
PHYSICAL REVIEW C 81, 034907 (2010)

Radiative energy loss and v2 spectra for viscous hydrodynamics
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This work investigates the first correction to the equilibrium phase-space distribution and its effects on spectra
and elliptic flow in heavy-ion collisions. We show that the departure from equilibrium on the freeze-out surface is
the largest part of the viscous corrections to v2(pT ). However, the momentum dependence of the departure from
equilibrium is not known a priori, and it is probably not proportional to p2

T as has been assumed in hydrodynamic
simulations. At high momentum in weakly coupled plasmas, it is determined by the rate of radiative energy
loss and is proportional to p

3/2
T . The weaker pT dependence leads to straighter v2(pT ) curves at the same value

of viscosity. Furthermore, the departure from equilibrium is generally species dependent. A species-dependent
equilibration rate, with baryons equilibrating faster than mesons, can explain “constituent quark scaling” without
invoking coalescence models.
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I. INTRODUCTION

When two ultrarelativistic nuclei collide, they leave behind
a region of high energy-density QCD matter, whose properties
we would like to understand better. The initial geometry of
the QCD matter is set by the overlap region of the two
colliding nuclei. Generally, the nuclei collide at finite impact
parameter rather than head-on. In this case, the initial geometry
is not a disk, but is an “almond-shaped” ellipse. (The short
and long axis of the initial almond are taken as the x and
y axes, respectively.) The production mechanism of the QCD
matter is local and knows nothing of this global geometry.
Therefore, to a first approximation the initial stress tensor
will be locally azimuthally symmetric. Subsequently, if there
are no reinteractions, the produced matter will free stream to
the detector; the initial geometry will have no influence on the
evolution, and the angular distribution of the final observed
hadrons will also be azimuthally symmetric. On the other
hand, if there are strong interactions which maintain local
thermal equilibrium, the pressure gradients in the x direction
will be larger than in the y direction, an anisotropy in the
collective flow will develop, and ultimately an anisotropy
in the momentum spectrum of the final hadrons will be
observed.

The final momentum anisotropy is characterized experi-
mentally by v2, the second harmonic of the azimuthal distri-
bution of the produced particles with respect to the reaction
plane. Experimentalists have measured v2 as a function of
transverse momentum pT , particle type, and impact param-
eter [1–4]. These results are surprisingly well described by
ideal hydrodynamics [5], which amounts to the approximation
that the interactions are fast enough to maintain the matter
in equilibrium from an early time until hadronic freeze-out.
There are some limits to this success. First, the measured v2

falls below the ideal hydrodynamic prediction for momenta
larger than pT >∼ 2.0 GeV. Second, the hydrodynamic fit fails
to reproduce certain relative trends observed in the baryon and
meson elliptic flows. These trends are compactly summarized

by “constituent quark scaling” [6–8] which generally has
been attributed to a kind of coalescence of constituent
quarks [9–12]. Here we will argue that the first corrections
to equilibrium can clarify both of these shortcomings without
the need for a coalescence model.

To quantify the corrections to ideal hydrodynamics, it
is important to study nonideal (viscous) hydrodynamics.
In the last 2 years, there has been a major push in this
direction [13–20]. These studies have used various formalisms
and have studied variations of v2(pT ) with respect to the input
shear viscosity, the model for the initial geometry, and various
other nuisance parameters. However, we want to point out
here that these studies have all made a common assumption
about the way that the asymmetry in the stress tensor is
manifested in the particle distribution after freeze-out. In
particular, the particle distribution after freeze-out is locally of
the form f = f0 + δf, where f0 is the equilibrium distribution
and δf is the first correction. All groups have assumed that
δf (p) ∝ p2f0 and that the coefficient of proportionality is
independent of particle type.

In this paper, we will argue that this assumption matters,
and that it is far from secure. After an overview of the issue
in the next section, in Sec. III we will discuss the physics that
establishes the momentum dependence of δf and its behavior
in several theories. We will see that while the most studied
theories give δf ∝ p2f0, the most QCD-like theories do not.
Then we explore the behavior of multicomponent plasmas
in Sec. IV. We see there that the viscous corrections δf (p)
for different species are generically different. This fact can
account for the “constituent quark scaling” observed in the
baryon and meson elliptic flows without any reference to the
hadronization process. We then make our concluding remarks.
Some technical material is postponed to appendixes.

Throughout, we will denote four-vectors with capital letters
P,Q and use p, q for their three-vector components, Ep,Eq

for their energy components, and p, q for | p|, |q|. Our metric
convention is [−,+,+,+], so that uµuµ = −1. We use
tilde to indicate momenta scaled by temperature, p̃ ≡ p/T .
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We will mostly write np for the equilibrium distribution func-
tion, np ≡ 1/[exp(p/T ) ∓ 1], but will occasionally use f0(p)
when common convention dictates its use. The appropriate
statistics will be clear from the context.

II. OVERVIEW

The energy momentum tensor is given by the sum of its
ideal and dissipative parts,1

T µν = (ε + P)uµuν + Pgµν + πµν, (1)

and obeys the equation of motion,

∂µT µν = 0. (2)

In the first-order (or Navier-Stokes) approximation, the dissi-
pative part of the stress energy tensor in the local rest frame is

πij = −η
(
∂iuj + ∂jui − 2

3δij ∂ku
k
)

≡ −ησ ij ≡ −2η〈∂iuj 〉, (3)

where η is the shear viscosity, and we use 〈· · ·〉 to indicate
that the bracketed tensor should be symmetrized and made
traceless. It is well known that the first-order theory is
plagued with difficulties such as causality violations and
instabilities [21,22]. To circumvent these issues, a second-
order theory is required. The most commonly used second-
order relativistic viscous hydrodynamics is that from Israel
and Stewart [23]. For technical reasons, we use a theory
developed by Öttinger and Grmela [24,25]. The two theories
are qualitatively the same (i.e., for sufficiently small relaxation
times, they both approach the first-order theory). To streamline
the presentation, we postpone the details of our hydrodynamic
model to Appendix A and refer to previous work [17].

The solutions to the hydrodynamic equations yield the
underlying temperature and flow profiles in the presence of
viscosity. Particle spectra are then computed using the Cooper-
Frye [26] formula

E
d3N

d3p
= ν

(2π )3

∫
σ

f (p̃)pµdσµ, (4)

where p̃ ≡ p/T and σµ is the freeze-out hypersurface taken as
a surface of constant energy density in this work. For a system
out of equilibrium, f (p̃) is not the equilibrium distribution
function but also contains viscous corrections,

f (p̃) = f0(p̃) + δf (p̃), (5)

where f0 is the ideal Bose/Fermi distribution function. The
form of δf is constrained by the requirement that T ij be
continuous across the freeze-out hypersurface:

T µν = ν

∫
d3p

(2π )3p0
pµpνf (p̃) →

πij = ν

∫
d3p

(2π )3p0
pipj δf (p̃). (6)

1We use Landau-Lifshitz conventions to fix ε, uµ in terms of four
components of T µν . The other six independent components of T µν

can always be accommodated by a πµν satisfying uµπµν = 0.
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FIG. 1. (Color online) Typical results for v2(pT ) from a viscous
hydrodynamic model employing the quadratic Ansatz. The run
parameters are η/s = 0.08, Tfrzout = 140 MeV, and p = 1/3ε. Further
details are in Appendix A.

Dropping δf from the final particle spectra is inconsistent,
because it leads to a discontinuity in T µν . The form for δf

which satisfies continuity in the local rest frame is proportional
to p̂i p̂jπij and is traditionally parametrized by χ (p) as2

δf ( p) = −np(1 ± np)χ ( p), (7)

= −χ (p)np(1 ± np)p̂i p̂j 〈∂iuj 〉, (8)

where we have distinguished χ (p) and χ ( p) ≡
χ (p)p̂i p̂j 〈∂iuj 〉 by the argument of the function. One
moment of χ (p) is fixed by the shear viscosity (see below) but
otherwise χ (p) is an arbitrary function of p. To date, all works
on viscous hydrodynamics have taken the quadratic Ansatz
and have usually worked in a Boltzmann approximation

χ (p) ∝ p2. (9)

Let us look at typical results for v2(pT ) as shown in
Fig. 1. The curve labeled ‘Ideal’ shows the result using ideal
hydrodynamics (i.e., η/s = 10−6). The curve labeled ‘f0’
shows the resulting elliptic flow from the viscous evolution [the
solution of Eqs. (2), (3), and (A2)] but without including the
viscous correction to the distribution function. In other words,
this shows how the viscous correction to the temperature
and flow profiles manifests itself in the particle spectra.
Only modest corrections to the spectra are found. As already
emphasized, this result is unphysical, since dropping δf

violates continuity of the stress tensor. Last, the curve labeled
‘f0 + δf ’ also takes δf into account, using the quadratic
Ansatz. The viscous correction to the distribution function
dominates the reduction in v2 at large pT . That means that the
δf term is responsible for a significant part of the effects of
viscosity in the particle spectra.

