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Bulk and shear viscosities of matter created in relativistic heavy-ion collisions
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We study the effects of shear and bulk viscosities in the hadronic phase on the expansion of the fireball and
on particle production in relativistic heavy-ion collisions. Comparing simulation with versus without viscosity
in hadronic matter, we find that elliptic flow observables are strongly dependent on dissipative effects in the late
stage. On the contrary, interferometry radii are sensitive, through early transverse flow, to the viscosity value at
high temperatures. We present first calculations including the effects of bulk viscosity on the hadronic phase and
on hadron emission. We find them to be important in obtaining a low freeze-out temperature consistent with the
measured transverse momentum spectra and elliptic flow of identified particles.
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I. INTRODUCTION

The matter created in relativistic heavy-ion collisions at
the BNL Relativistic Heavy Ion Collider (RHIC) is a dense,
strongly interacting fluid [1–4]. The observation of strong
collective transverse and elliptic flows is an indication that
the system behaves as a fluid. To model the dynamics of such
a system, relativistic hydrodynamics of a perfect fluid has
been successfully applied [5–11]. The fireball expands and
cools down, until some freeze-out temperature is reached, after
which particles are emitted from a freeze-out hypersurface.
Final particle spectra, to be compared with experimental data,
are obtained after resonance decays. Transverse momentum
spectra in the azimuthal angle at central rapidity are written as
an expansion in Fourier coefficients:

dN

d2p⊥dy
= dN

2πp⊥dp⊥dy
[1 + 2v2 cos(2φ) + · · ·]. (1)

The form of the observed transverse momentum spectra
dN/2πp⊥dp⊥dy and the elliptic flow coefficient v2 can be
described using a convolution of the thermal emission of
particles with the collective velocity of the fluid itself [12,13].

Because of the rapid expansion of the dense system created
in relativistic heavy-ion collisions, deviations from local
equilibrium can be important. For modeling of the expansion of
the fireball, this means that viscous relativistic hydrodynamics
should be used [14–19]. A consistent causal scheme requires
the use of second-order viscous equations [20]. Most of the
existing applications of viscous hydrodynamics in heavy-ion
collisions consider shear viscosity only. The value of the ratio
of the shear viscosity coefficient to the entropy density η/s is
an important characteristic of the strongly interacting medium
created in the course of the collision [21,22]. Extraction of
the shear viscosity coefficient from the measured elliptic flow
could provide valuable information [17,23]. The main source
of uncertainty in the analysis lies in the assumption of the initial
eccentricity of the source at a given impact parameter [23].
The factors influencing the initial shape of the source include
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different underlying models of the initial density, the color
glass condensate and Glauber models [24], the inclusion of
binary collision contributions [25], possible initial fluctuations
of the shape (standard versus participant eccentricity) [26,27],
and a core-corona effect, where only the dense part of the
source evolves collectively [28]. The elliptic flow of the bulk
of the matter is generated in the early stages of the collision.
However, the final elliptic flow of observed hadrons is modified
in the hadron gas phase of the expansion, owing to rescattering
and resonance decays [10,29–31]. This is true for the elliptic
flow of both charged particles and identified particles [10,32].
In particular, to reproduce the observed splitting between pions
and protons in the transverse momentum dependence of v2, a
late freeze-out or a hadronic cascade stage is required in the
evolution.

The role of dissipation in the hadronic phase must be as-
sessed before a reliable estimate of viscosity in the quark-gluon
plasma (QGP) phase can be made. Although the importance
of the difference in viscosity coefficients between the hadronic
and the plasma phases has been discussed [29], most of
the existing hydrodynamic simulations applied to heavy-ion
collisions use a constant η/s ratio throughout evolution. In
this paper we study the effect of viscosity in hydrodynamic
evolution below the transition temperature on the final elliptic
flow, spectra, and Hanburry Brown-Twiss (HBT) correlation
radii. In particular, we analyze the observable differences in
soft momentum observables between two extreme assump-
tions about the shear viscosity in the plasma phase (η/s = 0
or 0.16), after hadronic dissipation is taken into account. We
show that the effect of dissipation in the hadronic phase
strongly reduces the sensitivity of the elliptic flow measure
to the viscosity value in the early QGP phase of the expansion.
If the hadronic phase in the expansion is dilute enough, a
cascade afterburner can be used after an early freeze-out of
the fluid [31,33–35]. Alternatively, a longer hydrodynamic
evolution can be used with a hadronic equation of state below
the transition temperature. This paper studies the effect of
a longer hydrodynamic evolution in the hadronic phase using
viscous hydrodynamics. We use a moderate value of η/s = 0.1
in the hadronic phase and a bulk viscosity ζ/s = 0.03–0.04.
We show that even such low viscosity values in hydrodynamic
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TABLE I. Viscosity parameters used in the four calculations
presented in the paper. The last column lists the freeze-out tem-
perature that reproduces the best pion spectra in each case.

