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Relationship between the azimuthal dependencies of nuclear modification factor and ridge yield
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The azimuthal angular dependence of the nuclear modification factor RAA(pT , φ, Npart) recently obtained by
PHENIX is related at low pT to the trigger φ dependence of the ridge yield as measured by STAR in a framework
in which the azimuthal anisotropy is driven by semihard scattering near the surface. Careful consideration of the
initial geometry leads to the determination of a surface segment in which the production of semihard partons are
responsible for the φ dependence of the inclusive distribution on the one hand and for the angular correlation
in ridge phenomenology on the other. With v2 also being well reproduced along with RAA and ridge yield, all
relevant φ dependencies in heavy-ion collisions can now be understood in a unified description that emphasizes
the ridge production whether or not a trigger is used.
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I. INTRODUCTION

Recent measurement of π0 production in heavy-ion colli-
sions, expressed in terms of the nuclear modification factor
RAA, shows interesting dependence on the azimuthal angle
φ at various centralities and transverse momenta pT [1].
Those properties in φ are lost when the azimuthal anisotropy
is summarized in terms of the elliptic flow coefficient v2.
Similarly, the production of ridge in association with triggers
has revealing behavior in φs , the azimuthal angle of the
trigger relative to reaction plane, at various centralities [2],
but those properties are also lost on integration over all φs

in the determination of the total ridge yield [3,4]. In this
article we show that these two phenomena are related, even
though RAA(pT , φ,Npart) is a measure of the single-particle
distribution, while the ridge yield YR(φs,Npart) is a measure
of the correlation between trigger and associated particles in
specific pT ranges.

In Ref. [1] the attention is given mainly to hard processes
at high pT , but it is noted that at low pT and large �φ

around π/2 (the φ angle relative to the reaction plane) RAA is
nearly constant in Npart. Such a curious property calls for an
explanation. A difference in the temperatures along the x and
y directions in the transverse plane has been discussed in the
Buda-Lund model [5,6], where v2 can be expressed in terms
of a scaling variable that depends on the difference between
those temperatures. However, being a hydrodynamical study
it does not consider explicitly the φ dependence. Azimuthal
anisotropy at low pT that does not depend on the assumption
of rapid thermalization has been investigated in the context
of semihard scattering and the ridges that are produced [7,8].
There also v2 is derived without detailed consideration of the
φ variable. The azimuthal correlation between the ridge and
trigger particles has, however, been studied in the correlated
emission model (CEM) [9]. It is from that study that we shall
find in this article an explanation of the φ dependence on RAA.

Since RAA was introduced originally for the purpose of
exhibiting the effect of jet quenching at high pT , it is actually
inappropriate to describe the behavior at low pT . In the next
section we shall introduce a modified RAA that is more suitable.

The present article focuses exclusively on pT < 2 GeV/c. It is
conventionally thought that at such low pT only soft physics is
involved, a view that has been regarded as being too simplistic
on account of the semihard scattering that can enhance the
soft thermal partons [10,11]. Whether or not trigger particles
are used to select a subset of events, semihard partons are
pervasive and generate ridges that affect both single-particle
and dihadron distributions. That is why we are able to relate
the two azimuthal features of the hadronic observables that
have been determined by the two RHIC experiments [1,2].

The focus of this article is on the azimuthal dependencies of
RAA(pT , φ,Npart) and the ridge yield YR(φs,Npart) at midra-
pidity, where data exist [1,2]. We leave out completely any
consideration about longitudinal correlation, on which there is
experimental evidence that the ridge particles assoicated with a
trigger can be widely separated in rapidity with �η � 4 [12],
although autocorrelation without trigger shows a ridge with
�η ≈ 2 [13]. The physics for longitudinal correlation is very
different from that of azimuthal correlation at midrapidity. We
regard them as separate issues to be treated separately, though
all basic problems are related at some deep level that we do
not address here.

II. CONNECTION BETWEEN RAA( pT , φ, Np)
AND THE RIDGE

The main content of RAA(pT , φ,Np) is the single-particle
distribution of AA collisions, which we abbreviate as ρ1:

ρ1(pT , φ,Np) = dNAA

pT dpT dφ
(Np), (1)

where Np is a shortened notation for the number of par-
ticipants, Npart. In the following we shall consider only the
production of π0, since that is what is measured in Ref. [1] with
high accuracy. The properties of ρ1(pT , φ,Np) are usually
presented, especially in hydrodynamical studies, in terms of
the pT spectra (average of ρ1 over φ) and the elliptical flow
coefficient v2(pT ) (second harmonic in φ). The conceptual
basis of flow de-emphasizes the role of hard scattering
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among partons and offers a fluid description of the bulk
medium at low pT . In that description azimuthal anisotropy
in noncentral collisions is regarded as the consequence of
asymmetric pressure gradient in the transverse plane at early
time, assuming fast thermalization. However, that is not the
only approach that can claim physical relevance, although
it is the conventional view backed by a large number of
investigations based on hydrodynamics [14].

