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Energy dependence of K/π fluctuations in relativistic heavy-ion collisions
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In this article we will discuss the energy dependence of particle ratio fluctuations in heavy-ion collisions. We
study how the inherent multiplicity dependence of ratio fluctuations is reflected in the excitation function of
the dynamical fluctuations. Specifically, we will show that the observed excitation function of dynamical K/π

fluctuations is consistent with the expected dependence on the number of accepted pions and kaons in both the
STAR and the NA49 experiments.
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I. INTRODUCTION

Over the past several years event-by-event fluctuations of
many observables have been studied in relativistic heavy-ion
collisions [1–13]. The measurement of these fluctuations may
reveal separate event classes, fluctuations associated with
phase transitions, etc. (for a recent review see Ref. [14]). The
first measurement of event-by-event hadron ratio fluctuations
has been carried out by the NA49 Collaboration, which
analyzed the fluctuations of the kaon-to-pion (K/π ) ratio
in lead-lead collisions at a center-of-mass energy of

√
s =

17.3 GeV [1]. This measurement found surprisingly few
fluctuations, of the order of a small percent, which could
be explained by a combination of Bose-Einstein correlations
together with resonance decays [15,16].

Subsequently, the NA49 Collaboration has measured event-
by-event ratio fluctuations for several values of the center-of-
mass energy, ranging from

√
s = 6.3 GeV to

√
s = 17.3 GeV

[3]. In addition, at the Relativistic Heavy Ion Collider
(RHIC) the STAR, PHENIX, and PHOBOS Collaborations
have measured fluctuations up to center-of-mass energies of√

s = 200 GeV so that excitation functions of many fluctuation
observables are now available over a wide range of energies.
While most excitation functions show only little energy
dependence, that for the kaon-to-pion ratio exhibits a steep
increase toward the lower energies. So far this increase could
not be reproduced either in thermal model calculations [17]
or with the microscopic transport model UrQMD [3] and thus
has sparked quite some interest and speculations concerning
the QCD phase transition [18]. Another calculation using the
HSD event generator [19] can describe the general increase of
the fluctuations toward lower energies but fails to reproduce
the very steep rise exhibited in the NA49 data.

In this article, we will point out that the observable generally
used in the discussion of dynamical fluctuations,

σ 2
dynamical = σ 2

data − σ 2
mixed events, (1)
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has an inherent dependence on the multiplicity of particles
that are used in the experimental analysis—these are the
particles located within the phase space domain covered by
experimental acceptance with particle identification capability.
This has some nontrivial consequences for excitation functions
extracted with fixed-target experiments, such as NA49, where
the acceptance changes considerably with beam energy.
Specifically, in case of K/π -ratio fluctuations, the dynamical
fluctuations depend on the inverse of the accepted number
of pions and kaons, and because their number decreases with
beam energy, this may lead to non-negligible corrections, as we
shall show. Indeed, in [7] a significant centrality dependence
of these ratio fluctuations was found at top RHIC energies,
consistent with an inverse multiplicity scaling. In addition, for
a fixed-target experiment the actual acceptance changes with
beam energy. Because it is the multiplicity of the accepted
particles that determines the fluctuations, this needs to be taken
into account if one studies an excitation function.

It is the purpose of this note to discuss the multiplicity
dependence of particle ratio fluctuations and in particular those
of the kaon-to-pion ratio. After a brief review of the underlying
formalism governing fluctuations of (particle) ratios, we will
discuss several ways to remove the inherent multiplicity
dependence in the definition of the dynamical fluctuations,
σ 2

dynamical [Eq. (1)]. We then apply them to the fluctuations of
the kaon-to-pion ratio and discuss the energy dependence of
this observable in this context.