2In actual simulations, πij is treated as a dynamical variable in
a second-order fluid formalism. Then to first order, one can make
the replacement, 〈∂iuj 〉 → −πij /2η. There has been no attempt to
systematically include δf through second order in hydrodynamic
simulations.
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This being the case, it is imperative to perform a systematic
study on the form of the viscous correction as well as its
effect on elliptic flow. Most of this paper will discuss the form
of the viscous correction appearing in weakly coupled QCD.
Although this is not a theory of hadronizing QCD, it is one
theory where quantitative first-principle calculations can be
performed. One of our major findings is that not all models of
energy loss give the same predictions for the off-equilibrium
distribution function.

III. FORM OF δ f IN SEVERAL THEORIES

In this section, we consider a number of theories, to show
that while the dependence χ (p) ∝ p2 is expected in some
cases, other functional dependence is expected in others,
including weakly coupled QCD and a hadron (resonance) gas.
The theories where we can make a definite statement about
the functional form of δf are all described by kinetic theory.
Since freeze-out is defined as the point where scatterings go
from being common to being rare on the time scale of the
evolution of the system, we generally expect that just before
freeze-out, kinetic theory should be a reasonable description.

Within kinetic theory, the distribution function f ( p, x) is
determined by a Boltzmann equation,

(∂t + vp · ∂x)f ( p, x) = −C[f, p], (10)

where C[f, p] is the collision operator. In equilibrium, the
distribution function obeys

n( p, x) = 1

e−Pµuµ(t,x)/T (t,x) ∓ 1
, with C[n, p] = 0. (11)

To determine the first viscous correction δf , we work in
a vicinity of the local rest frame uµ = (1, ui(x, t)), and
substitute f = n( p, x) + δf into Eq. (10) keeping terms first
order in the spatial derivatives

pipj

EpT
np(1 ± np)〈∂iuj 〉 = −C[δf, p]. (12)

Here C[δf, p] denotes the linearized collision operator, i.e.,
the collision operator expanded to first order in δf . In writing
Eq. (12), we used ideal hydrodynamics and thermodynamic
relations to rewrite time derivatives as spatial derivatives,
and we neglected gradients proportional to ∂iu

i which are
responsible for the bulk viscosity [27]. Equation (12) is an
integral equation for δf which can be solved by various
methods.

Since the first viscous correction is a scalar and must be
proportional to the strains, the most general form for the
viscous correction in the local rest frame can be parametrized
by the function χ (p) as in Eq. (7). Close to equilibrium, the
first viscous correction δf determines the strains

πij = −2η〈∂iuj 〉 =
∫

d3 p
(2π )3

pipj

E p
δf, (13)

which ultimately yields a relation between the shear viscosity
and the viscous correction χ (p), that is,

η = 1

15

∫
d3 p

(2π )3

p2

E p
np(1 ± np)χ (p). (14)

This is the only general constraint on the functional form
of the viscous distribution function. To proceed further we
must specify completely the form of the linearized collision
operator, which we will do in the context of various model
theories.

A. Simplest model: Relaxation time approximation

The simplest model (really a cartoon) for the collision
operator is the relaxation time approximation

C[δf, p] = f ( p) − f0( p)

τR(Ep)
, (15)

where τR is the momentum-dependent relaxation time to be
specified. Substituting this form for the collision operator into
Eq. (12), and working in a Boltzmann approximation np(1 ±
np) → np yields the following form for δf :

δf = −τR(E p)

T E p
nppipj 〈∂iuj 〉. (16)

Note, however, that the relaxation time is in general energy
dependent. In different theories, τR(Ep) might show different
functional dependence on Ep. Without details about the
dynamics of the theory in question, we can only parametrize
the viscous correction. Here we will discuss a massless
classical gas, where np = e−p/T , and we parametrize the
relaxation time (or the distribution function) with a simple
power law

δf (p) = −npχ (p̃)p̂i p̂j 〈∂iuj 〉,
(17)

χ (p̃) = C(α)p̃2−α.

The constant, C(α), is determined through Eq. (14):

C(α) = 120η

(ε + P)�(6 − α)
. (18)

There are two limiting cases for the functional form of
the relaxation time approximation: α = 0 and α = 1. The
momentum dependence of the relaxation time in these extreme
cases is

τR(p) ∝
{

p α = 0 (quadratic Ansatz),

const α = 1 (linear Ansatz).
(19)

Most theories will lie between these two extreme limits.3

Loosely speaking, if the energy loss of high-momentum
particles grows linearly with momentum, dp

dt
∝ p, one expects

a relaxation time independent of momentum, τR ∝ p0. On
the other hand, if the energy loss approaches a constant
dp

dt
∝ const, the relaxation time will grow with the particle

momentum τR ∝ p.
Figure 2 shows the elliptic flow computed using these two

functional forms for the first viscous correction. It is important
to emphasize that shear viscosity is the same in both cases.
Examining these figures, we see that the integrated elliptic flow

3There are exceptions to this rule. For instance, in a gas of Goldstone
bosons far below the symmetry-breaking scale, one expects α = 2,
since the cross section grows rapidly with energy, σ ∼ E2/�4.
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FIG. 2. (Color online) Left: v2(pT ) using the linear or quadratic Ansätze for the distribution function. Right: Integrated v2 vs centrality
showing independence from the precise form of the viscous correction. Run parameters can be found in Fig. 1.

is largely insensitive to the functional form of the first viscous
correction. This is because the integrated v2 is primarily
determined by the hydrodynamic variables e, uµ, πµν which
are independent of the functional dependence of the relaxation
time [27]. The differential elliptic flow v2(pT ) is sensitive to
the rate of equilibration especially above pT � 1.2 GeV.

B. Scalar λφ4 theory

Scalar field theory has been described at length by Jeon [28],
who rigorously derived the Boltzmann equation and its
collision kernel and then solved for χ (p̃) numerically. But
if we make the approximation of Boltzmann statistics, we can
actually solve for δf in closed form.

First the nonlinear Boltzmann equation with Bose-Einstein
statistics is

C[f, p] =
∫

k, p′,k′
� pk→ p′k′[f pfk(1 + f p′)(1 + fk′)

− f p′fk′(1 + f p)(1 + fk)], (20)

where the transition rate (including a final-state symmetry
factor) is

� pk→ p′k′ = 1

2

|M|2
(2E p)(2Ek)(2E p′)(2Ek′)

× (2π )4δ4(P + K − P ′ − K ′), (21)

and we have used the traditional short hand,
∫

p = ∫
d3 p

(2π)3 . Af-
ter linearizing, f ( p) → np + np(1 ± np)χ ( p) the linearized
collision integral is

pipj

T Ep

〈∂iuj 〉 =
∫

k, p′,k′
� pk→ p′k′ npnk(1 + np′ )(1 + nk′)

× [χ ( p) + χ (k) − χ ( p′) − χ (k′)]. (22)

At this point we will make the Boltzmann assumption by
neglecting the stimulation factors, (1 + np) → 1, and using
np = e−p/T . Then we will try a solution of the form

χ ( p) = Cpipj 〈∂iuj 〉/T 3, (23)

i.e., assuming that χ (p̃) ∝ p̃2 or α = 0. Substituting this form
into the integral equation [Eqs. (12) and (22)] and performing
the integrals yields (see Appendix B)

〈∂iuj 〉pipj

T
= C〈∂iuj 〉pipj

λ2

384π3T
. (24)

Thus, taking C = 384π3/λ2, the quadratic form in Eq. (23)
has provided an exact solution to the linearized integral
equation. The viscosity is η = 1536πT 3/λ2 in a Boltzmann
approximation.