An alternative view is to regard semihard scattering near
the surface of the nuclear overlap as the driving force of
the azimuthal anisotropy, since at low-enough virtuality such
scattering processes are pervasive throughout the medium,
and when they occur near the surface of the almond-shaped
initial configuration of the dense system, the semihard partons
can emerge from the medium and not only hadronize as
intermediate-pT jets but also generate ridge particles at
lower pT [10,11]. Many issues are involved in the above
statement. First, the fact that semihard scattering cannot be
calculated reliably in pQCD does not mean that its effects
are not important. Second, those effects are sensitive to the
geometrical shape of the initial system at early time, since
if the parton’s transverse momentum is kT ∼ 2–3 GeV/c,
the time scale involved is �0.1 fm/c. The semihard jets
created near the surface give rise to nontrivial φ dependence
of low-pT partonic distribution independent of the validity
of the notion of pressure gradient at τ < 1 fm/c [7]. Third,
those φ-dependent soft partons hadronize and form the ridge
structure observed by STAR whether with trigger [2–4,15]
or without trigger [13]. A theoretical description of the
connection between ridges and v2 in the approximation of
using a very simple geometrical picture is given in Refs. [7,8].
It is along the same line of reasoning, but using a more realistic
treatment of the initial geometry, that we relate in this article all
features of φ-dependent observables, namely RAA(pT , φ,Np),
v2(pT ,Np), and ridge yield YR(φs,Np) for pT < 2 GeV/c.

For hard scattering calculable in pQCD it has been shown
that the Landau-Pomerachuk-Migdal interference effect sup-
presses the radiative energy loss of a hard parton in the
initial phase of its trajectory [16,17]. Applying the inference
to semihard partons, despite uncertain validity, there can
be an initial time interval when no energy loss may occur, the
consequence of which is that the creation points of the relevant
semihard partons can be farther away from the surface. What
count for the ridge formation are those semihard partons that do
lose energy on the way out and drive the azimuthal anisotropy.
A shift in the time period when that occurs in the trajectory
of a parton in the medium does not alter the relationship we
propose between semihard scattering and ridge formation.

An important point to stress in distinguishing our approach
from the conventional hydro approach is that the bulk of what
is calculated in the latter contains φ dependence at pT <

2 GeV/c and serves as the background of higher pT hard
processes, while the bulk in our approach has no φ dependence
and it is the ridge component at pT < 2 GeV/c that gives rise
to the φ dependence of the soft component. Thus we write

ρ1(pT , φ,Np) = B(pT ,Np) + R(pT , φ,Np) (2)

with B and R denoting bulk and ridge, respectively, for
pT < 2 GeV/c.

At a fixed pT , ρ1(pT , φ,Np) increases rapidly with Np, but
RAA(pT , φ,Np) decreases with Np except when φ ≈ π/2. The
relationship between them is

RAA(pT , φ,Np) = Z(pT , φ,Np)ρ1(pT , φ,Np), (3)

where the rescaling factor is

Z(pT , φ,Np) = [Nc(Np)dNpp/pT dpT dφ]−1, (4)

Nc being the number of binary collisions, short for Ncoll, and
dNpp/pT dpT dφ the single π0 inclusive distribution in pp

collisions. This rescaling factor is designed to give RAA a
quantitative description of the effect of jet quenching at high
pT . But at low pT , which is the region of interest to us in this
article, the more relevant rescaling factor is

Z′(pT , φ,Np) = [NpdNpp/pT dpT dφ]−1, (5)

where Np is used instead of Nc because of the dominance of
soft processes. Thus we define a different nuclear modification
factor

R′
AA(pT , φ,Np) = Z′(pT , φ,Np)ρ1(pT , φ,Np). (6)

From the data on RAA given in Ref. [1], we can determine R′
AA.

We illustrate their differences by showing in Fig. 1(a) the orig-
inal RAA(pT , φ,Np) and (b) the modified R′

AA(pT , φ,Np),
for φ in the ranges 0 < �φ < 15◦ and 75◦ < �φ < 90◦ for
1.0 < pT < 1.5 GeV/c. In the following we shall for brevity
use φ = 0 and π/2 to denote the two angular ranges, although
in calculations that involve comparison with data we shall use
φ = 7.5◦ and 82.5◦, respectively. The error bars in Fig. 1(b)
are calculated from the errors on Np and Nc, neglecting the
errors on RAA which are much smaller. Comparison can also
be made for 1.5 < pT < 2.0 GeV/c, which we omit here since
they are similar to those in Fig. 1. The effective values of the
two pT ranges will be 1.21 and 1.71 GeV/c given numerically
in tables in Ref. [1]. We see in Fig. 1(a) that RAA for φ = 0
decreases rapidly with Np, but R′

AA in Fig. 1(b) is nearly
independent of Np for φ = 0. Whereas RAA at φ = π/2 is
nearly constant, R′

AA(φ = π/2) increases linearly with Np.
Intuitively, these properties of the Np dependence for R′

AA

are easier to understand, since the elliptical shape of the
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FIG. 1. (a) Original RAA and (b) modified R′
AA at fixed in the

range 1.0 < pT < 1.5 GeV/c for φ in the ranges 0 < �φ < 15◦,
denoted by φ = 0 (in solid circle), and 75◦ < �φ < 90◦, denoted by
φ = π/2 (in open squares). The data are from Ref. [1].