II. FLUCTUATIONS OF PARTICLE RATIOS

Following Refs. [14,15] the fluctuations of a particle ratio
A/B are given to leading order by

σ 2 =
〈(
δ A

B

)2〉
〈
A
B

〉2 =
( 〈δA2〉

〈A〉2
+ 〈δB2〉

〈B〉2
− 2

〈δAδB〉
〈A〉〈B〉

)
+ O(δ4),

(2)

with the definition

δA = A − 〈A〉,
δB = B − 〈B〉.
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Because

〈δA2〉 = 〈A2〉 − 〈A〉2,

〈δB2〉 = 〈B2〉 − 〈B〉2,

〈δAδB〉 = 〈AB〉 − 〈A〉〈B〉,
Eq. (2) can also be written as

σ 2 =
( 〈A2〉

〈A〉2
+ 〈B2〉

〈B〉2
− 2

〈AB〉
〈A〉〈B〉

)
.

In absence of any correlation, 〈δA2〉 = 〈A〉 and
〈
δB2

〉 = 〈B〉,
and the scaled variance [Eq. (2)] reduces to

σ 2
uncorrelated =

(
1

〈A〉 + 1

〈B〉
)

. (3)

The difference between the scaled variance σ 2 and the
uncorrelated scaled variance σ 2

uncorrelated is commonly referred
to as the dynamical fluctuations, σ 2

dynamical,

σ 2
dynamical = σ 2 − σ 2

uncorrelated

=
( 〈δA2〉 − 〈A〉

〈A〉2
+ 〈δB2〉 − 〈B〉

〈B〉2
− 2

〈δAδB〉
〈A〉〈B〉

)

=
( 〈A(A − 1)〉

〈A〉2
+ 〈B(B − 1)〉

〈B〉2
− 2

〈AB〉
〈A〉〈B〉

)
= νdynamical, (4)

where νdynamical is the variable usually used by the STAR
Collaboration. Obviously, in the absence of any correlations,
σdynamical = 0, by construction. Introducing the scaled correla-
tions,

CAB ≡ 〈δAδB〉 − δAB〈A〉√〈A〉〈B〉 , (5)

the dynamical fluctuations, σ 2
dynamical, can be written as

σ 2
dynamical =

(
1

〈A〉CAA + 1

〈B〉CBB − 2√〈A〉〈B〉CAB

)
. (6)

We note that the scaled correlations, CAB , typically do not
or only weakly depend on the multiplicity, as we will show
explicitly in the context of a resonance gas. Consequently,
Eq. (6) already suggests that a simple scaling of σ 2

dynamical
with number of charged particles may not be sufficient.
Depending on which of the scaled correlations dominates,
σ 2

dynamical may scale with either 1/〈A〉, 1/〈B〉, or 1/
√〈A〉〈B〉

or some combination of those. Furthermore, if the particle
abundances differ considerably, say 〈A〉

〈B〉 � 1, as is the case
for the kaon-to-pion ratio, the dynamical fluctuations will be
dominated by the least abundant particle, even if the scaled
correlations are of the same magnitude. This follows directly
from Eq. (6). In this case a scaling with 1/〈A〉 should work
best.

Finally, quantum statistics gives rise to additional correla-
tions [15,20,21],

〈δA2〉 � 〈A〉
(

1 ±
〈
n2

A

〉
〈nA〉

)
, (7)

with 〈
n2

A

〉 =
∫

d3p

(2π )3
[nA(p)]2,

where (+) stands for Bosons and (−) for Fermions and
nA(p)dp is the number of particles of type A in momentum bin
(p, p + dp). The correction term owing to quantum statistics is
typically of the order of a 5–10% for systems of consideration,
resulting in O(1–2%) effects for the dynamical fluctuations
[15,20]. After these general remarks about fluctuations of
particle ratios and their scaling with multiplicity, let us turn to
the specific case of kaon-to-pion ratio fluctuations.

III. MULTIPLICITY SCALING of K/π FLUCTUATIONS

Let us now turn to the specific case of K/π fluctuations. In
this case the scaled variance [Eq. (2)] is given by

σ 2
K/π=

〈(
δ K

π

)2〉
〈
K
π

〉2 =
[ 〈(δK)2〉

〈K〉2
+〈(δπ )2〉

〈π〉2
− 2

〈δKδπ〉
〈K〉〈π〉

]
, (8)

and the dynamical fluctuations [Eq. (6)] are

σ 2
dynamical =

(
1

〈K〉CKK + 1

〈π〉Cππ − 2√〈K〉〈π〉CKπ

)
.