Physically, this happens because of the form of the
scattering cross section. Since σ ∝ λ2/s and s ∝ p, the cross
section scales as the inverse of the particle’s energy. The typical
scattering is nearly randomizing, but high-energy particles
undergo fewer scatterings than low-energy ones.

This example from scalar field theory, together with the
example of momentum diffusion (see Sec. III C1 below), is
the reason that most people assume the quadratic Ansatz,
χ (p) ∝ p2, should hold.

C. Weakly coupled pure-glue QCD

In this section, we will use the Boltzmann equation for pure-
glue QCD in three approximation schemes to calculate the first
viscous correction. First we will consider a leading log(T/mD)
approximation where the dynamics can be summarized by
a Fokker-Planck equation which describes the momentum
diffusion of quasiparticles. In this limit, we will find that the
viscous correction is quadratic at large momentum, χ (p) ∝
p2. Next we will consider the QCD Boltzmann equation but
consider only 2 → 2 collisions and neglect collinear radiation.
In this limit, we will find that the viscous correction at large
momentum behaves as χ (p) ∝ p2/ log(p). Finally, we will
also include collinear radiation in the Boltzmann equation as
is necessary in a complete leading-order treatment [29,30].
We will find that collinear radiation controls the relaxation
of the high-momentum modes, and asymptotically we have
χ (p) ∝ p3/2, where the coefficient of proportionality is set by
the rate of transverse momentum broadening, q̂. The impatient

034907-4



RADIATIVE ENERGY LOSS AND v2 SPECTRA FOR . . . PHYSICAL REVIEW C 81, 034907 (2010)

reader may skip to Sec. III C4, which summarizes the results
of these three approximation schemes.

1. Momentum diffusion in a leading log treatment

In a leading log approximation, log(T/mD) is considered
a large number and the dynamics describes soft Coulomb
scattering. Each soft collision involves a small momentum
transfer of order q ∼ gT , but these collisions happen relatively
frequently at a rate of ∼ g2T (neglecting logarithms). Thus a
typical particle with momentum T will diffuse in momentum
space and equilibrate on a time scale of ∼ g4T . The resulting
Boltzmann equation linearized around equilibrium can be
written as a Fokker-Planck equation [31,32]

∂tδf + v p · ∂xδf = T µ
∂

∂pi

[
np(1 + np)

∂

∂pi

(
δf ( p)

np(1 + np)

)]
+ gain terms, (25)

where µ is the drag coefficient of a high-momentum gluon in
this approximation scheme [33,34]

d p
dt

= −µ p̂, with µ = g4C2
A

24π
T 2 ln

(
T

mD

)
. (26)

The precise form of the gain terms has been given in
Refs. [31,32], but only involves the � = 0, 1 spherical
harmonic components of δf ( p), i.e.,

∫
d� pδf ( p) and∫

d� p p̂δf ( p). In the hydrodynamic limit considered here,
δf ( p) is proportional to a traceless rank 2 tensor (p̂i p̂j −
δij /3) and these gain terms vanish. Substituting the form of
Eq. (7) into Eq. (25) leads to the following equation for χ (p):

np(1+np)
p

T
=T µnp(1+np)

[
− d2

dp2
+

(
1 + 2np

T
− 2

p

)
d

dp

+ 6

p2

]
χ (p). (27)

We are not aware of a closed form solution to this equation,
but we can find a solution for χ (p) at large momentum. Making
the approximation 1 + 2np ≈ 1, we find that

χ (p) = p2

2T µ
(28)

solves this equation. This is the well-known quadratic Ansatz.

2. Boltzmann equation with 2 → 2 collisions

We next will consider the QCD Boltzmann equation, but
we will neglect collinear radiation. We emphasize that this
is not a consistent approximation scheme. Nevertheless, it
illustrates clearly the relative roles of hard collisions and
inelastic processes in determining the functional form of χ (p)
in the relevant subasymptotic regime.

The linearized Boltzmann equation is the same as Eq. (22),
but the squared matrix element is

|M|2 = 8g4C2
A

(
3 − ut

s2
− us

t2
− ts

u2

)
, (29)

which describes 2 → 2 gluon scattering after summing over all
spins and colors and dividing by the gluon degeneracy factor
2dA. These matrix elements must be dynamically screened
using hard thermal loops. A procedure which is consistent
at leading order (where the Debye mass is small) but which
makes a reasonable estimate when the Debye mass is not
small has also been described in Ref. [35], and we can follow
exactly the numerical procedure of that reference to find χ (p̃).4

We can also study the asymptotic behavior more directly.
At asymptotically large momentum where log(p̃) may be
considered large, Appendix B shows that

χ (p) ∝ p2

log(p/T )
. (30)

The constant in front of the log is related to 〈dE/dt〉p, the rate
of collisional energy loss of a gluon with momentum p,

χ (p) = p2

2T 〈dE/dt〉p . (31)

In a leading ln(p/T ) approximation, the loss rate is [34,36]〈
dE

dt

〉
p

= g4C2
A

48π
T 2 ln

(p

T

)
, (32)

as is rederived in Appendix B. The above asymptotic form
agrees well with the numerical solution of the Boltzmann
equation.

3. A leading-order treatment at asymptotically large momenta

Early calculations of the shear viscosity in pure-glue QCD
found χ (p̃) ∝ p̃2, that is, α = 0 [37,38]. However, this is
because they were leading-log treatments, which reduced
to momentum diffusion discussed above. It was realized in
Refs. [29,30] that inelastic number changing processes are
only suppressed by a log, but are enhanced at large energy
E by a factor of (E/T )1/2 and dominate equilibration for
E/T > log(1/g).

This should not be a surprise. After all, if we think
about “equilibration” (energy loss) in QED, we find that
although the leading-order mechanism for the energy loss
of a high-energy electron is ionization (elastic scattering),
bremsstrahlung actually dominates the loss rate. This is the
case because in bremsstrahlung the energy lost per scattering
can scale with the incident energy, rather than being incident
energy independent as is the case with ionization. As a result,
the penetration depth of an electromagnetic shower scales only
logarithmically with the incident energy, i.e., the relaxation
time is constant up to logs, τR ∝ E0. If the same behavior
occurred in QCD, we would expect the linear Ansatz to
hold, α = 1.

The current understanding of energy loss in perturbative
QCD is that the high-energy behavior lies between these
extremes. High-energy particles in a QCD plasma lose energy
predominantly by inelastic gluon radiation, and the time
scale for energy loss is short compared to the time scale for

4Some minor technical difficulties are discussed in the next section.
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momentum diffusion (“jet broadening”). In particular, Baier
et al. showed that for E � T the rate of (inelastic) energy
loss scales with the incident energy as dE/dt ∝ E1/2, with
the half-integer power arising from the Landau-Pomeranchuk-
Migdal (LPM) suppression [39,40]. This implies a “relaxation
time” which scales as τR ∼ E/(dE/dt) ∝ E1/2, and therefore
α = 1/2 [35]. Let us see how this emerges in the behavior of
pure-glue QCD.

The point is that the Boltzmann equation for a gluon plasma
possesses both an elastic scattering term and an inelastic
effective 1 → 2 scattering term,

∂tf + vp · ∂xf = −C2↔2[f ] − C1↔2[f ]. (33)

This equation was first solved at leading order in αs by Arnold,
Moore, and Yaffe to determine the shear viscosity [35]. Their
approach involved writing a multiparameter Ansatz for χ (p̃)
in terms of a basis of test functions. While the determination
of η improves quadratically with the test function basis, the
determination of χ (p̃) improves only linearly. Therefore to get
good accuracy out to p = 15T requires the use of a large basis
of functions. We find a basis of eight functions is sufficient,
and the p̃3/2 behavior is already clear with such a basis.5

We can also directly establish the asymptotic form of the
solution. At asymptotically high momentum, near-collinear
bremsstrahlung dominates the equilibration of gluons. We
therefore look at the Boltzmann equation including only 1 → 2
splittings,

∂tf + vp · ∂xf = −C1→2[f ]. (34)

The relevant collision integral for near-collinear joining and
splitting of gluons at leading order in αs was worked out in [41]

C1→2 = (2π )3

2|p|2νg

∫ ∞

0
dp′dk′δ(|p| − p′ − k′)γ (p; p′, k′)

× [f p(1 + f p′)(1 + fk′) − f p′fk′(1 + f p)], (35)

and is given in terms of the splitting function for g → gg.
In general, this splitting function involves the solution of an
integral equation which includes the LPM effect. However,
in the deep LPM regime [42] where ln−1(p̃) can be treated as
small, the following leading log result for the splitting function
can be obtained

γ g
gg(p : xp, (1 − x)p) = 4αsCAdA

(2π )4

√
3pq̂

[1 − x(1 − x)]5/2

[x(1 − x)]3/2
.