034904-2



RELATIONSHIP BETWEEN THE AZIMUTHAL . . . PHYSICAL REVIEW C 81, 034904 (2010)

initial nuclear overlap is relatively independent of the impact
parameter b when viewed from the broad side at φ = 0 but
becomes narrower as b increases, when viewed from φ = π/2
where one sees mainly the narrow side of the ellipse. Our
problem is to reproduce these properties of R′

AA quantitatively
in a framework where the decomposition of ρ1 into the two
components in Eq. (2) plays an important role.

As described in Refs. [7,8] and summarized in the beginning
of this section, the azimuthal anisotropy arises from copious
semihard scattering near the overlap surface; the produced
semihard partons lose energy to the medium, whose enhanced
thermal partons hadronize into the ridge particles that carry the
footprint of the initial geometry. The φ dependence of the ridge
distribution R(pT , φ,Np) is therefore expected to be minimal
at large Np (small b), but increases with decreasing Np, thus
opening the gap between φ = 0 and π/2 as shown in Fig. 1.
The recoil semihard partons directed toward the interior of the
dense medium are thermalized and retain no memory of the
initial geometry by the time they are hadronized; together
with all the other soft processes that occur in the interior
they form the bulk that is φ independent. With B(pT ,Np)
in Eq. (2) being independent of φ, it is possible to calculate
v2(pT ,Np), whose value depends on the relative magnitudes
of B(pT ,Np) and R(pT , φ,Np). The absolute magnitude of
R(pT , φ,Np) can be related to the ridge yield that depends on
the trigger angle φs in dihadron correlation [2]. Thus we have a
tightly constrained system that restricts the options available to
finding a satisfactory physical basis to explain all the relevant
experimental features.

To summarize this section, we have described an overall pic-
ture in which the φ and Np dependencies of RAA(pT , φ,Np)
are to be related to those of the ridge structure at low pT . In
the following sections we implement this picture with concrete
calculations.

III. RIDGE AND DIHADRON CORRELATION

The discussion in the preceding section is concerned mainly
with the single-particle distribution ρ1(pT , φ,Np). However,
ridgeology (short for ridge phenomenology) involves two-
particle correlations. Let us denote two-pion distribution after
background subtraction by

ρ2(p1, φ1, p2, φ2) = dNππ
AA

p1T
dp1T

dφ1p2T
dp2T

dφ2
(Np), (7)

where the subscript T will for brevity be omitted, since all
momenta will hereafter be restricted to the transverse plane
with |η| < 0.35. We shall use label 1 to refer to the trigger
and label 2 to a particle in the ridge. Thus, we have �φ =
φ2 − φ1 for the correlation angle, not to be confused with the
notation in Ref. [1] where �φ denotes the angle of a pion
relative to the reaction plane. When the reaction plane is used
as the reference for triggers in correlations (as will be done in
the following), then φ1 is identified with φs in Ref. [2]. The
dihadron correlation distribution has two components, which
are referred to as Jet and Ridge [3,4], the former being the
peak in �η that sits above the pedestal that is the latter with a

wide spread in �η. We write them without the arguments as

ρ2 = ρJ
2 + ρR

2 . (8)

We shall consider only the latter, assuming that in ridgeology
the former has been subtracted out from the dihadron correla-
tion function.

The stage is now set for us to discuss the crucial point in
our physical basis that relates ρR

2 (p1, φ1, p2, φ2) to the ridge
component R(pT , φ,Np) in Eq. (2) for the single-particle
distribution. Usual ridgeology involves the use of a trigger
and measures the momentum of another particle associated
with it. For p1 in the range 3–4 GeV/c as studied by STAR
in Ref. [2], the parton that produces the trigger is semihard,
i.e., its transverse momentum is in the intermediate kT region,
<5 GeV/c. PHENIX uses even lower trigger momentum
(2 < p1 < 3 GeV/c) to study the away-side structure [18].
The azimuthal properties of the ridge structure as functions
of φ1 and φ2 separately provide significant insight into the
correlation between the semihard and the soft thermal partons
that does not depend sensitively on the trigger momentum
[2]. A model on that azimuthal correlation has successfully
reproduced the data on the φs dependence of the ridge yield
[9]; moreover, a prediction on the asymmetry of the ridge
structure in that model (CEM) has recently been verified by
an analysis of the STAR data [19]. The significance of that
finding as related to our present problem is that the ridge yield
studied in Refs. [2,9] involves an explicit integration of the
�φ distribution of ρR

2 over the ridge angle φ2, while the ridge
component R(pT , φ,Np) in ρ1 involves an implicit integration
of the same over the trigger angle φ1. A successful description
of the correlation between φ1 and φ2 is therefore a crucial input
for the determination of R(pT , φ,Np).