Because K = K+ + K− and π = π+ + π−,

〈K〉 = 〈K+ + K−〉,
〈π〉 = 〈π+ + π−〉, (9)

〈(δK)2〉 = 〈(δK+)2〉 + 〈(δK−)2〉 + 2〈δK+δK−〉, (10)

〈(δπ )2〉 = 〈(δπ+)2〉 + 〈(δπ−)2〉 + 2〈δπ+δπ−〉,
〈δKδπ〉 = 〈δK+δπ+〉 + 〈δK−δπ+〉

+ 〈δK+δπ−〉 + 〈δK−δπ−〉, (11)

so that the scaled correlations [Eq. (5)] are given by

CKK = 〈(δK+)2〉 + 〈(δK−)2〉 + 2〈δK+δK−〉 − 〈K+ + K−〉
〈K+ + K−〉 ,

Cππ = 〈(δπ+)2〉 + 〈(δπ−)2〉 + 2〈δπ+δπ−〉 − 〈π+ + π−〉
〈π+ + π−〉 ,

CKπ = 〈δK+δπ+〉 + 〈δK−δπ+〉 + 〈δK+δπ−〉 + 〈δK−δπ−〉√〈K+ + K−〉〈π+ + π−〉 .

(12)

We note, that the “diagonal” scaled correlations, CKK and
Cππ , also contain cross correlations between the positively and
negatively charged kaons and pions, respectively. Therefore,
correlations introduced by resonances such as the φ meson
and the ρ0 meson will enhance the diagonal scaled correlations
and thus the dynamical fluctuations. Resonances decaying into
a kaon and a pion, such as the K∗

0 meson, will contribute
to the off-diagonal scaled correlation, CKπ and will reduce
the dynamical fluctuations. This will be different if charge
specific ratios such as δK+

δπ−
are considered. In this case only

resonances that decay in either two K+ mesons or two π−
mesons will contribute to the diagonal terms, while the K∗

0
mesons do contribute to the off-diagonal scaled correlation.
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Consequently, the fluctuations of the charge-specific ratio are
not necessarily the same as those of the ratio of sums of
negative and positive kaons/pions. This is also seen in the
data by the STAR Collaboration [7].

It may be instructive to discuss the preceding equations
in the context of a simple model system that contains nπ±

charged pions and nK± charged kaons, as well as nρ0 neutral ρ

mesons, nω ω mesons, nφ φ mesons, and nK∗
0

neutral K∗
0 and

nK̄∗
0

K̄∗
0 mesons. Via their decay channels, these resonances

will give rise to the various correlation terms in Eq. (12). In
reality, of course, there are many other resonances contributing
to σ and to the scaled correlations. The ones chosen here are
the lightest and most abundant ones that lead to correlations
and thus should provide a rough idea of how the different
terms contribute.1 A detailed investigation would involve a
full study in the hadron resonance gas model, which is not
the purpose of this article. In addition to correlations owing to
resonances, there are effects attributable to quantum statistics
[20,22], as already discussed. Here, for simplicity we work
with classical (Boltzmann) statistics. Noting that the branching
ratio BR(φ → K+ + K−) � 1

2 and BR(K∗
0 → K+ + π−) =

BR(K̄∗
0 → K− + π+) � 2

3 , the average particle numbers in
our simple model are given by

〈K〉 = 〈K+ + K−〉 = nK+ + nK− + nφ + 2
3

(
nK∗

0
+ nK̄∗

0

)
,

〈π〉 = 〈π+ + π−〉 = nπ+ + nπ− + 2nρ0 + 2nω

+ 2
3

(
nK∗

0
+ nK̄∗

0

)
,

and we obtain the following expression [15] for the (co)-
variances in Eq. (11):

〈(δK+)2〉 = nK+ + 1
2nφ + 2

3nK∗
0
,

〈(δK−)2〉 = nK− + 1
2nφ + 2

3nK̄∗
0
,

〈(δπ+)2〉 = nπ+ + nρ0 + nω + 2
3nK̄∗

0
,

〈(δπ−)2〉 = nπ− + nρ0 + nω + 2
3nK∗

0
,

〈δK+δK−〉 = 1
2nφ,

〈δπ+δπ−〉 = nρ0 + nω,

〈δK+δπ−〉 = 2
3nK∗

0
,

〈δK−δπ+〉 = 2
3nK̄∗

0
,

leading to [see Eq. (11)]