(36)

The above splitting function contains the transport parameter
q̂, which characterizes the typical transverse momentum
squared transferred to the particle per unit length. With
the above splitting function, we show in Appendix C that
the solution of the off-equilibrium distribution function at

5In fact we find greatly improved convergence of the large-
momentum behavior, both in terms of basis set size and numerical
integration precision, by changing the test functions of Ref. [35] to
a set which shows the correct large-momentum asymptotic behavior
by multiplying φ2...N defined in Eq. (2.32) of the reference by p̃−1/2.
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FIG. 3. (Color online) The points are from the numerical solution
of the Boltzmann equation for pure glue at leading order (LO) and
without 1 ↔ 2 processes (i.e., collisional energy loss only). The lines
are χ ∝ p2−α for α = 2, 1.6, 1.38, and 1, going from top to bottom.

asymptotically large momentum is

χg(p) ≈ 0.7

αsT
√

q̂
p3/2. (37)

4. Summary of weakly coupled pure-glue QCD

Let us now summarize some of the main features of the
off-equilibrium dynamics of pure-glue QCD at weak coupling.
In the previous three sections, we looked at the behavior of
the off-equilibrium correction for pure-glue QCD in various
approximation schemes, deriving asymptotic behavior in each
case. These asymptotics are listed later in Table I. In this sec-
tion, we wish to focus on the phenomenologically more inter-
esting region where the equilibrating parton has intermediate
energies (p ∼ 10T ). In this case, one must resort to numerical
solutions of the Boltzmann equation, which we present in
Fig. 3.

To summarize Fig. 3, we will discuss the curves from top
to bottom starting with the “Quadratic” curve. In the leading
log(T/mD) approximation, the linearized Boltzmann equation
simplifies to a differential equation, Eq. (27). The numerical
solution to this has been worked out in Refs. [31,32,38] and
is well described for all momenta by the asymptotic quadratic
form, χ = p2/2T µ. The numerical result will be presented in
a forthcoming work [32], and for now we show the quadratic
result as the solid blue line. Next we considered QCD with the
2 → 2 gluon scattering matrix element at leading order. The
agreement between the asymptotics derived in the previous
section and the numerical solution can be found in Appendix B.
At intermediate momentum, we show the numerical solution of
the Boltzmann equation without inelastic processes as the data
points under the curve labeled “Coll.” The solid curve is the
result of a power-law fit at intermediate momentum, χ ∝ p1.6.
In the leading order (LO) treatment when bremsstrahlung
is included, we find further equilibration of the gluons, and
our numerical results are reasonably described by the fit,
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comparison. Run parameters can be found in Fig. 1.

χ ∝ p1.38. Finally, the linear Ansatz is also shown in Fig. 3
for comparison.

One can now ask how the observed χ ∝ p1.38 of pure glue at
leading order will affect the viscous corrections to elliptic flow.
First of all, as we have already shown, the integrated v2 will
change marginally. The differential v2, on the other hand, will
be largely affected at higher pT . This result is shown in Fig. 4
along with the quadratic and linear Ansätze for comparison.

The above considerations have shown that the relaxation of
the high-energy tail of the distribution is largely controlled by
energy loss. The low- and intermediate-momentum regions
are constrained by the shear viscosity via Eq. (14). The
strength of the off-equilibrium correction is controlled by two
nonperturbative parameters: η at low momentum and q̂ at high
momentum. This is clearly seen by looking at the forms of χ

we have found for pure-glue QCD at leading order:

χ (p) =
{ 2.84η

sT
p̃1.38 5 <∼ p̃ <∼ 10,

0.7
αsT

√
q̂
p1.5 ln−1(p̃) � 1.

(38)

In Fig. 5, we show plots of χ for various choices of the
nonperturbative parameters η/s and q̂/T 3. The main point to
take away is the need for consistency between η and q̂ such that
the low- and high-momentum regions of χ can merge smoothly
into one another. The three values of q̂/T 3 = 10, 16, 60 we
have chosen reproduce the experimentally observed RAA [43]
when convoluted with the higher twist [44], AMY [29,31,45],
and ASW [39,40,46] energy loss models, respectively. It
appears to be difficult to reconcile the discontinuity of χ

between the lowest shear viscosity η/s = 0.08 and smallest
value of q̂ used in modeling heavy-ion collisions.

D. Hadron gas

One might also ask what scattering behavior is expected
at lower temperatures, in a hadron gas. How do the highest
energy hadrons equilibrate, as a function of hadron energy? A
complete study requires understanding the energy-dependent
hadron-hadron cross section, which has nontrivial energy de-
pendence and must be determined from experiment. However,
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FIG. 5. (Color online) Curves at lower momentum are χ (p/T )
for a perturbative gluon gas at leading order for three values of the
nonperturbative parameter η/s. The curves at higher momentum show
the asymptotic forms of χ for three values of the non-perturbative
parameter q̂. There must be a consistency between η/s and q̂ in order
that the curves merge at intermediate momentum.

we should be able to say something about the high-momentum
behavior.

In hadron-hadron scattering, the inelastic branching frac-
tion rises with increasing s, dominating the cross section for
kinetic energies well above �QCD . Since generically no daugh-
ter in an inelastic collision carries more than half the energy
of the initial high p particle, we can take scatterings to be
momentum randomizing (the relaxation time approximation
is sensible), especially for the highest energy hadrons. The
relaxation time is then controlled by the scattering rate,
τR ∼ nσ , with n the hadron number density and σ an averaged
total hadronic cross section. So what is the behavior of the total
hadronic cross section? At low momenta, it is complicated by
resonances, but at large momenta there is universally a rising
total cross section. Therefore the relaxation time τR(E) should
naively involve a small or zero power of E, that is, α ∼ 1 is
expected, at least for the very high energy tail.6 Certainly we
do not expect α = 0. However, any more detailed discussion
must be either model or data driven and lies outside the scope
of this paper.

IV. MULTICOMPONENT PLASMAS

The plasmas just considered are treated as single-
component type, in the sense that all degrees of freedom are
related to each other by symmetries (polarizations by parity,
colors by gauge invariance). The quark-gluon plasma is a
multicomponent plasma. Treating ms as small and mc as large,
the three light quark types behave the same, but the gluons
behave differently from the quarks. Similarly, the hadronic
plasma present at lower temperatures contains both baryons
and mesons, each of several types. The different components
generically have different departures from equilibrium, that
is, χquark �= χgluon, which would manifest as different viscous

6Froissart behavior σ ∝ ln2(s) suggests τR ∝ ln−2(p).
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FIG. 6. (Color online) Off-equilibrium correction for the case
of a perturbative two-flavor QGP evaluated at leading order. The
inset figure shows the ratio of the quark to gluon correction which
asymptotically approaches χquark/χgluon ≈ 1.7.

corrections to their pT spectra. In particular, we will argue
that faster equilibration for baryons than for mesons can give
a simple explanation for the “constituent quark scaling” [6–8]
observed in v2(pT ) for mesons and baryons, without invoking
any model of coalescence.

A. Quark-gluon plasma

We now consider a two-component gas of quarks and gluons
and label the distribution functions with subscripts q and g,

respectively:

δfg(p) = −np(1 + np)χg(p̃)p̂i p̂j 〈∂iuj 〉,
(39)

δfq(p) = −np(1 − np)χq(p̃)p̂i p̂j 〈∂iuj 〉.
For use in hydrodynamic simulations, we will again fit the off-
equilibrium component of the quarks’ and gluons’ distribution
function to the following power law:

χg(p̃) = Cg(αg)p̃2−αg ,
(40)

χq(p̃) = Cq(αq)p̃2−αq .

The results of the numerical solution of the Boltzmann
equation for the two-component case are shown as points
in Fig. 6. The solid curves are the results of the fit done at
intermediate momentum (5 � p̃ � 15) with the result αq ≈
αg ≈ 0.62.