An important part of the physics implied in the above is that
the direction of the semihard parton that generates the ridge
need not be identified by a trigger particle, i.e., a ridge can
exist whether or not there is a trigger. A ridge particle at φ2

can be due to semihard partons at a range of φ1 around φ2, so
for an inclusive ridge distribution in φ2, the value of φ1 should
be integrated over, relative to every fixed φ2. If we omit the
arguments pT and Np in R(pT , φ,Np) and identify φ = φ2,
then we have

R(φ2) ∝
∫

dφ1 ρR
2 (φ1, φ2), (9)

where the proportionality factor involves the integration over
p1, which will not be considered explicitly. On the other hand,
the ridge yield determined in Ref. [2] integrates over all φ2 in
the range |�φ| < 1, so we have

YR(φ1) ∝
∫

dφ2 ρR
2 (φ1, φ2), (10)

where the proportionality depends on the number of triggered
events in prescribed ranges of p1 and p2, since YR is the per-
trigger yield. The effective range of integration in both Eqs. (9)
and (10) depends on the correlation width in ρR

2 (φ1, φ2) and is
much narrower than 1 rad.

It should now be clear why the φ dependence of RAA in
the PHENIX data [1] should in our view be related to the
ridgeological study by STAR [2]. There is, however, more
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complication than just the correlation in �φ. The dependence
on centrality that has not been made explicit in Eqs. (9) and
(10) is evident in both Refs. [1] and [2]. To achieve the correct
dependence on Np requires a careful consideration of the
geometry of the problem, which is the subject of the next
section.

A summary of this section is that the distribution of ridge
particles and the ridge yield are two sides of the same coin,
the former being the projection onto φ2 of the two-particle
distribution ρR

2 (φ1, φ2), the latter being the projection of the
same onto φ1.

IV. GEOMETRICAL CONSIDERATIONS

The correlation between a semihard parton at φ1 and a
ridge particle at φ2 has been studied in the CEM that involves
several subprocesses [9]. (a) The semihard parton loses energy
to the medium. (b) Successive radiation by the parton enhances
the thermal partons in the vicinity of the trajectory. (c) The
enhanced thermal partons are carried by local flow to various
points on the surface in directions normal to the surface.
(d) Hadronization of those enhanced thermal partons by
recombination generates the ridge particles that are centered
around the average flow direction. (e) Density of the ridge
is highest when the flow directions are in alignment with the
direction of the semihard parton. (f) The resultant correlation
between φ1 and φ2 can be described by the convolution of a
Gaussian distribution in φ1 − ψ (where ψ is the local flow
direction) with another distribution describing the fluctuation
of φ2 from ψ . In the midst of all those subprocesses that cannot
be calculated from first principles, there are considerations of
nuclear density, points of semihard scattering, emission points
along the trajectories, and the exit points at the surface, all
of which have been taken into account to the extent possible.
What we can adapt from that study in ridgeology is the central
result that there is a correlation

C(x, y, φ1) = exp

{
− [φ1 − ψ(x, y)]2

2σ 2

}
(11)

between the semihard parton direction φ1 and the flow
direction ψ(x, y) at the exit point (x, y) on the surface, with
σ = 0.33. The angle between the ridge particle φ2 and ψ due
to fluctuations has negligible effect on the results.

For every semihard parton direction φ1 a variation in the
starting point of the trajectory in the nuclear overlap leads
to a variation in ψ(x, y). This important property can be
turned around and applied to the ridge component of the
single-particle distribution. With φ2 identified as ψ , for every
ridge particle detected at φ2 there is a variety of semihard
partons in direction φ1 that can contribute to that ridge
depending on where the exit point (x, y) is, so long as |φ1 − φ2|
is within the Gaussian width of Eq. (11). The point to stress
here is that for R(pT , φ,Np) in the single-particle distribution
in Eq. (2), φ is φ2 and the semihard parton at φ1 is undetected
and should be integrated over.

The scheme described above can be implemented by con-
crete calculation because the main input is angular correlation
using early time geometry. Hadronization, of course, occurs at

late time, and we do not rely on hydrodynamics to describe the
evolution of the system in space-time. Our assumption is that
the ridge particles in the final state have the same φ distribution
as that of the enhanced thermal partons at early time, which
in turn is prescribed by Eq. (11). The bulk component that
has no preferred direction to expand (not being the same as the
hydrodynamical bulk) is isotopic and becomes the background
of the ridge that carries all the information about the anisotropy
of the initial geometry.