〈(δK)2〉 = 〈δK2
+ + δK2

− + 2(δK+δK−)〉 = 〈K〉 + nφ,

〈(δπ )2〉 = 〈δπ2
+ + δπ2

− + 2(δπ+δπ−)〉 = 〈π〉 + 2
(
nρ0 + nω

)
,

〈δKδπ〉 = 2
3

(
nK∗

0
+ nK̄∗

0

)
.

The corresponding scaled correlations [Eq. (5)] are

CKK = nφ

〈K〉 ,

Cππ = 2
(
nρ0 + nω

)
〈π〉 ,

1Here we ignore the charged K∗ mesons. Though they contribute via
the kaon and pion multiplicities, they do not introduce any correlations
because their decay channels always involve a neutral kaon or pion.

CKπ = 2

3

nK∗
0
+ nK̄∗

0√〈K〉〈π〉 . (13)

We find, that the scaled correlations in our simple model indeed
depend only weakly (if at all) on the multiplicity, because
both the number of resonances and the number of kaons and
pions are expected to scale roughly with the multiplicity or
volume of the system. In a thermal system at fixed temperature
they would be constant. Furthermore, as already discussed,
the correlations introduced via the resonances affect all three
scaled correlations. While the K∗

0 mesons control the off-
diagonal correlation term, 〈δKδπ〉, both the φ meson and the
ρ0 and ω contribute to the diagonal parts. The former reduce
the dynamical fluctuations and the latter increase them. Putting
everything together, the scaled variance [Eq. (2)] is given by

σ 2
K/π =

[
〈K〉 + 2nφ

〈K〉2
+ 〈π〉 + 2

(
nρ0 + nω

)
〈π〉2

− 2
2
3

(
nK∗

0
+ nK̄∗

0

)
〈K〉〈π〉

]
,

leading to

σ 2
dynamical =

[
nφ

〈K〉2
+ 2

(
nρ0 + nω

)
〈π〉2

− 2
2
3

(
nK∗

0
+ nK̄∗

0

)
〈K〉〈π〉

]
,

or in terms of the scaled correlations,

σ 2
dynamical =

(
1

〈K〉CKK+ 1

〈π〉Cππ− 2√〈K〉〈π〉CKπ

)
. (14)

Evaluating scaled correlations for our simple model [Eq. (13)]
for a temperature of T = 170 MeV and vanishing chemical
potential, we get

CKK = 0.1,

Cππ = 0.36,

CKπ = 0.13.

Obviously, in our simple model all the scaled correlations are
of the same order of magnitude. In addition, adding more
resonances will likely reduce Cππ because there are many
resonances decaying into only one pion, which add to the
denominator, 〈π〉, but not the numerator of Cππ . Though
it would be worthwhile to study these scaled correlation
coefficients in a full hadron gas model, here instead we want
to concentrate on simple phenomenological scaling rules, with
a special emphasis on the effect of a varying acceptance.

IV. PHENOMENOLOGICAL SCALING

In this section we want to discuss several ways to scale out
the multiplicity dependence of the dynamical fluctuations. Of
course, if all the relevant scaled correlations are known and if
they, as we argued, depend only weakly on the multiplicity
and beam energy, the appropriate scaling is simply given
by Eq. (14). This is equivalent to having full understanding
of all the sources for the fluctuations, in which case this
discussion is moot. In general, however, we do not have
a full understanding of all the sources contributing to the
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fluctuations. In this case the multiplicity/energy dependence
may provide additional information, such as signals for a
possible phase transition, etc. To extract this information, one
needs to understand “trivial” dependencies on the multiplicity,
as exhibited, for example, in Eq. (14). In the following we will
discuss several trivial scaling prescriptions that we believe
should be applied before conclusions about new phenomena
can be drawn. We will focus on the rather interesting energy
dependence of the K/π fluctuations, referring to Ref. [7]
for a discussion on the centrality dependence. In addition to
applying appropriate scaling prescriptions to the dynamical
fluctuations, it is essential to realize that the multiplicities that
control the fluctuations, such as 〈K〉 and 〈π〉, are those of the
identified particles and not the extrapolated total multiplicities
or midrapidity multiplicities. This is especially important when
studying the energy dependence of fixed-target data, as the
acceptance varies with beam energy. We will discuss this
point in detail after we have introduced the various scaling
prescriptions.