To solve for the two constants (Cq and Cg), we need two
constraints. The first constraint relates the coefficients Cq,g to
the shear viscosity,

η = 1

15

∑
a=q,g

νaCa

∫
d3p

(2π )3
p3−αanp(1 ± np). (41)

The sum is over quarks and gluons with degeneracies
νg = 2dA = 16 and νq = 4df Nf = 24. The second constraint
comes from fixing the ratio of χq/χg to the numerical solution
of the Boltzmann equation. This ratio is shown in Fig. 6, and
at large enough momentum (p̃ >∼ 5), we find

χq

χg

≈ 1.70. (42)

The explicit computation of the two coefficients (Cq,g)
in terms of the above ratio and η/s is worked out in
Appendix D.

In Fig. 7, we show the elliptic flow of quarks and gluons.
Note the larger suppression for quarks as the gluons are forced
into equilibrium much quicker. This quicker relaxation cannot
simply be explained by naively assuming Casimir scaling,
χq/χg ≈ CA/CF = 2.25. Instead this ratio involves a playoff
between the faster equilibration rate of gluons and the tendency
of identity changing processes qq̄ ↔ gg, q ↔ qg, g ↔ qq̄

to balance disequilibrium between the quarks and gluons.
This ratio is evaluated analytically at asymptotically large
momentum in Appendix C.

The distinct quark and gluon elliptic flow is completely due
to the different viscous corrections, which in turn are related
to the different relaxation rates of quarks and gluons. Let us
note that if we scale both the v2 and pT of gluons by 3 and
of quarks by 2, the result is a “universal curve” as shown in
the right plot of Fig. 7. The observed scaling was completely
accidental, but it led us to consider the possibility of finding
similar scaling behavior in a system of mesons and baryons
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FIG. 7. (Color online) Left: Elliptic flow of quarks and gluons. Right: Both v2 and pT scaled by n = 3, 2 for gluons and quarks, respectively.
Run parameters can be found in Fig. 1.

034907-8



RADIATIVE ENERGY LOSS AND v2 SPECTRA FOR . . . PHYSICAL REVIEW C 81, 034907 (2010)

due to differences in the relaxation rates. This is discussed in
detail in the next section.

B. Two-component meson-baryon gas

The QCD matter immediately before freeze-out is certainly
not a weakly coupled quark-gluon plasma, but it might be
described as a hadron (resonance) gas. Just as for the quarks
and gluons, there is no reason to think that the mesons and
baryons should show the same efficiency in equilibrating. But
rather than claim a specific model for the partially equilibrated
state of such a system, we will just do some phenomenology
to see how different thermalization rates could affect the
observed species-dependent elliptic flow behavior. To study
the hydrodynamics of this system, we switch from the ideal-gas
equation of state to a lattice motivated [47] one. Further details
of the simulation are presented in Appendix A.

We consider a meson-baryon gas whereby mesons and
baryons have the off-equilibrium corrections fm and fb,

respectively,

δfm(p) = −np(1 + np)χm(p̃)p̂i p̂j 〈∂iuj 〉,
(43)

δfb(p) = −np(1 − np)χb(p̃)p̂i p̂j 〈∂iuj 〉.
We assume both species have the same power-law correction
to spectra,

χm(p̃) = Cm(α)p̃2−α,
(44)

χb(p̃) = Cb(α)p̃2−α,

but we allow for different coefficients (Cm/Cb) which we will
choose in order to give reasonable agreement with data. For
simplicity, we will consider two different Ansätze: quadratic
(α = 0) and radiative (α = 0.5), and take the following ratios
which, as we will show, fit the data rather well:

Cm

Cb

=
{

1.6 quadratic,
1.4 radiative. (45)

Finally, the numerical values of the coefficients can be
identified with the shear viscosity through

η = 1

15

∑
a=π,K,...

νaCm/b

∫
d3p

(2π )3Ea

p4−αn(Ea)[1 ± n(Ea)],

(46)

where the sum extends over all mesons and baryons having
M � 1.8 and 2.0 GeV, respectively. This choice reproduces
the lattice parametrization of the equation of state below
T = 160 MeV. We find the following values for the coefficients
at our freeze-out temperature of T = 150 MeV:

Cm = 1.053
Cb = 0.658

} (η

s

)
quadratic, (47)

Cm = 2.661
Cb = 1.901

} (η

s

)
radiative. (48)

Before computing particle spectra, we would like to
make an aside about the way elliptic flow is computed. By

definition ,v2(pT ) is given by

v2(pT ) ≡
∫

dφ cos(2φ) (dN + δdN)∫
dφ (dN + δdN)

, (49)

where dN is short for dN/dpT dφ and δdN is the first
viscous correction to this. In the above expression, the viscous
correction to the phase-space distribution, δdN , occurs both
in the numerator as well as in the normalization from the
denominator. Since we have restricted the viscous correction
to be linear in gradients of field quantities, we should therefore
require that v2 be computed to the same order. We therefore
expand the denominator

v2 ≈
∫
dφ cos(2φ) dN + δdN∫

dφ dN
−

∫
dφ δdN

∫
dφ cos(2φ) dN

(
∫
dφ dN)2

,

(50)

so the expression retains terms to first order in δf only. In the
following we will show both the expanded and unexpanded
expressions for v2, shading the region between the two results
in order to give an estimate for the uncertainty in the gradient
expansion. The upper limit of the band corresponds to Eq. (49),
while the lower limit is Eq. (50). In figures where the
uncertainty band is omitted, the plotted curve corresponds to
Eq. (49).

Let us now discuss how the different Ansätze fare with
the experimental data. We have chosen η/s = 0.16 in order
to give reasonable agreement with the data in the transverse
momentum range 1 � pT � 2 GeV. The v2(pT ) spectra for KS

and � are presented in Fig. 8 using either the radiative (p1.5
T ) or

quadratic (p2
T ) Ansatz. For pT <∼ 2 GeV, we find good agree-

ment between the viscous hydrodynamic results and the data.
If hadronic rescattering was included, the low-momentum
component of the � v2 would be pushed out toward higher pT

giving better agreement with the data. Above 2–3 GeV, large
differences between the radiative and quadratic Ansätze are
realized. We must warn that at higher pT one cannot make a
direct comparison with data, since a larger fraction of the
yield will come from fragmenting partons, which have not
been included. In addition, the hydrodynamic description
starts to break down at larger pT . Regardless, one must keep
in mind that for large enough momentum (i.e., pT >∼ 2–3
GeV), the two Ansätze used here are clearly discernible and
the choice of Ansatz could in principle lead to differences in
the extracted viscosity.

We would now like to investigate whether we observe
meson to baryon scaling, similar to the accidental quark
to gluon scaling we found from first principles earlier. For
clarity, we again present the above results with mesons
and baryons on the same figure. This is shown for both
radiative and quadratic Ansätze in Fig. 9. The figures show the
corresponding results with both v2 and pT rescaled by the
number of constituent quarks. The scaling of the data is
the well-known phenomenon of constituent quark scaling. We
find that viscous hydrodynamics reproduces this “universal
curve” as well. This is due to the difference in relaxation
rates between mesons and baryons, which was treated as a
free parameter. The possible microscopic origin of this ratio is
discussed further in Sec. V.
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FIG. 8. (Color online) Elliptic flow of KS mesons and � baryons from viscous hydrodynamics with radiative or quadratic Ansätze. The run
parameters are η/s = 0.16, Tfrzout = 150 MeV, and lattice EOS. Further details are in Appendix A. The data are from the STAR Collaboration [6].

We should also point out that this relaxation time scaling
is fairly robust to changes in the equation of state. While
changing the equation of state will clearly affect the η = 0
behavior, these changes will only modestly modify the viscous
correction to the distribution functions. The qualitative feature
that species with smaller relaxation times have a stronger
elliptic flow is borne out by Fig. 7 (a quark-gluon plasma
equation of state) and Fig. 9 (a lattice equation of state). Further
study of the equation of state is left to future work.

