dissociation occurs when
the screening mass is about µ = 695 MeV. Since the screening
mass is simply µ = √

(Nc/3) + (Nf /6)gT in our calculation,
the coupling constant g has to be fixed at 1.47 to reproduce the
screening mass at the dissociation temperature 386 MeV. This
coupling relates to α = 0.172, which is not so different from
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the lattice calculation for the asymptotic value of the coupling
reached at higher temperature [44] and to the coupling given
in Eq. (11).

With the same value of g, one finds the dissociation
temperatures of χc and ψ ′ to be 199 and 185 MeV, respectively.
The initial drop of the solid line in both the upper and lower
figures of Fig. 9 is coming from the initial suppression of
both χc and ψ ′. The dashed line of the lower figure of
Fig. 9 corresponds to the case where the initial suppression
of J/ψ is not taken into account. We can see how much
RAA is improved by considering the effects of the initial
hot region.

B. Understanding the results

To gain some more insights into what causes the charac-
teristic features of the solid line in Fig. 9, let us artificially
change some parameters and investigate the changes in the
prediction. The results are shown in Fig. 10. The solid line
is the best-fit value using the same method as described
previously but obtained with g = 1.47 and with a constant
thermal width of 10 MeV. The dashed and dot-dashed curves
are when the thermal width is changed to 100 MeV and zero,
respectively. One sees that the slope of the curve critically
depends on the thermal width. While the increase in the
width suppresses RAA, one should also note that an increase
in the width also implies a larger coupling to the medium
and hence an increase in the relaxation factor. This will
enhance the regeneration effects and thus compensate the
suppression.

In the dotted curve, the mass of J/ψ is artificially changed
by −100 MeV. This is to see if the sudden mass shift of J/ψ

recently advocated by Morita and one of us [5] will have any
effect on RAA. As one can see, due to the enhancement of the
statistical factor in the regeneration effect, the curve is pushed
up by a nontrivial amount. Therefore, the effects of a sudden
decrease in the mass and a sudden increase in the width at the
phase transition point, as advocated in Refs. [6,45], might just
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FIG. 10. RAA when the thermal width and mass are artificially
changed. The different curves are explained in the text.

compensate each other in RAA, making it difficult to identify
such effects from a measurement of RAA alone.

C. Results for Cu + Cu

The same method is applied to Cu + Cu collision at√
SNN = 200 GeV. The only difference from the previous

analysis is the geometry of the colliding nuclei. ro and C for
Cu are set at 4.163 and 0.606 fm, respectively in Eq. (3) [24].
The upper figure of Fig. 11 shows RAA of J/ψ in Cu + Cu
collision at

√
SNN = 200 GeV. Transverse acceleration of hot

nuclear matter in the Cu + Cu collision will be less than that
in the Au + Au collision, so that two different transverse
accelerations, 0.1 and 0.08 c2/fm, are used in the calculation
for RAA. However, there is almost no difference in RAA so that
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FIG. 11. The figure (a) is RAA of J/ψ in Cu + Cu collision at√
sNN = 200 GeV. The solid line for a⊥ = 0.1 c2/fm and the dotted

line for a⊥ = 0.08 c2/fm are overlapped. The figure (b) is RAA of
J/ψ in Pb + Pb collision at

√
sNN = 5.5 TeV. The dashed line is

RAA after nuclear absorption and thermal decay, the dotted line is
RAA from regeneration effect and the solid line is their sum.
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the two curves almost overlap in Fig. 11. The calculation for the
Cu + Cu collision slightly overestimates the experimental data
at central collisions while it underestimates at peripheral colli-
sions. In the Cu + Cu collision at

√
SNN = 200 GeV, the maxi-

mum temperature is lower than the dissociation temperature of
J/ψ even at the most central collision, hence no kink appears
in RAA.