Acronym ηHG/s ηQGP/s TF (MeV)

Ideal fluid 0 0 140
vHG 0.1 0 150
vQGP 0 0.16 130
vHG + vQGP 0.1 0.16 135

evolution in the late phase of the collision are important for
the final elliptic flow and that, with such assumptions, we can
reproduce many experimental observations. We also calculate
the HBT radii after a hydrodynamic evolution with different
viscosities in the QGP and hadron gas phases.

II. SHEAR AND BULK VISCOSITIES

Besides the ideal-fluid expansion, we consider three other
scenarios for shear and bulk viscosities in hot matter. The
general idea is that the shear viscosities in the hadronic
and QGP phases could be very different. Moreover, if the
shear viscosity in the hadronic phase is nonzero, it could be
accompanied by non-negligible bulk viscosity. The formula
for the temperature dependence of the ratio of shear viscosity
to entropy is written in the form

η

s
(T ) = flow(T )

ηHG

s
fHG(T ) + [1 − fHG(T )]

ηQGP

s
, (2)

where the function fHG(T ) = 1/{exp[(T − Tc)/�T ] + 1}
cuts off the hadron gas viscosity above Tc = 170 MeV
(�T = 8 MeV). flow(T ) = 1/{exp[(Tlow − T )/�T ] + 1} is
introduced to cut off viscosity effects below Tlow = 80 MeV
to improve numerical stability. Depending on the values of
the viscosities in the hadronic matter and in QGP chosen, we
consider four different scenarios (Table I). The temperature
dependence of the viscosities corresponding to the viscous
scenarios in Table I are shown in Fig. 1. The scenario denoted
vHG assumes that only viscosity in the hadronic phase is
nonzero. vQGP is taken for illustration to show how the
dissipative phenomena in the plasma alone could influence
the final observables. The scenario vQGP + vHG is the most

vQGP
vQGP vHG

vHG
ζ s HG
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FIG. 1. (Color online) Temperature dependence of the ratio of
the shear and bulk viscosities to the entropy. Solid, dotted, and dash-
dotted lines represent the shear viscosity for the vHG, vQGP, and
vQGP + vHG scenarios, respectively. The dashed line represents the
bulk viscosity, effective only in the vHG and vQGP + vHG scenarios.

general (with a suitable choice of η HG and ηQGP). The two
scenarios vHG and vQGH + vHG differ by the choice of the
shear viscosity coefficient in the plasma. Comparison of these
two scenarios was one of the motivations of this investigation,
namely, to test how sensitive the final observables are to the
assumed viscosity in the plasma phase (from η/s = 0 to η/s =
0.16), when dissipation in the hadronic phase occurs afterward.
These two scenarios represent two extreme assumptions on the
temperature dependence of the ratio η/s, that is, increasing
or decreasing when switching from QGP to hadronic matter.
Existing viscous hydrodynamic simulations assume a constant
η/s as a function of temperature, and microscopic estimates
suggest a (strong) increase in η/s when the temperature is
decreased. We test a scenario with a moderate increase in
η/s at Tc, and another, extreme scenario where the reverse
happens, and show that the results are in fact very similar and
that reproducing experimental data requires a small value of
ηHG for any QGP viscosity.

The near-equilibrium regime in a dilute gas of interacting
hadrons can be described using the Boltzmann equation. Esti-
mates of shear viscosity with hadronic cross sections or chiral
models lead to a large value η/s � 1 for temperatures T �
150 MeV [36–40]. The large value η/s � 1 in the hadronic
phase seems to contradict existing fits of the data using viscous
hydrodynamics, where η/s = 0.08–0.16, depending on the
initial eccentricity [17]. Also, such a large value of the viscosity
coefficient would simply mean that viscous hydrodynamics
cannot be applied. The shear viscosity can be significantly
reduced if the number of hadronic states increases near Tc [41].
At temperatures close to the transition temperature, description
of the dense medium using a transport equation approach
involving hadrons with vacuum properties could break down.
On the contrary, in microscopic models the bulk viscosity is
estimated to be much smaller, ζ/s � 0.03–0.05 [41,42].

In this paper, we use relativistic viscous hydrodynamics
to model the dense hot medium on the low-temperature side
of the transition temperature. The equation of state of matter
for T < Tc is approximated as the hadron gas equation of
state involving 371 known hadrons and resonances [43]. This
equation of state can be smoothly connected to the equation
of state calculated in lattice QCD at higher temperatures. The
final equation of state leads to a correct description of spectra
and HBT radii in ideal-fluid hydrodynamics [11,44]. Shear
viscosity in the hadronic phase is treated as a free parameter
in our calculations. A simple estimate of the viscosities can
be obtained in the relaxation time approximation [45–47].
Starting from the Boltzmann equation for the phase-space
distribution distribution fn of particle species n,

pµ∂µfn = −pµuµ(x)δfn

τHG
, (3)

where δfn = fn − f 0
n is the deviation from the equi-

librium (Bose-Einstein or Fermi-Dirac) distribution f 0
n =

1/ exp[pµuµ(x)/T ] ± 1, uµ(x) is the local fluid four-velocity,
and τHG is the relaxation time (the same for all particle species).
In the local rest frame we have