A. Multiplicity scaling prescriptions

As suggested in Ref. [15], one way to avoid any scaling
of the dynamical fluctuations with the number of accepted
particles would be to take the ratio of the measured scaled
variance σ 2 over that of mixed events σ 2

mixed,

f ≡ σ 2

σ 2
mixed

,

instead of the difference, as is done in the definition of σ 2
dynamical

[Eq. (1)]. This, however, has the disadvantage that correlations
and fluctuations owing to the the detector do not cancel out.
To remove the multiplicity dependence in the same fashion,
one can simply divide the dynamical fluctuations, σ 2

dynamical, by
that of uncorrelated particles, σ 2

uncorrelated [Eq. (3)], evaluated
for the same number of particles:

fPoisson ≡ σ 2
dynamical

σ 2
uncorrelated

, (15)

with

σ 2
uncorrelated = 1

〈K〉 + 1

〈π〉
for the case at hand. This scaling we will subsequently denote
as “Poisson” scaling, as we scale with the scaled variance of a
Poisson distribution based on the observed multiplicities. The
advantage of this scaling is that it is unbiased in the sense that
one does not need to make any assumptions about the relative
magnitude of the scaled correlations. Another unbiased scaling
would be to scale with the number of particles involved; that
is, Np = 〈K〉 + 〈π〉. This is similar in spirit of Ref. [7], where
a scaling with the number of charged particles was studied.
We shall henceforth refer to this as particle number scaling,

fparticle number = (〈K〉 + 〈π〉)σ 2
dynamical. (16)

Finally, the expression for σ 2
dynamical in terms of the scaled

correlations [Eq. (14)] suggests the scaling with the kaon or

pion number or with the geometric mean of both, depending
on which of the scaled correlations dominates:

fkaon number = 〈K〉σ 2
dynamical

f pion number = 〈π〉σ 2
dynamical

fgeometric =
√

〈K〉〈π〉σ 2
dynamical.

Because the number of kaons is much smaller than the number
of pions, at least for the lower energies the kaon-number
scaling is similar to the Poisson scaling,

σ 2
uncorrelated = 1

〈K〉 + 1

〈π〉 = 〈K〉 + 〈π〉
〈K〉〈π〉 � 1

〈K〉 ,

for 〈K〉 � 〈π〉. Alternatively, the preceding scaling relations
make it possible to relate the dynamical fluctuations at a
given center-of-mass energy with those at another energy.
Specifically, given the dynamical fluctuations at top RHIC
energies,

√
s = 200 GeV, the dynamical fluctuations at any

other center-of-mass energy is given by

(i) Poisson scaling,

σdynamical(
√

s) = σdynamical(200 GeV)

×
√

1
〈K〉 + 1

〈π〉
∣∣√

s√
1

〈K〉 + 1
〈π〉

∣∣
200 GeV

; (17)

(ii) particle number scaling,

σdynamical(
√

s) = σdynamical(200 GeV)

×
√〈K〉 + 〈π〉|200 GeV√〈K〉 + 〈π〉|√s

; (18)

(iii) NK scaling,

σdynamical(
√

s) = σdynamical(200 GeV)

√〈K〉|200 GeV√〈K〉|√s

;

(19)

(iv) Nπ scaling,

σdynamical(
√

s) = σdynamical(200 GeV)

√〈π〉|200 GeV√〈π〉|√s

;

(20)

(v) geometric scaling,

σdynamical(
√

s) = σdynamical(200 GeV)

× (〈K〉〈π〉)1/4|200 GeV

(〈K〉〈π〉)1/4|√s

. (21)

The resulting scaled dynamical fluctuations are shown
in Fig. 1, where we find that the energy dependence of
σ