D. Results for LHC

We can attempt to predict RAA of J/ψ in Pb + Pb collision
at LHC as well. Because the collision energy is much higher
than at RHIC, the parameters will have to be changed from
those used previously. We change only some of them. ro and
C for Au are set at 6.62 and 0.546 fm, respectively [24]. 6.4
and 639 µb are use for the cross sections for J/ψ production
and for cc̄ pair production per rapidity in p + p collision [13].
The constant 30.3 for produced entropy in Eq. (5) is replaced
by 55.7 [13]. The variable x in Eq. (5) will be larger than 0.11,
because x increases as collision energy increases. However,
we use the same value for lack of information. All chemical
potentials are set at zero because the midrapidity region will
almost be baryon-free at LHC energy. All other parameters
including transverse acceleration and its terminal velocity of
hot nuclear matter are set at the same values as at RHIC for
simplicity and for lack of knowledge.

The lower figure of Fig. 11 shows the prediction for RAA

at LHC energy. In contrast to the case at RHIC energy,
the survival rate from thermal decay is very low and the
regeneration effect is dominant except in the peripheral
collision. This is so because the lifetime of QGP is much
longer than at RHIC. According to our rough estimation, the
lifetime at the most central collision is twice that of the RHIC
case. The long lifetime of QGP suppresses the survival rate of
charmonia through thermal decay and enhances the relaxation
factor R of charm and anticharm quarks. Abundance of charm
quarks is another reason for the dominance of the regeneration
effect.

The same method seems to be applicable to lower collision
energies such as SPS. In this case, however, the baryon
chemical potential is too high to make use of effective thermal
masses by Levai and Heniz, which are extracted from the
lattice QCD data with zero baryon chemical potential.

VIII. CONCLUSION

We introduce a generalized two-component model to
calculate the RAA of J/ψ near midrapidity in the Au + Au
collision at

√
s = 200 GeV. In the model, suppression is caused

by the nuclear absorption of primordial charmonia and by the
thermal decay of charmonia in the QGP and in the hadron gas.
Enhancement is caused by the regeneration from the QGP.
One of our emphases is the use of a consistent perturbative
QCD approach, up to next to the leading order, to estimate the
thermal decay widths of charmonia both in the QGP and in
the hadron gas. While the coupling is considered to be a free
parameter to be determined by experiment, it is also related to
the screening mass and subsequently dissociation temperatures
of charmonia in the screened Cornell potential model.

Another emphasis of our approach is the initial temperature
profile, which leads to the initial suppression of charmonia if
the local temperature is higher than the dissociation tempera-
ture. When the initial temperature profiles, and thus the initial
hot regions are considered, the calculated RAA seems to show
two sudden drops; one at a very small number of participants
and the other at around 170 ∼ 210. The first sudden drop of
RAA at a very small number of participants is caused when the
maximum temperature of hot nuclear matter reaches above the
dissociation temperatures of excited charmonia and the second
sudden drop when it reaches the dissociation temperature of
J/ψ . However, if the thermal width of J/ψ is large compared
to the inverse time scale of the QGP, the second sudden drop
of RAA disappears. Moreover, some effects can cancel other
effects. For example, an increased thermal width of J/ψ will
reduce the RAA, while a decreased mass of J/ψ will enhance it.

The present experimental errors from RHIC are still
too large to discriminate all the different and competing
mechanisms discussed here. However, the central values seem
to be consistent with the two drops. In this sense, the maximum
temperature of SPS seems to be lower than the melting tem-
perature of J/ψ because the second drop is not seen in RAA

there [46]. A similar conclusion can also be made from the data
for the Cu + Cu collision at

√
s = 200 GeV. However, refined

data for the Au + Au collision at
√

s = 200 GeV are required
to make a definite conclusion. Moreover, fitting a single data
cannot disentangle all the different suppression mechanisms
separately. In that sense, the RAA of J/ψ at LHC energy
should provide a very interesting information. As shown in
our rough estimate, RAA at LHC is very different from that
at RHIC in that it is dominated by the regenerated J/ψ from
the QGP. Moreover, within the thermal decay width given in
the article, the lifetime of the plasma seems to be much longer
than the inverse of the thermal decay width. Hence, initially
formed J/ψ will be mostly suppressed through thermal decay.
Therefore, the upcoming LHC experiment will provide totally
new information about J/ψ in relativistic heavy ion collision
and thus the nature of QGP and its formation.
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APPENDIX