δfn = τHG

T E
f 0

n

(
1 ± f 0

n

)(
pipj∂iv

j − c2
s E

2∂iv
j
)
. (4)
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Calculating the stress corrections to the energy momentum
tensor,

δT µν = πµν + 
�µν =
∑

n

∫
d3p

(2π )3E
pµpνδfn, (5)

where �µν = gµν − uµuν , we get, for the stress tensor in the
local rest frame,

πij = τHG

T

∑
n

∫
d3p

(2π )3

pipjpkpl

E2
f 0

n

(
1 ± f 0

n

)
σ kl (6)

and


 = τHG

T

∑
n

∫
d3p

(2π )3

m3

3E2
f 0

n

(
1 ± f 0

n

) (
p2

3E
− c2

s E

)
∇u,

(7)

with

σαβ = 1
2

(∇αuβ + ∇βuα − 2
3�αβ∂µuµ

)
. (8)

Comparing with the first-order expressions for the stress tensor
πµν = 2ησµν , 
 = −ζ∂µuµ, we have

η = 1

15T

∑
n

∫
d3p

(2π )3

p4

E2
f 0

n

(
1 ± f 0

n

)
(9)

and

ζ = τHG

3T

∑
n

∫
d3p

(2π )3

m2

E
f 0

n

(
1 ± f 0

n

) (
c2
s E − p2

3E

)
. (10)

In the modeling of heavy-ion collisions we are interested
in the properties of the hadronic matter in a temperature
range from the freeze-out temperature TF > 130 MeV to the
transition temperature Tc = 170 MeV. Performing the sums
over the resonances used in the calculation of the hadronic
matter equation of state, that is, the resonances listed in the
SHARE program [48], we can relate the viscosity coefficient
to the relaxation time. Assuming a constant shear viscosity-
to-entropy ratio η/s = 0.1 between 80 and 170 MeV, the
relaxation time τ HG changes weakly in the range 0.8–1.2 fm/c.
We could assume instead a different dependence of η/s or
of τHG on the temperature, but these details do not matter
much. It turns out that it is the value at freeze-out that is
the most important. Our choice corresponds to τHG � 1 fm/c

at T = 150 MeV, but other values of the parameters could
be tested in more extensive sets of model calculations. The
assumed small hadronic shear viscosity is not motivated by
microscopic model estimates, which would suggest a larger
value. It is, rather, motivated by existing viscous hydrodynamic
calculations [17,23], indicating that the average viscosity in the
hadronic and QGP phases is small.

The bulk viscosity of the hadronic matter at high density
is another not very well controlled parameter. It is expected
that in the deconfined phase the bulk viscosity coefficient is
negligible. On the contrary, a sharp rise in the bulk viscosity
has been predicted [49] around Tc. If the effect of the bulk
viscosity at Tc is large, the flow could be modified [50,51]
or could even become unstable, leading to fragmentation of
the fireball [52]. On the contrary, the rise in the bulk viscosity
near Tc could be accompanied by critical slowing-down, which

leads to an increase in the dynamical bulk viscosity relaxation
time τ
, delaying the onset and effectively diminishing bulk
viscosity effects. (2 + 1)-dimensional hydrodynamic simula-
tions indicate that by the time the expanding system reaches
Tc, a substantial amount of transverse flow has already set
in [50], the effect of the rising bulk viscosity at the critical
temperature is reduced, and the agreement of the calculation
with the data is not spoiled. In this paper we do not take into
account the bulk viscosity near the phase transition.

In the hadron gas phase the bulk viscosity can be quite
substantial, as particle masses become comparable to the
temperature. Bulk viscosity can be estimated in the relax-
ation time approximation from Eq. (10). The resulting ζ/s,
corresponding to ηHG/s = 0.1, is shown in Fig. 1. Because
the relaxation time formulas use physical hadrons, we restrict
the temperature range for the calculation in Eqs. (9) and (10)
to the hadronic phase, taking η

s
(T ) = flow(T ) ηHG

s
fHG(T ). The

shear viscosity at higher temperatures, [1 − fHG(T )] ηQGP

s
, is

not generated through hadronic processes. In this paper we are
interested in the effects of bulk viscosity in the late stages, and
therefore we do not take into account possible bulk viscosity
of nonhadronic origin. At temperatures around 150 MeV we
have ζ/s � 0.035. For our estimate of viscosities using a
relaxation time formula with τHG of the order of 1 fm/c,
we obtain a bulk viscosity similar to those in microscopic
models [42], but the shear viscosity is significantly smaller
than in most estimates [36–40]. To check this assumption we
also performed a calculation with the same bulk viscosity but
with ηHG/s increased to 0.24. This would mean that relaxation
time formulas do not apply. We find that the assumed value of
the shear viscosity ηHG/s = 0.24, which is still smaller than
microscopic estimates, already gives overly strong suppression
of the elliptic flow.