When two nuclei of radius RA collide at impact parameter
b, the almond-shaped overlap has width and height given,
respectively, by

w = 1 − b/2, h = (1 − b2/4)1/2, (12)

where all lengths are normalized by RA. The appropriate
geometry that can best describe the intial configuration almost
immediately after impact is the ellipse( x

w

)2
+

(y

h

)2
= 1. (13)

The flow direction at the surface is normal to that surface, so
its azimuthal angle is

ψ(x, y) = tan−1

(
w2y

h2x

)
. (14)

It should be noted that although we refer to ψ as the flow
direction, the use of those words is mainly a compact way to
name the direction normal to the surface, as defined in Eq. (14).
We place no emphasis on hydrodynamics as the basis for that
description, especially in the initial phase of the evolution of
the medium. The implication of Eq. (11) is that for a fixed
semihard parton at φ1, the ridge particle at φ2 identified with
ψ(x, y) can deviate from φ1 at most by σ , as illustrated in
Fig. 2(a). By the same reasoning, for a fixed φ2 the possible

FIG. 2. (Color online) Sketches to illustrate the relationship
between the semihard parton’s direction φ1 (in thin red arrows) and
the ridge particle’s direction φ2 (in thick green arrows). (a) Three
possible semihard partons all having the same φ1, but generating
ridge particles in different directions φ2 not deviating by more than σ

from φ1. (b) For a fixed φ2 (two being illustrated), φ1 of contributing
partons are restricted to within a cone of width σ around φ2.
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semihard partons that can contribute to the corresponding ridge
must have their φ1 that can deviate from φ2 by no more than
σ , as illustrated in Fig. 2(b). That means the exit point (x, y)
of the semihard parton at the surface is restricted to a certain
range, which we shall denote by S(φ2, b).

From the geometry of the ellipse we can use the constraint of
Eq. (13) to write x = w cos θ and y = h sin θ so that S(φ2, b)
can be determined by

S(φ, b) =
∫

arc
d
 =

∫
[(dx)2 + (dy)2]1/2

=
∫ θ2

θ1

[w2 sin2 θ + h2 cos2 θ ]1/2dθ

= h[E(θ2, α) − E(θ1, α)], (15)

where E(ϑ, α) is the elliptic integral of the second kind

E(ϑ, α) =
∫ ϑ

0
(1 − α sin2 θ )1/2dθ. (16)

In Eq. (15) we have

α(b) = 1 − w2/h2

θi = tan−1

(
h

w
tan φi

)
, i = 1, 2, if φi � π/2

φ1 = φ − σ, φ2 = φ + σ. (17)

If φ2 > π/2, then

θ2 = π

2
+

∣∣∣∣cot−1

(
h

w
tan φ2

)∣∣∣∣ . (18)

Thus the physical meaning of S(φ, b) is that it is the segment of
the surface through which the semihard parton can be emitted
to contribute to a ridge particle at φ. In Fig. 3 we show S(φ, b)
for φ = 0 and π/2 and σ = 0.33. The two curves start out
with the same value at b = 0 but develop a wide gap between
them as b increases. If they are plotted against Np, then the
behavior of S(φ,Np) appear similar to the Np dependence of
R′

AA shown in Fig. 1(b) for b < 1.5, corresponding to Np >

50, apart from a common background for the two sets of data
points. That is a strong hint that we are on the right track.

Note that the initial slope of S(0, b) at b = 0 is positive,
but that of S(π/2, b) is negative. The latter can intuitively
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FIG. 3. Surface segment S(φ, b) vs. normalized impact parameter
b for φ = 0 (solid line) and φ = π/2 (dashed line) and σ = 0.33.

be understood because the ellipse is narrower than the circle
when viewed from the top, so the segment of the surface within
the width σ decreases with increasing b. In the former case
the ellipse is flatter than the circle when viewed from φ = 0,
so at fixed σ the segment covers more of the surface as b is
increased near b = 0. What is remarkable is that such detailed
geometrical properties seem to be exhibited by the behavior of
R′

AA at high Np.
It should be mentioned that our consideration so far has

been exclusively in the transverse plane at midrapidity so that
the use of elliptic geometry has been simple and adequate for
the calculation of the surface segment S(φ, b) through which
semihard partons are emitted at small |y|. Since semihard
scattering occurs at early time (τ < 0.2 fm/c), the appropriate
geometry is the overlap in the transverse plane of two Lorentz-
contracted disks. Longitudinal geometry enters the problem in
the consideration of local density later in this section.

We now assert as the basic assumption about the azimuthal
anisotropy of the single particle distribution ρ1(pT , φ, b) that
it arises from the φ dependence of the ridge component that
is proportional to S(φ, b). That component depends on all
three variables pT , φ, and b. Since the thermal partons are
exponential in pT , we write in the factorizable form

R(pT , φ, b) = e−ET (pT )/T ′
A(b)S(φ, b), (19)

where the use of the transverse kinetic energy ET is discussed
in Ref. [8] as a means to account for the hadronic mass m0

with ET (pT ) = (p2
T + m2

0)1/2 − m0. The factor A(b) depends
only on b, since the other two factors in Eq. (19) exhaust the
pT and φ dependencies. The bulk term in Eq. (2) has no φ

dependence, so we write as in Ref. [8]

B(pT , b) = C2(b)

6
e−ET (pT )/T , (20)

where the prefactor C2/6 follows from the thermal parton
distribution q0dNB/dqT dφ = CqT exp(−qT /T ) through re-
combination. C(b) is known from a previous study and is
described as a power law in Np [20], on which we shall make
a slight modification below to render a better description of
the data. Since the ridge particles are due to the hadronization
of the enhanced thermal partons, its T ′ is higher than the bulk
T by a small amount discussed previously [3,8] and will be
detailed below.