V. SUMMARY AND DISCUSSION

In this work we have presented a systematic study of the
first viscous correction to the thermal distribution function.
All simulations of viscous hydrodynamics so far have used the
quadratic Ansatz

χ (p) ∝ p2, (51)

but this is only an educated guess.
First we studied the form of δf [or χ (p)] in a momentum-

dependent relaxation time approximation and derived the
simple formula

χ (p) = τR(p)
p

T
. (52)

Examining this formula, we considered two special cases
τR ∝ p (where the equilibration time is proportional to energy)
and τR = const (where the equilibration time is independent

of energy). These give rise to quadratic [χ (p) ∝ p2] and linear
[χ (p) ∝ p] dependence on momentum, as is summarized
in Table I. We expect that, provided QCD is describable in
terms of quasiparticles, the first viscous correction should lie
between these cases. Figure 2 compares these two extreme
limits for the functional form of the viscous correction. It is
important to emphasize that the two simulations have precisely
the same shear viscosity. Comparing our results for the elliptic
flow in these two theories, we see that the integrated elliptic
flow v2 is largely determined by the shear viscosity, while
differential quantities such as v2(pT ) at high pT depend on the
equilibration rates at high momentum. The integrated elliptic
flow is determined to a large extent by the hydrodynamic
variables e, uµ, πµν . (An explicit formula relating v2 to e, uµ,

and πµν is given in Ref. [27] which in turn was motivated by
earlier observations [15,17,50,51].)

The quadratic Ansatz is valid only for fairly specialized
theories. For instance, examining Table I, we see that scalar
theories follow this Ansatz. The reason is that the cross section
falls as 1/s, so higher energy particles see a more transparent
medium and equilibrate more slowly.

For different reasons, the quadratic Ansatz is also valid in
a soft scattering approximation to high-temperature QCD (see
row 4 of Table I). In this limit, which treats log(T/mD) as an
expansion parameter, soft gT collisions lead to the momentum
diffusion and drag of hard gluons. If the momentum diffusion
is independent of particle energy and the drag is constant, we
get the quadratic Ansatz. If the momentum diffusion increases
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data are from the STAR Collaboration [6] and are plotted in (MT − m)/n as suggested by the PHENIX Collaboration [7]. (Recent PHENIX
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logarithmically with particle energy, we find a logarithmic
correction to this Ansatz (see row 5 of Table I). A formula
which summarizes the asymptotic form of both of these cases is

χ (p) = p2

2T 〈dE/dt〉p , (53)

where 〈dE/dt〉p is the rate of energy loss of a particle with
momentum p [see Eq. (26) and Eq. (32) for explicit formulas
in certain limits].

However, the effect of bremsstrahlung completely changes
this picture. A naive (Bethe-Heitler) treatment of radiative
energy loss would lead to a relaxation rate independent of
momentum; but when including the LPM effect, the viscous

correction behaves asymptotically as

χ (p) = 0.7
p3/2

αs

√
q̂

. (54)

This formula is summarized in row 6 of Table I and provides
a concrete connection between viscous corrections and
radiative energy loss, which is further explored in Fig. 5 and
surrounding text.

From a phenomenological perspective, the LPM effect
is not entirely dominant, and collisions are important in
the relevant momentum range. A phenomenological fit to
numerical results for the first viscous correction, including
both collisions and collinear radiation without making the strict

TABLE I. Summary of the functional dependence of the departure from equilibrium on the theory and approximation considered.

Model Physics Formula

Relaxation time, τR ∝ p Relaxation time grows with particle momentum. χ (p) ∝ p2

Relaxation time, τR = const Relaxation time independent of momentum. χ (p) ∝ p

Scalar theory Randomizing collisions which happen rarely. χ (p) ∝ p2

QCD soft scatt. Soft q ∼ gT collisions lead to a random walk of hard particles. χ (p) ∝ p2

QCD hard satt. Hard q ∼ √
pT collisions lead to a random walk of hard particles. χ (p) ∝ p2

log(p/T )

QCD rad. energy loss Radiative energy controls the approach to equilibrium. In the LPM χ (p) ∝ p3/2

αs
√

q̂

regime, q̂ controls the radiation rate.
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LPM approximation, shows that the first viscous correction is
reasonably well described by the following phenomenological
form:

χ (p) � Cp̃1.38. (55)

Figure 4 compares this functional form to the linear and
quadratic Ansätze motivated by the relaxation time approx-
imation. We see that the general expectation from high-
temperature QCD is that in the relevant momentum range,
the first viscous correction is slightly closer to the linear than
to the quadratic Ansatz.

We next studied a two-component plasma starting with
a two-component plasma of quarks and gluons. Since the
relaxation rates of the quarks and gluons are not the same, the
two components do not have the same distribution function. At
high momentum, an analysis of collinear splittings g → gg,
g → qq̄, q → gq shows that both the quark and gluon
distribution behave as p3/2. However, the ratio of the quark
and gluon viscous corrections approaches a constant:

χq

χg

≈ 1.70. (56)

The constant is determined by the ratio of Casimirs CA/CF =
9/4 and the dynamics of the QCD splitting functions. It also
depends weakly on the number of quark flavors, and we have
quoted the two-flavor case.

Motivated by this example, we have postulated that the
baryon and meson components of the medium have different
equilibration rates. Indeed, there is no reason to expect that
these species would equilibrate at the same rate. Then we fitted
(by eye) the ratio of relaxation rates to reproduce the baryon
and meson elliptic flows. If the ratio of relaxation times is

χm

χb

� 1.5, (57)

meaning that baryons relax to equilibrium 1.5 times faster
than mesons, then the resulting viscous hydrodynamic
calculation effortlessly reproduces the universal constituent
quark scaling curve. Physically what is happening is that
in ideal hydrodynamics, the baryons and mesons have
approximately the same elliptic flow, which is approximately
described by a linear rise in mT . The viscous correction
then dictates that the baryons will follow this ideal trend 1.5
times farther than the mesons. Although it is not obvious
from the data shown in Fig. 9, the data do not show scaling
above (mT − Mo)/nq � 1 GeV, i.e., the last � point is a
fluctuation upward. (This is seen quite clearly in recent
PHENIX data [48,49].) It is interesting that the data also
deviate from hydrodynamic predictions above this point.

It is tempting to speculate as to the microscopic origin of the
factor of 1.5. The baryons and mesons in the 2–3 GeV region
are produced in the complex transition region where the energy
density decreases from 1.2 to 0.5 GeV/fm3. In this range, the
temperature decreases by only �T � 20 MeV. However, the
hydrodynamic simulations evolve this complicated region for a
significant period of time, τ � 4 ↔ 6.5 fm, and the hadronic
currents are built up over this time period. The interactions
are probably quite inelastic and are not easily classified as
hadronic or partonic in nature. The additive quark model was

used to describe high-energy total cross sections which are
similarly inelastic [52]. It predicts the ratio of high-energy
nucleon-nucleon to pion-nucleon (as well as pion-nucleon to
pion-pion) cross sections to be 3/2 in reasonable agreement
with the experimental ratio. Perhaps similar physics is respon-
sible for the different baryon and meson elliptic flows. In fact,
the splitting of the baryonic and mesonic elliptic flows was
predicted at least qualitatively by UrQMD, which implements
the additive quark model [53]. On the other hand, the factor of
1.5 in the relative relaxation times could be simply a combina-
tion of dynamical and group theoretical factors of accidental
significance.

In summary, a species-dependent relaxation time provides
a coherent and physically transparent explanation for the
complicated trends observed in the elliptic flow data measured
at the BNL Relativistic Heavy Ion Collider.
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APPENDIX A: DETAILS OF HYDRODYNAMIC
DESCRIPTION

The initial condition of hydrodynamic evolution is set by a
Glauber model, and the energy density is proportional to the
number of binary collisions. More specifically, we take

ε(τ0 = 1 fm, x, y) = EBC × ncoll(b, x, y)

σNN

, (A1)

where EBC = 22.735 is the energy per binary collision and
σNN = 40 mb is the inelastic nucleon-nucleon cross section.

In this work, we will use the following evolution equation
for πij :

π̇ ij = − 1

τπ

(πij − ησ ij ) − 2πij ∂ku
k + πk(iω

k
j ) + 1

η
πk〈iπk

j〉,

(A2)

which is identical to the stress tensor used in Ref. [17].
Other possibilities are also possible [54] which will not
change the results of this work on a qualitative level. In
the above expression, ωij ≡ ∂jui − ∂iuj is the vorticity and
τπ = 3η/(4p). There is one technical detail that warrants
discussion. At large transverse distances, the viscous pressure
tends to become larger than the ideal pressure, and the
equations become unstable. It is therefore necessary to cut off
our auxiliary tensor when it becomes large. More precisely,
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we take

πij → πij

1 + κTrπ2
, (A3)

where Trπ2 =
√

π2
11 + π2

22 + π2
33 and κ ≈ 0.1/(αp).