Equation (3) defines nonequilibrium corrections to the
distribution function. The corrections from bulk viscosity
cannot be taken in the form of Grad’s expansion [53]. From
Eq. (3) we get, for the corrections from bulk viscosity 
 [47],

δf bulk
n = Cbulkf

0
n

(
1 ± f 0

n

) (
c2
s E − p2

3E

)

 (11)

in the local rest frame, with

1

Cbulk
= 1

3T

∑
n

∫
d3p

(2π )3

m2

E
f 0

n

(
1 ± f 0

n

) (
c2
s E − p2

3E

)
.

(12)

The deviation from equilibrium owing to the stress corrections
from shear viscosity are taken in the form [15,54]

δfshear = f 0
n

(
1 ± f 0

n

) 1

2T 2(ε + p)
pµpνπµν, (13)

with ε the local energy density and p the pressure. It must
be noted that more general forms of the nonequilibrium
corrections are possible for multicomponent systems or for
species-dependent relaxation times [55].
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III. VISCOUS HYDRODYNAMIC EVOLUTION

The hydrodynamic equations,

∂µT µν = 0, (14)

are solved in 2 + 1 dimensions, assuming boost invariance in
the longitudinal direction. The energy momentum tensor,

T µν = (ε + p)uµuν − pgµν + πµν + 
�µν, (15)

is composed of the ideal-fluid part and the stress shear and
bulk viscosity corrections π and 
. The viscous corrections
in the second-order Israel-Steward viscous hydrodynamics are
solutions of the dynamical equations [20],

�µα�νβuγ ∂γ παβ = 2ησµν − πµν

τπ

− 1

2
πµν ηT

τπ

∂α

(
τπuα

ηT

)

(16)

and

uγ ∂γ 
 = −ζ∂γ uγ − 


τ


− 1

2



ζT

τ


∂α

(
τ
uα

ζT

)
. (17)

We take τπ = 3η/T s for the relaxation time and assume τ
 =
τπ . The initial conditions are πxx(τ0) = πyy(τ0) = 2η/3τ0,
πxy(τ0) = 0, and 
(τ0) = 0. The details of the choice of
initial conditions and τ
 are not crucial, as the bulk viscosity
correction rapidly becomes close to the Navier-Stokes value,
and at any rate, its influence on the dynamics itself is small.

For the energy density profile in the transverse (x-y) plane
at impact parameter b, we use the Glauber model density,

ε(x, y, b) = ε0
(1 − α)ρWN(x, y, b) + 2αρB(x, y, b)

(1 − α)ρWN(0, 0, 0) + 2αρB(0, 0, 0)
, (18)

where ρWN and ρB are the densities of wounded nucleon and
binary collisions, respectively, and α = 0.145. The optical
Glauber model densities are obtained with the Wood-Saxon
densities for the Au nuclei, ρWS(r) = ρ0/{exp [(r − Ra)/a] +
1}(ρ0 = 0.169 fm−3, Ra = 6.38 fm, a = 0.535 fm), and the
inelastic cross section is 42 mb. The energy density at
the center of the fireball ε0 for b = 0 is adjusted to reproduce
the particle multiplicity in the most central (0%–5%) collisions
in ideal hydrodynamic simulations. The initial density for
other centralities is taken from formula (18) without changing
any parameters. In viscous hydrodynamic calculations the
initial density is rescaled to take into account the additional
entropy produced. Figure 2 shows the entropy production
in the different hydrodynamic evolutions. The entropy is
normalized to the entropy in the ideal-fluid simulation. In
viscous hydrodynamics the entropy increases with time, and
we chose to normalize the entropy in all calculations to the
same value at τ − τ0 = 6 fm/c. This procedure yields, after
hadronization, similar particle multiplicities in all calculations.
Entropy is produced mainly in the QGP phase, �S/S � 20%,
whereas in the hadronic matter its relative increase is only
2%–3%.

The freeze-out temperature is fixed to reproduce the trans-
verse momentum spectra of pions in central collisions. The
lifetime of the fireball is determined by the initial temperature,
the expansion rate, and the freeze-out temperature. The
interplay of those effects makes the lifetime in the ideal-fluid

vQGP

vQGP vHG

vHG ideal fluid

0 2 4 6

0.8

0.9

1.

t t0 fm c

S
t

S
id

t 0

FIG. 2. (Color online) Time dependence of the entropy scaled
by the initial entropy in the ideal-fluid calculation. Solid, dashed,
dash-dotted, and dashed lines represent results from the ideal-fluid,
vQGP, vQGP + vHG, and vHG calculations, respectively.

and vQGP + vHG scenarios very similar. The detailed shape
of the freeze-out hypersurface depends, however, on the
amount of the accumulated transverse flow (Fig. 3). This has
consequences on the resulting HBT radii and, in particular, on
the ratio Rout/Rside.