The upper figure of Fig. 12 is a diagram for the J/ψ

dissociation by a light quark at next to the leading order in
perturbative QCD. The double line represents the external
line of J/ψ and the adjacent small circle the Bethe-Salpeter
amplitude. The Bethe-Salpeter vertex represents the bound
state of charm quark and anticharm quark and has the following
form in the heavy quark limit and in rest frame of J/ψ


µ(p1,−p2) =
√

mJ/ψ

Nc

(
εo+ p2

mc

)
ψ(p)

1 + γ 0

2
γig

i
µ

1 − γ 0

2
,

(A1)
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FIG. 12. One diagram of quark-induced J/ψ dissociation at next
to the leading order in perturbative QCD and its decomposition.

where µ is the spin index of J/ψ and εo its binding energy. p is
the relative three-momentum of p1 and p2, p ≡ | �p1 − �p2|/2,
and ψ(p) the wave function of J/ψ . Nc is the number of
color. The charm quark propagator between Bethe-Salpeter
amplitude and gluon vertex is reexpressed as

i
� k + mc

k2 − m2
c

= i

∑
s us(k)ūs(k)

k2 − m2
c

. (A2)

If the binding energy of J/ψ is small, the momentum k of
the charm quark propagator will be slightly off-shell. By using
Eq. (A2), the invariant amplitude for Fig. 12 is

Mµ =
∑

s

ū(k2)γνu(k1)
i

(k1 − k2)2 − m2
c

ū(p1)γνu
s(k)

× ūs(k)
µ(k, p2)v(p2)
i

k2 − m2
c

≡
∑

s

Ms
QFū

s(k)
µ(k,−p2)v(p2)
i

k2 − m2
c

, (A3)

where Ms
QF is the invariant amplitude for c + q → c + q with

spin s of incoming charm quark in the approximation of a
quasifree particle [14]. The lower figure of Fig. 12 shows the
diagrammatic decomposition of Eq. (A3). In the heavy quark
limit, the condition of energy conservation

mJ/ψ + k0
1 = 2mc + | �p1|2

2m2
c

+ | �p2|2
2m2

c

+ k0
2,

or

k0
1 − k0

2 − εo = | �p1|2
2m2

c

+ | �p2|2
2m2

c

,

gives the following order counting

k0
1 ∼ k0

2 ∼ O(mg4)| �p1| ∼ | �p2| ∼ O(mg2), (A4)

because the binding energy εo is of mg4 order [22]. Under this
order counting, the denominator of the charm quark propagator
can be approximated as follows

k2 − m2
c = (p1 − k1 + k2)2 − m2

c

≈ −2p1 · (k1 − k2) ≈ −2mc

(
k0

1 − k0
2

)

= −2mc

(
εo + | �p1|2

2m2
c

+ | �p2|2
2m2

c

)

≈ −2mc

(
εo + | �p|2

m2
c

)
, (A5)

where

�p = ( �p1 − �p2)/2 = �p1 − ( �k1 − �k2)/2 ≈ �p1,

�p = ( �p1 − �p2)/2 = − �p2 + ( �k1 − �k2)/2 ≈ − �p2,

are used for the last approximation in Eq. (A5). The denom-
inator of the charm quark propagator indicates how off-shell
the propagator is. We can see the off-shellness is canceled by
the same factor in the Bethe-Salpeter amplitude. Therefore the
invariant amplitude for J/ψ dissociation is

Mµ = −2i mc

√
mJ/ψ

Nc

ψ(p)
∑

s

Ms
QF

× ūs(k)
1 + γ 0

2
γig

i
µ

1 − γ 0

2
v(p2), (A6)

and its averaged square with respect to the spin and color of
incoming particles is

|M|2 = mJ/ψ

2N2
c

|ψ(p)|2|MQF|2

= 2mJ/ψ |ψ(p)|2|MQF|2. (A7)

The phase space of the final state is separated as follows,
∫

d3p1d
3p2d

3k2

(2π )32E1(2π )32E2(2π )32k0
2

× (2π )4δ4(p1 + p2 + k2 − q − k1)

=
∫

d3p2d
4k

(2π )32E2
δ4(k + p2 − q)

×
∫

d3p1d
3k2

(2π )32E1(2π )32k0
2

(2π )4δ4(p1 + k2 − k − k1).