K/π

dynamical is reasonably reproduced by any of the scaling
rules discussed previously. The values for the multiplicities
of identified particles, Refs. [3,7], as well as the results for the
rescaled fluctuations according to Eqs. (17)–(21) are given in
Table I. The essential point for the success of these scaling
rules is that we have used the number of identified kaons
and pions for the mean values, 〈K〉 and 〈π〉, entering the
scaling formulas [Eqs. (17)–(21)]. This leads to an additional
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FIG. 1. (Color online) Different scaling scenarios [Eqs. (17)–
(21)] based on the

√
s = 200 GeV data from STAR.

energy dependence, especially for the NA49 data. Because
NA49 is a fixed-target experiment, the actual acceptance and
thus the fraction of identified particles of the total number
of particles may vary considerably with the beam energy.
This is illustrated in Fig. 2, where we applied the same
scaling formulas [Eqs. (17)–(21)], but used the midrapidity
yields, dN

dy
(y = 0) for the respective mean particle numbers,

〈K〉 and 〈π〉 [23–25]. Obviously, the energy dependence
is not reproduced, especially for the highest SPS energies,√

s = 12.3 and 17.3 GeV.
Looking more closely at Fig. 1, we see that the STAR

data at
√

s = 62.4 GeV, which have a rather small error bar,
are not well reproduced. Instead of arguing for new physics
in this energy regime, we note that in Ref. [7] the two most
central values for σdynamical at this energy do not agree very well
with the systematics developed by the STAR Collaboration
either. As discussed in Sec. II, because 〈K〉/〈π〉 � 1 the
dynamical fluctuations are dominated by the kaons. Therefore,
the kaon number or Poisson scaling should work better than

10 100
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m
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Data (Na49 and STAR)
Poisson Scaling
Part. Number Scaling
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K
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Nπ Scaling

Geometric Scaling

FIG. 2. (Color online) Scaling with dN

dy
(y = 0) instead of the ac-

tual number of identified particles contributing to σdynamical. Otherwise
same scaling formulas are used as in Fig. 1.

pion-number or particle-number scaling. This is indeed the
case.

One may be tempted to use the quality of agreement of
the various scaling prescriptions to draw conclusions about
the importance of the various contributions to the dynamical
fluctuations. Given the experimental error bars and the quality
of agreement of the various scaling rules, the value of such
an exercise is not obvious. At least a global fit based on the
various scaling prescriptions needs to be carried out before any
more detailed conclusions about the strength of the various
contributions can be drawn.

Finally, let us comment on the fact that calculations based on
the UrQMD model do not reproduce the rise of the dynamical
fluctuations as observed by NA49, although the NA49 accep-
tance has been applied [3]. First of all, while UrQMD seems to
do reasonably well for midrapidity abundances, it is not clear
if UrQMD does reproduce the correct multiplicity of identified
particles within the acceptance, especially at small center-of-
mass energies. Second, it is not at all obvious, if UrQMD
contains indeed all the relevant sources for fluctuations and
correlations. For instance, quantum statistics is not taken into
account. The fact that the above scaling relations are able to
connect the dynamical fluctuations over a wide range of beam
energies does not say anything about the nature and origin of
these fluctuations except that they seem to be the same at all
energies. Though this considerably weakens the argument for
the K/π fluctuations being a signature for the QCD critical
point, the disagreement with UrQMD may very well point to a
yet-to-be-discovered new source of fluctuations/correlations.
This, however, requires that all trivial sources, such as, for
example, quantum statistics, are systematically taken into
account.

Finally, let us conclude this section by proposing an
observable, which should, to leading order, be independent
of the multiplicity. As already discussed at the beginning of
this section, the ratio

f ≡ σ 2

σ 2
mixed

10 100
E

c.m.
 [GeV]

0.8

0.85

0.9

0.95

1

1.05

1.1

f P
oi

ss
on

 +
1

K/π
p/π

FIG. 3. (Color online) The rescaled fluctuations fPoisson + 1 for
K/π (squares) and p/π fluctuations (circles).
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TABLE I. Table of the results for the various scaling scenarios Eqs. (17)–(21) using the STAR data at
√

s = 200 GeV as
reference. The data for identified multiplicities, 〈π〉ident. and 〈K〉ident., are from Refs. [3,7].