IV. RESULTS

Transverse momentum spectra of pions are shown in
Fig. 4. The freeze-out temperature is adjusted for each of
the considered scenarios to reproduce pion spectra in the
most central collisions for p⊥ < 1.2 GeV/c. In the ideal-fluid
expansion, reducing the freeze-out temperature means that
the fluid expands longer and more transverse flow builds
up. This effect dominates over the reduction of the final
temperature and the spectra become harder. For the chosen
initial conditions, TF = 140 MeV is optimal for the ideal fluid
expanding from τ0 = 0.6 fm/c. Shear viscosity corrections
in the plasma phase (scenario vQGP) result in additional
transverse pressure in the early stage of the expansion.
To reproduce the observed pion spectra the evolution must
be shortened, giving TF = 150 MeV. The situation is very
different if dissipative corrections in the hadronic phase are
allowed for (scenario vHG or vQGH + vHG). Bulk viscosity

vQGP

vQGP vHGvHG

ideal fluid

0 2 4 6 8 10
1

5

9

13

x fm

t
fm

c

FIG. 3. (Color online) Freeze-out hypersurfaces T (t, x, y = 0) =
TF at impact parameter b = 2.2 fm. Solid, dashed, dash-dotted,
and dashed lines represent hypersurfaces in the ideal-fluid, vQGP,
vQGP + vHG, and vHG calculations, respectively.
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FIG. 4. (Color online) π+ transverse momentum spectra for
Au-Au collisions at

√
s = 200 GeV and centralities 0%–5%, 5%–

10%, 10%–15%, 15–20%, 20%–30%, 30%–40%, and 40%–50%
(successively scaled down by powers of 0.1). Solid, dotted, dashed,
and dash-dotted lines represent the results of ideal hydrodynamic,
vQGP, vHG, and vQGP + vHG calculations, respectively. Data are
from the PHENIX Collaboration [56].

leads to a substantial softening of light-particle spectra, so
hydrodynamic evolution must be effective for a longer time
to reproduce the p⊥ spectra of pions. Depending on the
amount of collective transverse flow accumulated in the early
phase of the dynamics, it results in freeze-out temperatures
of 130–135 MeV. Bulk viscosity corrections [Eq. (12)] grow
with the momentum of the particle and eventually become
as large as the equilibrium distribution f 0, which means that
the formalism breaks down. Using the average bulk viscosity
corrections at the freeze-out hypersurface, we estimate that
viscous hydrodynamics with statistical emission of particles
breaks down for pion momenta of 1.5 GeV/c in the fluid rest
frame. Pion spectra at large transverse momenta cannot be
reliably described in the formalism used in this work. After
adjusting the freeze-out conditions to reproduce pion spectra at
soft momenta in central collisions, all observables at different
centralities are calculated without modifying the parameters of
the model. We observe that pion spectra at different centralities
are well described for p⊥ < 1.2 GeV/c.

In Figs. 5 and 6 we show the spectra of K+ and protons at
different centralities. A first observation is that the slopes of
the spectra for heavier particles obtained in scenarios with
or without bulk viscosity do not differ as much as those
for pions. This is a consequence of the mass dependence of
the bulk viscosity corrections in Eq. (12). Kaon production
is overpredicted by hydrodynamic calculations in peripheral
collisions, which may be a manifestation of the partial equili-
bration of strangeness [58] or of a nontrivial dependence of the
thermal source size on centrality [59,60]. The effective slopes
of proton spectra for p⊥ < 2 GeV/c are well reproduced by
all the calculations. The multiplicity of protons, reflected in
the normalization of the spectra in Fig. 6, is better described if
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p
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FIG. 5. (Color online) Same as Fig. 4 but for K+.

bulk viscosity is present. The chemical freeze-out temperature
fitted from the particle number ratios is 165 MeV [61,62],
significantly higher than the freeze-out temperatures we use.
Simulations where particles are emitted without bulk viscosity
corrections (ideal fluid or vQGP) underpredict the number of
heavier particles. Bulk viscosity corrections reduce the number
of light particles and lead to an increase in heavy-particle
production, resulting in an effective chemical nonequilibrium
at freeze-out. Consequently, simulations including moderate
bulk viscosity in the hadronic stage reproduce the proton
number despite the lower freeze-out temperatures.

An important characteristic of the dynamics and of the
equation of state of the fireball is the elliptic flow coefficient
[6]. Most of the elliptic flow is created in the early phase of the
expansion, and so the flow probes pressure gradients at that
time. However, at densities where freeze-out occurs the elliptic
flow is still increasing during the hydrodynamic evolution.
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FIG. 6. (Color online) Same as Fig. 4 but for protons.
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FIG. 7. (Color online) Elliptic flow coefficient for π+ and K+

(triangles and solid lines) and for protons (circles and dashed lines).
Thin lines are for the ideal-fluid model (all panels) and thick lines are
for the various viscous hydrodynamic calculations; data are from the
PHENIX Collaboration [57]. Upper, middle, and lower panels show
results obtained from the vQGP + vHG, vHG, and vQGP scenarios,
respectively.