(A8)

Finally, the dissociation cross section of J/ψ from the
diagram is

σ diss = 1

4mJ/ψk0
1

∫
d3p1d

3p2d
3k2

(2π )32E1(2π )32E2(2π )32k0
2

× (2π )4δ4(p1 + p2 + k2 − q − k1)|M|2

=
∫

d3p2d
4k

(2π )32E2
δ4(k + p2 − q)|ψ(p)|2

× 1

2k0
1

∫
d3p1d

3k2

(2π )32E1(2π )32k0
2

(2π )4

× δ4(p1 + k2 − k − k1)|MQF|2. (A9)
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FIG. 13. Other diagrams of quark-induced J/ψ dissociation at
next to the leading order in perturbative QCD.

In the heavy quark limit,

E2 ≈ mc, k = q − p2 ≈ (mc, �0), (A10)

the dissociation cross section is simplified as follows,

σ diss ≈
∫

d3p

(2π )3
|ψ(p)|2σ QF, (A11)

where p2 is approximated to −p. σ QF is the cross section of
charm quark, which is used for the dissociation cross section of
J/ψ in the approximation of the quasifree particle. Suppose
that the cross section is independent of p, which enters in
σ QF through the momentum carried by the quasifree charm
quark, then the momentum integral with the square of the
wave function appearing in Eq. (A11) just factors out as the
wave function normalization, which is unity, and we will have

σ diss = σ QF. (A12)

In this limit, the cross sections will have to be just a constant
independent of the incoming energy.

However, Fig. 12 is not the only diagram for quark-
induced J/ψ dissociation. The left figure of Fig. 13 is
another diagram for the same dissociation. In the quasifree
particle approach, this diagram corresponds to the process
c̄ + q → c̄ + q while the diagram of Fig. 12 to the process
c + q → c + q. Moreover, the invariant amplitude for each

process is squared and then summed to get the dissociation
cross section. As a result, the cross section becomes double
the single contribution. However, in our perturbative QCD
approach, the amplitude of the two diagrams are summed
before being squared. In this case, the invariant amplitude
for the left figure of Fig. 13 cancels that of Fig. 12 exactly so
that the next to the leading order in the counting scheme of
Eq. (A4) has to be considered. In the order counting, the next
to the leading order of Fig. 12, the left figure of Fig. 13 and
the leading order of the right figure of 13 are all the same so
they are treated equally. It gives the following result [22]

|M|2 = 4

3
g4m2

cmJ/ψ

∣∣∣∣∂ψ(p)

∂p

∣∣∣∣
2{

−1

2
+

(
k0

1

)2 + (
k0

2

)2

2k1 · k2

}
.

(A13)

It is worthy to notice that Eq. (A13) is a function of
∂ψ(p)/∂p, the dipole of the wave function, while Eq. (A11)
is a function of ψ(p), the monopole of the wave function. The
result with the dipole form is a natural result in the sense that
J/ψ is a dipole of color charge.

The comparison between two models in the gluon-induced
dissociation cross section is similar. The only difference is that
the perturbative QCD approach has diagrams where one gluon
is absorbed at a heavy quark or antiquark line and the other
gluon is emitted at the other heavy antiquark or quark line as
shown in diagrams (3) and (4) of Fig. 6 in Ref. [22], but the
approach of the quasifree particle does not have such diagrams.
In addition to the differences discussed previously, comparing
the quasifree model with ours, one finds that the perturbative
QCD approach has contributions from the diagrams where
gluon is emitted or absorbed at the gluon line exchanged
between the heavy quark and antiquark as shown in Eqs. (9)
through (16) of Fig. 6 in Ref. [22].
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