The factorized form for R(pT , φ, b) in Eq. (19) is an
approximation of a complicated expression that involves an
integration over all points of semihard scattering in the nuclear
overlap region and another integration along the trajectory
of each semihard parton in the medium [9], as well as over
the angle φ1 in Eq. (9). The probabilities of the creation
of a semihard parton and of its energy loss depend on the
local density of the medium. We simplify all that by writing
A(b) in Eq. (19) as being proportional to the effective density
D(x ′, y ′, b) at a representative point (x ′, y ′) near the surface
where semihard scattering takes place. Factoring out C2(b)/6
explicitly which carries the dimension (GeV)−2 for both
B(pT , b) and R(pT , φ, b), we write

A(b) = C2(b)

6
aD(x ′, y ′, b), (21)
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where a is a free parameter to be fixed by the magnitude of
v2(pT , b) that determines the degree of azimuthal anisotropy.
As we have noted earlier, this is a highly constrained problem
in which many pieces of data are brought to bear on the
phenomenology.

For the local density D(x ′, y ′, b) in the transverse plane
we use the Glauber model to compute it, which, for an
arbitrary point (x, y), is, apart from an unspecified overall
normalization,

D(x, y, b) = LA(x, y)[1 − e−ωLB (x,y)]

+LB(x, y)[1 − e−ωLA(x,y)], (22)

where ω = 4.6 for Au + Au collision [9] and LA,B(x, y) are
the longitudinal lengths

LA,B(x, y) = 1

ρ0

∫ zA,B

−zA,B

dzρ(s, z) (23)

and ρ(r) is the nuclear density in Woods-Saxon form

ρ(r) = ρ0[1 + e(r−r0)/ξ ]−1 (24)

with r0 = 0.92, ξ = 0.08, and ρ0 = 0.285, where all lengths
are in units of RA = 7 fm and ρ is normalized by A. In Eq. (23)
z2
A = 1 − s2, z2

B = 1 − |�s − �b|2, and

s2 = (x + b/2)2 + y2. (25)

The approximation we make to avoid averaging over all points
(x, y) in the initial overlap is to choose (x ′, y ′) to be at a
representative distance δr from the surface on the short axis
of the almond. Detailed study has shown that the layer in the
medium just below the surface in which semihard partons are
predominantly produced, leading to the ridge particles, is of
thickness 0.2 [9]. Thus we adopt δr = 0.17 for the average
and choose

x ′ = 1 − b/2 − δr, y ′ = 0. (26)

In this way D(x ′, y ′, b) is a calculable quantity for every b.
Its normalization is absorbed into the unknown parameter a in
Eq. (21).

The treatment of the geometry of the collision problem in
this section is far more realistic than the �(φ) function used
in Refs. [7,8]. The incorporation of the correlation properties
found in CEM [9] in the determination of S(φ, b) endows
the ridge component R(pT , φ, b) with a reliably calculable φ

dependence that can be tested as the physical origin of the
anisotropy of the single-particle distribution ρ1(pT , φ, b).

A way to summarize what has been done in this section is
to use Fig. 2(b) and state that, for every ridge particle at φ2

indicated by the thick green arrow, the possible angles φ1 of the
semihard partons that can contribute to it are within the cone
shown by the thin red arrows, which subtends a segment on
the elliptical boundary. That segment is quantified by S(φ, b)
that we have calculated. It gives the φ dependence of the ridge
distribution R(pT , φ, b), whose b dependence is affected by
the medium density that is also calculable from geometry.

V. ELLIPTIC FLOW COEFFICIENT v2( pT , b)

It is now straightforward to calculate v2, defined by the
second harmonic of ρ1

v2(pT , b) = 〈cos 2φ〉 =
∫ 2π

0 dφ cos 2φρ1(pT , φ, b)∫ 2π

0 dφρ1(pT , φ, b)
. (27)

Using Eqs. (2) and (19) we obtain

v2(pT , b) =
∫ π/2

0 dφ cos 2φS(φ, b)

K(pT , b) + ∫ π/2
0 dφS(φ, b)

, (28)

where, due to Eqs. (20) and (21),

K(pT , b) = πB(pT , b)

2e−ET (pT )/T ′
A(b)

= π

2aD(x ′, y ′, b)
e−ET (pT )/T ′′

(29)

with

1

T ′′ = 1

T
− 1

T ′ . (30)

Note that C2(b) in A(b) and B(pT , b) are canceled, leaving
only the density D(x ′, y ′, b) to prescribe the b dependence in
K(pT , b).