Extracting the shear viscosity from the comparison of model
calculations to the data requires a very precise, independent
determination of the freeze-out time. A strong constraint on the
final density at freeze-out is given by the transverse momentum
dependence of v2 for different species [32] and, in particular,
the difference in the flow of pions and protons. This picture
is more complicated if viscosity corrections at freeze-out
are important. First, nonequilibrium corrections from shear
viscosity could in principle be very different for different
particles [55], and second, bulk viscosity corrections [Eq. (12)]
depend on the particle mass.

In Fig. 7 we show the momentum-dependent elliptic flow
coefficient for light mesons and protons. The ideal-fluid
simulation (thin lines in all panels) does not reproduce the
meson-proton splitting present in the data. The elliptic flow of
protons is too large. The same is true for the scenario where
the viscosity is negligible in the hadronic phase (lower panel).
Nonequilibrium corrections at freeze-out (from both shear and
bulk viscosities) are essentially zero in that case. Shear vis-
cosity in the plasma phase changes the flow pattern, reducing
velocity gradients and leading to a decrease in the final elliptic
flow. Meson and proton elliptic flow is reduced in a similar way
by the shear viscosity, and we cannot get enough meson-proton
splitting. The situation is very different if we allow for viscosity
corrections in the final stage of the expansion. The most
important difference comes from corrections to the distribution

functions at freeze-out. Shear viscosity corrections lead to
an additional reduction in the elliptic flow. However, bulk
viscosity corrections reduce the transverse momenta of light
mesons, and the differential elliptic flow in p⊥ is increased
(two upper panels in Fig. 7). The same effect was noted in
the estimates of bulk viscosity corrections at freeze-out in
Ref. [53]. Bulk viscosity corrections are much smaller for
heavy particles and are not sufficient to increase the value of
the elliptic flow for protons. This and the lower freeze-out
temperatures in the scenarios with hadronic bulk viscosity
bring the species-dependent elliptic flow to agreement with
the data.

An interesting experimental observation is the mass scaling
of identified particle elliptic flow in transverse mass [63]
at small momenta. The mass ordering of the elliptic flow
indicates a hydrodynamic origin of the observed flow. In
Fig. 8 we present the elliptic flow as function of transverse
mass for several identified hadrons. The results for different
centralities are scaled by the initial eccentricity of the fireball.
The results in different panels correspond to different scenarios
for the viscosities. The best agreement with the transverse
mass scaling is seen in the calculations with low freeze-
out temperatures, vHG or vQGP + vHG. Our calculations
in the ideal-fluid or vQGP scenarios cannot reproduce the
observed mass ordering. It must be noted that ideal-fluid
simulations with low freeze-out temperatures correctly capture
the hydrodynamic origin of the mass ordering of the flow [65].
Similar results are obtained in hydrodynamics with shear
viscosity for one value of η/s [66].

The average elliptic flow coefficient of charged particles
at different centralities is plotted in Fig. 9. The ideal-fluid
calculation overpredicts the elliptic flow in peripheral colli-
sions. The discrepancy increases with the impact parameter,
indicating that corrections to the ideal-fluid dynamics should
be more important in collisions where the hadronic phase is
relatively more important. Comparing the three calculations
with viscosities, we find that adding more dissipative mecha-
nism reduces the final elliptic flow. However, the differences
between the two scenarios with or without viscosity in the
plasma phase are not very big. Most of the effect of the
reduction in the azimuthal asymmetry of the flow comes from
the hadronic dissipation. One must conclude that the sensitivity
of the elliptic flow to the shear viscosity in the early phase is
strongly reduced if additional dissipation occurs below Tc. It
must be stressed that the assumed strength of shear viscosity in
the hadronic medium is small. We also performed simulations
in a scenario with a larger value of the viscosity in the hadron
phase, ηHG/s = 0.24 with ηQGP/s = 0.08, and a freeze-out
temperature of 135 MeV. The result is plotted in Fig. 9 (solid
line with squares); the elliptic flow of charged particles is below
the experimental values, which means that the assumed shear
viscosity is too large. This is in line with previous calculations
using a constant value of shear viscosity, where the simulations
with η/s = 0.08 best reproduce the data [67].

Figure 10 presents a direct comparison of the elliptic
flow coefficient as a function of transverse momentum for
different choices of the temperature dependence of the shear
viscosity-to-entropy density ratio. We take three different
values of the QGP viscosity, ηQGP/s = 0, 0.1, and 0.16, and
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FIG. 8. (Color online) Elliptic flow as a function of transverse
mass from hydrodynamic calculations (scaled by the initial eccen-
tricity in the calculation; lines) and observed experimentally (scaled
by the participant eccentricity; symbols) for K0

S (triangles and dotted
line), � + �̄ (circles and short-dashed line), and � + �̄ (squares
and solid line), all at centralities 10%–40% (STAR Collaboration
data [63]), for π+ at centralities 10%–20% (diamonds and long-
dashed line) (PHENIX Collaboration data [57]), and for protons
at centralities 20%–40% (inverted triangles and dash-dotted line)
(STAR Collaboration data [64]).