√
s (GeV) 〈π〉ident. 〈K〉ident. σdyn.(%) Geom. scaling NK scaling Nπ scaling Poisson scaling Part. Num. scaling fPoisson (%)

6.27 30.9 5.7 7.89 10.05 7.15 14.11 7.61 13.27 3.0
7.63 66.6 10.2 6.90 7.17 5.35 9.60 5.61 9.15 4.2
8.77 103.3 15.0 5.47 5.83 4.41 7.71 4.61 7.37 3.9

12.3 227.6 31.2 3.70 3.99 3.05 5.19 3.18 4.98 3.8
17.3 416.6 54.2 3.17 2.99 2.32 3.84 2.41 3.69 4.8
19.6 227.6 10.7 4.04 5.21 5.21 5.19 5.21 5.19 1.7
62.4 319.2 14.5 3.61 4.44 4.48 4.38 4.48 4.39 1.8

130 351.9 14.4 3.78 4.34 4.51 4.18 4.49 4.19 2.0
200 432.6 20.6 3.77 3.77 3.77 3.77 3.77 3.77 2.8

proposed in Ref. [15] has the disadvantage that correlations
and fluctuations attributable to the detector do not cancel out.
We, therefore, propose to study instead the ratio [Eq. (15)]

fPoisson ≡ σ 2
dynamical

σ 2
uncorrelated

,

or equivalently fPoisson + 1, which has the same limit as f in
the absence of correlations. We repeat that it is essential that
the preceding correction factor, 1/σ 2

uncorrelated, depends on the
number of identified particles obtained in the same acceptance
that is used for the fluctuations measurement. Consequently,
the correction factor will depend on the acceptance and
multiplicity precisely in such a way as to cancel the leading
acceptance and multiplicity dependence of σdynamical. In Fig. 3
we show fPoisson + 1 for the K/π fluctuations as well as for
the p/π fluctuations, which have been measured by NA49
as well. We see a rather weak energy dependence of the
K/π fluctuations, whereas the p/π fluctuations exhibit a
variation with energy. We note, however, that the energy
dependence of the p/π fluctuations in the scaled variable
is opposite to that in σ 2

dynamical. While σ 2
dynamical decreases

with energy, the magnitude of fPoisson increases, suggesting
in increase of the the strength of the correlations with energy,
which seems to level off at top SPS energies. This suggests
that the correlations, mostly owing to baryon resonances,
increase with energy up to

√
s � 15 GeV. Using the chemical

freeze-out parameters of Ref. [26] and assuming that only the
� resonance contributes to the scaled correlation coefficient
Cpπ , we find indeed an increase of the correlations from AGS
up to SPS energies.

V. CONCLUSIONS

In this article we have reviewed the multiplicity dependence
of particle ratio fluctuations. We have provided several scaling
prescriptions that correct for the inherent dependence of the
dynamical fluctuations σ 2

dynamical on the number of identified

particles. We have demonstrated that these scaling rules
naturally reproduce the trend seen in the energy dependence of
the kaon-to-pion fluctuations. Consequently, any interpretation
of the rise of σ

K/π

dynamical toward lower energies in the context
of a possible QCD critical point needs to account for the
trivial effect owing to the multiplicity dependence. We propose
that future studies of energy and/or multiplicity dependencies
should correct for the trivial multiplicity dependencies inherent
in σdynamical. In our view, the simplest and least-biased scaling is
the Poisson scaling, fPoisson, which could serve as a benchmark.
Of course, a more complete analysis of the energy dependence
would include a thorough global fit of the available data, which
we have not carried out in this article.

We have further applied the scaling to the p/π fluctuations
measured by the NA49 Collaboration. We find that the properly
scaled observable still exhibits a strong energy dependence,
which, however, is opposite to the unscaled one. In this context
it would be interesting to include the STAR data, which
unfortunately are not available in a final version yet.

Finally, we point out that any multiplicity scaling needs
to be based on the mean multiplicity of the actual identified
particles used for the fluctuation measurement instead of an
extrapolated multiplicity such as dN/dy.
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