The integrals in Eq. (28) are easy to evaluate, but the result
on v2 depends on the magnitude of K(pT , b), which has an
undetermined parameter a. Moreover, the suitable values for
the inverse slopes T and T ′ require some discussion of the
thermal distributions. In the recombination model for heavy-
ion collisions [21] the shower parton distribution S can be
calculated from semihard and hard scattering, but the thermal
parton distribution T is determined by phenomenology. It is the
hadron distribution at low pT that is fitted by an exponential
form, from which is inferred the T distribution through TT
recombination in the case of meson. TS recombination is
then calculated to obtain the effect of semihard scattering
at intermediate pT . What is done in Ref. [21] is to extract
the inverse slope from the inclusive spectrum averaged over
all φ. Ridgeology in Refs. [7,8] separates T ′ from T , but is
based on a very simple model on φ dependence. In our more
realistic study here the complication of R(pT , φ, b) in Eq. (19)
cannot be isolated from the background B(pT , b) in Eq. (2)
without the knowledge of the parameter a in Eq. (21), which
in turn cannot be determined separately from T and T ′. An
iterative process may be necessary, the first step of which is
what we do now by taking T ′ to be as given in Ref. [21]:
T ′ = 0.317 GeV and �T = T ′ − T = 0.045 GeV as given
in Ref. [3]. From Eq. (30) follows T ′′ = 1.916 GeV. With
these values we can calculate K(pT , b) and then v2(pT , b) in
Eq. (28) with a suitable choice of a.

In Fig. 4 we show our calculated results for v2(pT , b)
for pT = 1.21 (solid line) and 1.71 GeV/c (dashed line)
exhibiting excellent agreement with the data that have the
corresponding 〈pT 〉 > [1]. The one parameter we adjust to
get the best fit is a = 0.47. The nature of the b dependence
is critically dependent on the properties of S(φ, b), while
K(pT , b) plays a less sensitive role, being of order 1 for
most values of b at pT < 2 GeV/c. K(pT , b) is a measure
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FIG. 4. Elliptic flow coefficient v2(pT , b) vs. b for pT =
1.21 GeV/c (solid) and 1.71 GeV/c (dashed). Data are from Ref. [1].

of the relative strength of the bulk component B(pT , b) to
the ridge component R(pT , φ, b) in Eq. (2) for single-particle
distribution. The fact that we have a good reproduction of
the data on v2(pT , b) validates our approach to assigning the
φ dependence of ρ1(pT , φ, b) entirely to R(pT , φ, b). That
validation is strengthened when the same formalism can be
shown to reproduce the data on the ridge yield in φs-dependent
dihardron correlation.

To summarize, we have in this section made the first
phenomenological demonstration that the φ dependence cal-
culated in Sec. IV leads to a good description of the data on
v2(pT , b) using one free parameter a for the overall magnitude
of the azimuthal anisotropy.

VI. DEPENDENCE OF RIDGE YIELD
ON TRIGGER DIRECTION

We now consider the correlation between a trigger and
the ridge particle associated with it. It may be helpful to
recapitulate what we have done. For single-particle distribution
the ridge component R(pT , φ, b) is related to the dihadron
correlation distribution by Eq. (9), where ρR

2 is the ridge
component of ρ2 expressed in Eq. (8). Dominance of ρR

2
by the correlation function C(φ1, φ2) shown in Eq. (11) with
φ2 = ψ(x, y) leads to the study of the surface factor S(φ, b)
given by Eq. (15). The integral in Eq. (9) is carried out in
Eq. (15) that results in R(φ2, b) ∝ S(φ2, b), as shown explicitly
in Eq. (19). Now, with the same ρR

2 (φ1, φ2) we can calculate the
ridge yield YR(φ1) as given in Eq. (10), where the integration
of ρR

2 (φ1, φ2), dominated by C(φ1, φ2), over φ2 results in

YR(φ1, b) ∝ S(φ1, b). (31)

Thus what we know already about S(φ, b), shown in Fig. 3,
need only be replotted to be compared to data.

In Ref. [2] the per-trigger ridge yield is analyzed for p
trig
T

and passoc
T in the narrow ranges 3 < p

trig
T < 4 GeV/c and 1.5 <

passoc
T < 2.0 GeV/c in six bins of φs (trigger direction relative

to the reaction plane) between 0 and π/2 for two centralities
0–5% and 20–60%. For the corresponding b values we use
b̄ = 0.33 for the former and average over 1.06, 1.24, 1.41,
and 1.57 for the latter. From S(φ, b) in Eq. (15) we obtain the
results for YR(φ, b̄), shown by the solid lines in Figs. 5(a) and
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0.15 (b) 20−60%

0 20 40 60 80
0
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(a) 0−5%

STAR

φ
s

Y
R

(φ
s)

FIG. 5. Ridge yield per trigger vs. trigger angle φs relative to
reaction plane for (a) 0–5% and (b) 20–60% centralities. Solid lines
are calculated results from Eq. (31), and the data are from Ref. [2].

5(b), compared to the data from Ref. [2]. The normalization of
the theoretical curves is adjusted to render a good overall fit in
Fig. 5(a), since the data on yield depend on the experimental
cuts so their magnitudes are not predictable. However, once
the normalization factor for Fig. 5(a) is determined, that for
Fig. 5(b) is not readjustable. Our results show good agreement
with the data both in the two φs dependencies and in the
normalization for the noncentral collisions.