ηHG/s = 0.1. This means that we check three qualitatively dif-
ferent scenarios, with η/s increasing, constant, or decreasing
when the temperature drops below Tc. The first observation
is that the differences among the three calculations are small;
moreover, increasing ηQGP/s always leads to a decrease in
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vQGP+vHG

vHG

vQGP

ηQGP/s=0.08, ηHG/s=0.24

FIG. 9. (Color online) Elliptic flow coefficient for charged par-
ticles for different centralities. Stars represent ideal-fluid results;
inverted triangles, triangles, and circles represent the results of
vQGP, vHG, and vQGP + vHG viscous hydrodynamic calculations,
respectively. The solid line with squares denotes the results of
calculations using ηHG/s = 0.24, ηQGP/s = 0.08, and the same bulk
viscosity as in the scenarios vHG and vQGP + vHG. Data are from
the STAR Collaboration [64].

the elliptic flow. We find a satisfactory description of the
data with the small value of ηHG/s = 0.1. For a calculation
using a minimal QGP shear viscosity, ηQGP/s = 0.08, and a
larger value of ηHG = 0.24, the calculated final elliptic flow
of mesons is significantly below the data. Increasing ηQGP/s

leads to a decrease in v2; also, increasing ηHG/s from 0.1 to
0.24 gives a strong reduction in the elliptic flow. Comparing
these results to experimental data, we obtain the following
conclusions: viscosity effects both in the plasma and in the
hadronic phase lead to a decrease in v2; when choosing a small
value of ηQGP/s = 0.08–0.1, the best results are obtained for
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FIG. 10. (Color online) Elliptic flow of mesons (triangles) and
protons (circles) as a function of transverse momentum [57],
compared to model calculations. Three simulations assuming an
increasing shear viscosity-to-entropy density ratio with decreasing
temperature (vHG; ηQGP/s = 0, ηHG/s = 0.1; dashed lines), a con-
stant one (ηQGP/s = 0.1, ηHG/s = 0.1; dashed-dotted lines), and a
decreasing one (vQGP + vHG; ηQGP/s = 0.16, ηHG/s = 0.1; solid
lines) are presented. Also shown are results for a calculation with
a minimal QGP viscosity ηQGP/s = 0.08 and a moderately large
hadronic viscosity ηHG/s = 0.24 (dotted lines). Thick and thin lines
represent meson and proton elliptic flow, respectively.
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FIG. 11. (Color online) HBT radii for Au-Au collisions at
centrality 0%–5%. Ideal-fluid calculation (solid lines), viscous hy-
drodynamic models vQGP + vHG (dash-dotted lines), vHG (dashed
lines), and vQGP (dotted lines), and STAR Collaboration data [68]
(squares) are shown.

a small value of ηHG/s = 0.1 (and not 0.24); even if the QGP
viscosity is zero, the preferred value of the hadronic viscosity
is small.

We calculate HBT correlation radii of pions emitted from
the fireball in the most central collisions. The two-particle
correlation function sums all pairs of identical pions with
interference effects [69,70]. For a given total momentum of the
pair k⊥, the three-dimensional correlation function in the pion
relative momentum is fitted with the Bertsch-Pratt formula
[71,72]. All the scenarios of the hydrodynamic expansion
studied lead to HBT radii that are quite close to the data
(Fig. 11). It is a consequence of the hard equation of state used,
with only a minimal softening around Tc [11]. The scenarios
differ by the freeze-out temperatures; a higher freeze-out
temperature means a shorter lifetime and hence smaller values
of the radii. Rside, measuring the geometrical size of the system
at freeze-out, decreases monotonically with increasing TF . The
description of the experimentally observed small value of the
ratio Rout/Rside requires the use of a hard equation of state, an
early initial time of the expansion, dissipative effects, and/or a
Gaussian initial profile [11,73]. Ideal-fluid expansion and the
expansion with only hadronic dissipation (solid and dashed
lines in Fig. 11) give similar results for Rout/Rside. The same is
true for scenarios with the same viscosity in the early stage but
different hadronic dissipation (dotted and dash-dotted lines

overlap in the bottom panel in Fig. 11). We can conclude
that the ratio Rout/Rside is sensitive to the early buildup of
the transverse flow and is not sensitive to viscosity effects at
freeze-out. This is in contrast to the elliptic flow, which is
sensitive to dissipative effects at all stages of the expansion.
We cannot reproduce exactly the observed HBT radii; this
may indicate that the amount of the early transverse flow in
the expansion is too low.