In the first part of this paper, we consider an ideal-gas
equation of state, p = 1/3ε. For a two-flavor QGP the ideal
Stefan-Boltzmann gas gives ε = 12.71T 4, which roughly
corresponds to the ε/T 4 relation found on the lattice. (For
the highest temperatures in the simulation, it is above this
value; and for the lowest temperatures in the simulation, it is
this value). We have decided to use the same ε/T 4 ratio for
both the gluon gas and quark + glue simulations in order to
get the fairest possible phenomenological estimate for the size
of the viscous corrections in a realistic heavy-ion event.

For simulations using the ideal-gas EOS, the freeze-out con-
tour is taken at constant εfrzout = 0.6 GeV/fm3 corresponding
to a temperature of 140 MeV. The default impact parameter is
7.6 fm, and the shear viscosity to entropy ratio is η/s = 0.08.

In the second part of this paper, where we compute spectra
of a meson-baryon gas, we use a lattice-motivated equation of
state [47]. In this case, the freeze-out surface is set by εfrzout =
0.24 GeV/fm3 corresponding to a temperature of 150 MeV.
We use a default impact parameter of 6.8 fm corresponding to
a centrality class of 10–40% and a shear viscosity to entropy
ratio of η/s = 0.16.

APPENDIX B: COLLISION INTEGRALS

In this section, we will give the details leading to Eq. (24)
for a scalar theory and Eq. (31) for pure glue.

1. Scalar theory

Our starting point is Eq. (22). Substituting the form
specified in Eq. (23) into this equation yields in a Boltzmann
approximation

〈∂iuj 〉pipj

T

e−p/T

p

= C〈∂µuν〉
T 3

e−p/T

2p

∫
d3k

(2π )32k
e−k/T λ2

2

×
∫

d4P ′d4K ′

(2π )2
δ(P ′2)δ(K ′2)δ4[(P+K) − P ′ − K ′]

× (PµPν + KµKν − P ′
µP ′

ν − K ′
µK ′

ν), (B1)

where 〈∂µuν〉 is the Lorentz invariant extension7 of 〈∂iuj 〉.
The integrals over P ′ and K ′ are Lorentz covariant and can be
performed by standard tricks; the (PµPν + KµKν) term can be

7Specifically, defining the projector onto the local rest frame �µν =
gµν + uµuν , we have

〈∂µuν〉 = 1
2 �µρ�νσ (∂ρuσ + ∂σ uρ − 2

3 �ρσ ∂βuβ ).

In the local rest frame implicit here, we have 〈∂0uµ〉 = 0 and
〈∂µuν〉 = 〈∂iuj 〉 for µ, ν = 1 . . . 3.

factored out, leading to
∫
P ′,K ′ = 1/8π , while the integral over

P ′
µP ′

ν + K ′
µK ′

ν must return a rank-2 tensor depending only on
(P + K)µ. There are only two such tensors, and contraction
with gµν and (P + K)µ(P + K)ν establishes that∫

d4P ′d4K ′

(2π )2
δ(P ′2)δ(K ′2)

× δ4[(P+K) − P ′ − K ′](P ′
µP ′

ν + K ′
µK ′

ν)

= 1

48π
[4(P + K)µ(P + K)ν − (P + K)2gµν]. (B2)

The integral equation becomes

〈∂iuj 〉pipj

T
= C〈∂iuj 〉λ2

32πT 3

∫
d3k

(2π )32k
e−k/T

×
(

pipj + kikj − 2

3
(p + k)i(p + k)j

)
,

(B3)

where we used that 〈∂µuν〉 is traceless, so 〈∂µuν〉gµν = 0.
Performing the k angular integration in the plasma frame, the
pikj terms integrate to zero; so does the kikj term, because
〈∂iuj 〉 is traceless. Performing the trivial radial integration,
we find Eq. (24).

2. Pure glue

Our goal here is to derive Eqs. (31) and (32). Our starting
point is the collision integral Eq. (21) with matrix elements
given by Eq. (29)

pipj

T Ep

〈∂iuj 〉 =
∫

p′kk′
npnk(1 + nk′)(1 + np′ )�pk→p′k′

× [χ ( p) + χ (k) − χ ( p′) − χ (k′)]. (B4)

Using the definition, χ ( p) = χ (p)(p̂i p̂j − δij /3)〈∂iuj 〉, one
can pull out the common factor, 〈∂iuj 〉. The remaining
integral on the right-hand side (called I ij ) must have the form
I ij = I (p)(p̂i p̂j − δij /3) since this is the only symmetric
traceless tensor which can be constructed out of p and δij .
Straightforward analysis then shows that

pnp(1+np)

T
=

∫
p′kk′

npnk(1 + nk′)(1 + np′ )�pk→p′k′

× [χ (p)+χ (k)P2(cos θ pk)−χ (p′)P2(cos θ p p′)

−χ (k′)P2(cos θ pk′)], (B5)

where, for instance,

P2(cos θk p) = 3
2

(
p̂i p̂j − 1

3δij
)(

k̂i k̂j − 1
3δij

)
, (B6)

is the second Legendre polynomial.
We will evaluate this integral in a leading log(p/T )

approximation. Asymptotically, the momenta p and p′ are
large, while k and k′ are of order the temperature.8 In this limit,

8We will discuss the region of phase space where t = −(P ′ − P )2

is small. Since the particles are identical, there is also an equal
contribution where u = −(K ′ − P )2 is small, i.e., when p and k′
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we can make the Boltzmann approximation, (1 + np′ ) → 1,
and can treat p′ as close to p. Specifically we take

cos θpp′ = 1 + t

2pp′ � 1, (B7)

and then write

χ (p) − χ (p′) � −∂χ

∂p
ω. (B8)

We also note that k and k′ are close to T and therefore χ (k)
and χ (k′) are small. Then we can write Eq. (B6) as

p

T
� ∂χ

∂p

〈
dE

dt

〉
p

, (B9)

where the average energy loss rate for a particle with
momentum p is〈

dE

dt

〉
p

= −
∫

p′kk′
� pk→ p′k′nk(1 + nk′)ω, (B10)

i.e., the energy loss is the transition rate weighted with the
energy transfer. The energy loss to leading log(p/T ) has been
determined by Bjorken [36] and Braaten and Thoma [34] and
reads 〈

dE

dt

〉
p

� g4C2
AT 2

48π
ln

(p

T

)
. (B11)

One can verify that when terms suppressed by log(p/T ) are
dropped, we have

χ (p) =
∫ ∼p

∼T

p′

T 〈dE/dt〉p′
dp′ � 1

T 〈dE/dt〉p
1

2
p2. (B12)

In Fig. 10, a fit based on Eq. (B12) does a reasonable job in
reproducing our Nc = 3 numerical results at high momentum.

For completeness, we will rederive Eq. (B11). To evaluate
the phase-space integrals over � pk→ p′k′ , we use the “t-channel
parametrization” of Ref. [35]. Following the logic that leads
from (A.14) to (A.21) of that work, we write the phase space
as∫

p′kk′
� pk→ p′k′

= 1

(2π )416p2

∫ ∞

0
dk

∫ 2π

0
dφ

∫
PS

dq

∫
PS

dω|M|2, (B13)

where the momentum transfer is q = p′ − p = k − k′ and the
energy transfer is ω = p′ − p = k − k′. The vector q is taken
along the z axis and the vector p lies in the z-x plane. The angle
φ is the azimuthal angle of k with respect to the z-x plane.
The energy transfer and momentum transfer are restricted to
the available phase space

0 <
q + ω

2
< k, (B14)

0 <
q − ω

2
< p, (B15)

which is also exhibited in Fig. 11.

are large and p′ and k are of order T . Our original definition of the
transition rate includes a 1/2 symmetry factor for the identical particle
final state. To ease the discussion in this section, we will simply drop
the symmetry factor and neglect the u-channel contribution.

 0
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g4  T
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(p
/T

)

p/ T

Nf=0, Nc=3
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FIG. 10. (Color online) Off-equilibrium correction for the case
of collisional energy loss. The points are from the numerical solution
of the linearized Boltzmann equation, and the curve is the asymptotic
form, Eq. (B12). Specifically the curve is a one-parameter fit to the
Nc = 3 form, (24π/9) p̃2/ log(p̃/C), with fit parameter C−1 = 1.3.