V. CONCLUSIONS

We present a study of viscosity effects at different stages of
the expansion of the fireball created in relativistic heavy-ion
collisions. We introduce the possibility of having two different
shear viscosities in the QGP and hadronic phases of the matter.
Assuming zero shear viscosity or η/s = 0.16 in the plasma, we
test its impact on the final observables. The sensitivity of the
final elliptic flow observables to the early viscosity is reduced
by the dissipative effects in the hadronic phase. A crucial effect
is the introduction of a moderate value of the bulk viscosity
in the hadronic medium. Such an assumption is natural in a
system with partial equilibration and finite particle masses.
The bulk and shear viscosities are treated as free parameters.
We use, however, a relaxation time approximation to relate
the values of the shear and bulk viscosities in the hadron
gas. A moderate value of the bulk viscosity, ζ/s = 0.03–0.04,
corresponds to a relatively small value of the shear viscosity,
η/s = 0.1. Bulk viscosity in the late stage leads to a shift of the
freeze-out temperature to a value allowing for a satisfactory
description of the mass ordering of the elliptic flow of identified
hadrons without spoiling the agreement in the HBT radii and
transverse momentum spectra.

From the simulations using Glauber model initial densities
presented here, we can conclude that the shear viscosity in
the hadronic phase is in the range 0.1 < ηHG/s < 0.24. Shear
viscosity in the plasma phase leads to a decrease in elliptic flow,
but it is the value of η at late stages that is the most important for
the suppression of elliptic flow in all cases, ηQGP/s < ηHG/s,
ηQGP/s = ηHG/s, or ηQGP/s > ηHG/s. Even taking ηQGP = 0
leads to a preferred value of ηHG/s = 0.1 that best reproduces
the data. Therefore, our results pointing to a small value of
the shear viscosity in the hadronic phase are consistent with
previous calculations using the same small value of η in the
plasma and in the hadron fluids.

The extracted shear viscosity is significantly below the
microscopic estimates of the shear viscosity in the hadronic
matter, ηHG/s � 1. Using η/s � 1 in hydrodynamic simula-
tions with the high velocity gradients in heavy-ion collisions
is beyond the range of applicability of the Israel-Steward
formalism; it would lead to severe numerical instabilities and is
disfavored by elliptic flow data. The mechanism that prevents
the expected large shear viscosity in the hadronic matter
to become effective in the viscous hydrodynamic evolution
of heavy-ion collisions is not clear to the author. Before
concluding that the hadronic matter is indeed a low-viscosity
fluid, it should be checked whether or not the difference
between transport model estimates and hydrodynamics is
caused by a deficiency of the sudden freeze-out procedure used
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in the calculations [74] or a strong increase in the relaxation
time τπ below Tc, analogous to what is discussed for bulk
viscosity in Ref. [50].

We find that the elliptic flow coefficient is significantly
reduced owing to viscosity effects both in the plasma and in
the hadronic matter. This means that the extraction of the shear
viscosity in QGP is difficult and can be reliably addressed only
after precisely constraining the freeze-out conditions. By this
we mean determining both the freeze-out temperature and the
nonequilibrium effects in the final state. It is interesting to note
that the HBT radii have a simple dependence on the choice of
the freeze-out. The radii increase for a longer lifetime of the
system, caused by a lower freeze-out temperature. The ratio
Rout/Rside is almost insensitive to the freeze-out condition,
but it depends on the amount of transverse flow generated in
the early phase. One of the mechanisms increasing the early

transverse flow is caused by the shear viscosity in the plasma
phase.

Let us close by repeating the observation that the intro-
duction of bulk viscosity in the hadronic medium changes the
freeze-out conditions in the hydrodynamic expansion of the
fireball. This allows for a good and simultaneous description
of transverse momentum spectra, identified particle elliptic
flow, and HBT radii.
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[59] P. Bożek, Acta Phys. Pol. B 36, 3071 (2005).
[60] F. Becattini and J. Manninen, Phys. Lett. B 673, 19 (2009).
[61] P. Braun-Munzinger, D. Magestro, K. Redlich, and J. Stachel,

Phys. Lett. B 518, 41 (2001).
[62] W. Florkowski, W. Broniowski, and M. Michalec, Acta Phys.

Pol. B 33, 761 (2002).
[63] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 95,

122301 (2005).

[64] J. Adams et al. (STAR Collaboration), Phys. Rev. C 72, 014904
(2005).

[65] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey, and Y. Nara,
Phys. Rev. C 77, 044909 (2008).

[66] A. K. Chaudhuri, arXiv:0909.0376 [nucl-th] (2009).
[67] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915

(2008).
[68] J. Adams et al. (STAR Collaboration), Phys. Rev. C 71, 044906

(2005).
[69] A. Kisiel, W. Florkowski, W. Broniowski, and J. Pluta, Phys.

Rev. C 73, 064902 (2006).
[70] A. Kisiel, Braz. J. Phys. 37, 917 (2007).
[71] S. Pratt, Phys. Rev. D 33, 72 (1986).
[72] G. F. Bertsch, Nucl. Phys. A 498, 173c (1989).
[73] S. Pratt, Phys. Rev. Lett. 102, 232301 (2009).
[74] P. Huovinen and D. Molnar, Phys. Rev. C 79, 014906 (2009).

034909-10