Using the definitions of the kinematic variables, the
Mandelstam invariants are

t = −(P ′ − P )2 = q2 − ω2, (B16)

s = −(P + K)2 = −t

2q2
[(p + p′)(k + k′) + q2

− cos φ
√

(4pp′ + t)(4kk′ + t)], (B17)

u = −t − s. (B18)

To evaluate the collision integral, we are to substitute these
expressions for the Mandelstam invariants into the matrix
elements and perform the integrals over the phase space. Close
inspection of the result of this procedure shows how log(p/T )
comes about. First, the logarithm comes from integrating over
the phase-space region where ω � −q and T � q � p as
shown by the band in Fig. 11. Since the ω integral is over
the interval −q < ω < −q + 2k, the phase-space integral is
approximately ∫

PS
dq

∫
PS

dω � 2k

∫ ∼p

∼T

dq, (B19)

Phase Space (PS)

−p

p

q

k
ω

FIG. 11. (Color online) Available phase space for the collision
integrals in Eq. (B13). The band shows the dominant region of the
integration in a leading log(p/T ) approximation.

034907-14



RADIATIVE ENERGY LOSS AND v2 SPECTRA FOR . . . PHYSICAL REVIEW C 81, 034907 (2010)

and we may neglect the stimulation factor, (1 + nk′) � 1.
Second, only the highest powers of ω and q contribute to the
ultraviolet logarithm. The φ integrated matrix element with
these restrictions is∫ 2π

0
dφ

−us

t2
� 2πp2

q2
. (B20)

Then the total total transition rate is〈
dE

dt

〉
p

= − 1

(2π )416p2

(
8g4C2

A

) ∫ ∞

0
dk2knk

×
∫ ∼p

∼T

dq
2πp2

q2
(−q). (B21)

Performing the integral over k, we arrive at the result quoted
in Eq. (B11).

APPENDIX C: VISCOUS DISTRIBUTION
FUNCTION AND q̂

In this appendix, we derive the form of the viscous
distribution function for asymptotically large momenta. In
doing this we will relate the high pT tail of the distribution
function with the energy loss parameter q̂.

The starting point is the Boltzmann equation containing
near-collinear splitting processes. We neglect 2 ↔ 2 processes
as these will be subleading at large momenta. Therefore,

pµ

Ep

∂µfa(x, p) = −C1→2
a [f ], (C1)

where

C1→2
a = (2π )3

2|p|2νa

∫ ∞

0
dp′dk′δ(|p| − p′ − k′)γ (p; p′, k′)

× [fp(1 ± fp′ )(1 ± fk′) − fp′fk′(1 ± fp)]. (C2)

In the above expression, fa is the distribution function of
species a. The degeneracy factor νa is 16 for gluons and 6
for quarks.

Now linearize the collision integral

C1→2 = (2π )3

2p2νg

∫ ∞

0
dp′dk′δ(p − p′ − k′)γ (p : p′, k′)np

× (1 ± np′ )(1 ± nk′)[χp − χp′ − χk′]. (C3)

Doing the integral over k′ and expanding out the left-hand side
in the typical way, we get

βnp(1 ± np)
p2

Ep

=− (2π )3

2pva

∫ ∞

0
dxγ (p : xp, (1 − x)p)np

× (1 ± nxp)(1 ± n(1−x)p)

× [χp − χxp − χ(1−x)p]. (C4)

Then note at very high momentum,

(1 ± nxp)(1 ± n(1−x)p)

1 ± np

→ �(1 − x). (C5)

Let us now consider a two-component plasma of quarks
and gluons. Using the Ansatz χq,g(p) = Cq,gp

2−α we are left
with

p2νg

(2π )3
= 1

2
p2−α

∫ 1

0
dxγ g

gg(p : xp, (1 − x)p)[Cg − Cgx
2−α − Cg(1 − x)2−α]

+p2−α

∫ 1

0
dxγ

g

qq (p : xp, (1 − x)p)[Cg − Cqx
2−α − Cq(1 − x)2−α], (C6)

p2Nflνq

(2π )3
= p2−α

∫ 1

0
dxγ q

gq(p : xp, (1 − x)p)[Cq − Cgx
2−α − Cq(1 − x)2−α].

The splitting functions at leading log order are

γ g
gg(p : xp, (1 − x)p) =

√
6αsCAdA

(2π )4

√
pq̂

√
CA + CAx2 + CA(1−x)2[1 + x4 + (1−x)4]

[x(1 − x)]3/2
,

γ
g

qq(p : xp, (1 − x)p) =
√

6αsCF dF Nfl

(2π )4

√
pq̂

√
(2CF − CA) + CAx2 + CA(1 − x)2[x2 + (1 − x)2]

[x(1 − x)]1/2
, (C7)

γ q
gq(p : xp, (1 − x)p) =

√
6αsCF dF Nfl

(2π )4

√
pq̂

√
CA + (2CF − CA)x2 + CA(1 − x)2[1 + (1 − x)2]

x[x(1 − x)]1/2
.

The p1/2 behavior here together with the p2−α behavior
explicitly on the right-hand side of Eq. (C6) must cancel
the p2 behavior on the left side of Eq. (C6). This fixes
2 = 2 − α + 1/2 or α = 1/2, so χ (p̃) ∝ p̃3/2. This proves
the claim in the main text that the asymptotic behavior should
be α = 1/2.

For a gluon gas, we find

C−1
g = C

3/2
A αs

√
3q̂

2πT

∫ 1

0

[1 − x(1 − x)]5/2

[x(1 − x)]3/2

× [1 − x3/2 − (1 − x)3/2]dx, (C8)
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and

χg = 0.704778

αsT
√

q̂
p3/2. (C9)

For a two-flavor quark-gluon gas we find

χg = 0.759158

αsT
√

q̂
p3/2,

(C10)

χq = 1.257913

αsT
√

q̂
p3/2.

The ratio is
χq

χg

= 1.657, (C11)

not too different from the ratio 1.7 we found by fitting. This
ratio depends on Nfl. For one flavor, it is 1.702, for three flavors
it is 1.618, and in the limit of infinite flavors it approaches
1.128. This diminishing ratio occurs because, at larger Nfl,
more and more splitting processes are g ↔ qq̄ and q ↔ qg,
which equilibrate the numbers of quarks and gluons toward
each other.

APPENDIX D: TWO-COMPONENT SYSTEM

In this appendix, we derive relationships between the off-
equilibrium distribution function, χ , and the shear viscosity of
a two-component system.

We consider a gas of bosons and fermions because it will
have applications to a gas of quarks and gluons or a gas of
mesons and baryons.

δff (p) = −νf np(1 − np)χf (p)p̂i p̂j 〈∂iuj 〉,
(D1)

δfb(p) = −νbnp(1 + np)χb(p)p̂i p̂j 〈∂iuj 〉.
The off-equilibrium correction χ takes the form

χb(p) = Cb(T )p2−αb ,
(D2)

χf (p) = Cf (T )p2−αf .

The goal is to find values of the coefficients Cb and Cf as a
function of T and η/s.

First we define the partial viscosity of each species

ηf = νf

15

∫
d3p

(2π )3
pχf (p)np[1 − np],

(D3)

ηb = νb

15

∫
d3p

(2π )3
pχb(p)np[1 + np],

which will yield a total viscosity of

η = ηf + ηb. (D4)

For massive particles the phase space integrals must be done
numerically, but for massless particles, integrating Eq. (D3)
yields

Cf (T ) = 7π4ηf

6sf T 3−αf �(6 − αf )ζ−(5 − αf )
,

(D5)

Cb(T ) = 4π4ηb

3sbT 3−αb�(6 − αb)ζ (5 − αb)
,

with ζ−(x) = ∑∞
n=1(−1)n−1n−x = (1 − 21−x)ζ (x). Let us de-

fine R as the ratio of the partial viscosities,
ηf

ηb

≡ R. (D6)

Making use of the relations

η = ηf + ηb = (1 + R)ηb,
(D7)

s = sf + sb = vf

7π2

180
+ vb

2π2

45
,

we find

Cf (T ) =
(

1 + 8νb

7νf

1 + 1
R

)
η

s

7π4

6T 3−αf �(6 − αf )ζ−(5 − αf )
,

(D8)

Cb(T ) =
(

1 + 7νf

8νb

1 + R

)
η

s

4π4

3T 3−αb�(6 − αb)ζ (5 − αb)
.
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