The mild decrease of YR(φs) with φs in Fig. 5(a) can be
seen in Fig. 3 when b is restricted to b = 0.33. The precipitous
decrease in Fig. 5(b) corresponds to the large gap between the
two curves of S(φ, b) for φ = 0 and π/2 when b is between
1.06 and 1.57. Of particular interest is the increase of S(φ =
0, b) when b is increased from 0.33 to about 1.5. Indeed, the
data of YR(φs, b) in Fig. 5 show that the yield at the lowest
φs is larger for 20–60% than for 0–5%, unlike the situation
for all higher φs bins. That is a remarkable confirmation of the
validity of Eq. (31) and of the properties of S(φ, b) that we
have obtained.

Thus in this section we have shown the other side of the
coin in the metaphor used at the end of Sec. III. The ridge yield
is also well described by S(φ, b).

VII. NUCLEAR MODIFICATION FACTOR

Having shown the existence of substantial support for the
relevance of S(φ, b) to v2(pT , b) and YR(φs, b), we now return
to RAA(pT , φ, b), the new data on which stimulated our present
line of investigation in the first place. Recall that in Sec. II an
alternate nuclear modification factor (NMF) R′

AA(pT , φ,Np)
is defined by rescaling with Np instead of Nc for pT < 2
GeV/c; its dependence on Np is shown in Fig. 1(b). The
way in which the data points for φ = 0 and π/2 converge
as Np approaches 400 is very similar to the way that S(0, b)
and S(π/2, b) converge as b → 0 in Fig. 3. The φ-dependent
part is, however, only the ridge component in ρ1(pT , φ,Np);
the bulk component that is roughly of the same magnitude is
the other piece yet to be added, rendering R′

AA(pT , φ,Np) to
behave as in Fig. 1.
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The normalizations of both B(pT ,Np) and R(pT , φ,Np)
in Eq. (2) should now be determined. Their relative magnitude
has already been examined in connection with K(pT , b) in
Eq. (29). Using Eqs. (19), (20), and (21), let us re-express
their sum as follows

ρ1(pT , φ,Np) = C2(Np) f (pT , φ,Np), (32)

where

f (pT , φ,Np) = 1
6 [e−ET /T + aD(b)S(φ, b)e−ET /T ′

]. (33)

The strength of the thermal partons in the medium, character-
ized by C(Np), is not calculable in our approach and has always
been determined by fitting the low-pT hadronic data [21]. Its
dependence on Np has been quantified in Ref. [20] based on
older data. We now give a better determination of it in light of
the newer data that include also the φ dependence [1].

It has been an assumption in our approach that the φ de-
pendence of ρ1(pT , φ,Np) is borne by R(pT , φ,Np) alone in
Eq. (2) and not by B(pT ,Np) at all. While that assumption has
been tested indirectly by v2(pT , b) in Fig. 4, we now confront
it directly by recognizing that if it is valid, then f (pT , φ,Np)
in Eq. (33), which we can calculate, must correctly describe
the experimental φ dependence of ρ1(pT , φ,Np), apart from
an overall normalization. In other words, C(Np) in Eq. (32)
must be independent of φ, a property that could not have
been checked prior to any knowledge about the φ dependence
of ρ1(pT , φ,Np). With the data on the latter being now
given in Ref. [1], we have checked that C(Np) is indeed
insensitive to φ. We exhibit that finding in the following more
revealing way.

If we use the experimental values for ρ1 on the left-hand
side of Eq. (32) and the calculated values of f (pT , φ,Np)
on the right-hand side, we can determine their averages over
φ separately; we then take the square root of their ratio and
regard the result as the empirical C(Np). Strictly speaking,
it is possible for C(Np) thus extracted to depend on whether
pT is 1.21 or 1.71 GeV/c. They are, however, shown to be
independent of pT in Fig. 6 by points depicted in different
symbols that essentially overlap. We can fit them very well by
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FIG. 6. The points are empirical C(Np) described in the text for
pT = 1.21 GeV/c (solid circles) and 1.71 GeV/c (open squares).
The straight line is a power-law fit.
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FIG. 7. Pion inclusive distribution ρ1(pT , φ,Np) vs. C2(Np) at
six points of Npart given in Ref. [1] for three ranges of φ: (0,15◦),
(30◦, 45◦), and (75◦, 90◦). (a) 1.0 < pT < 1.5 GeV/c, (b) 1.5 <

pT < 2.0 GeV/c. The lines are calculated values from Eqs. (32)
and (33).

a simple power law

C(Np) = 1.1 N0.54
p GeV−1 (34)

as shown by the straight line. We can then use this formula in
Eq. (32) and exhibit the φ dependence of ρ1(pT , φ,Np) in two
ways. First, we plot the experimental data of ρ1(pT , φ,Np)
vs. C2(Np) as points in Fig. 7 at the six values of Np

treated as parametric variables and for (a) 1.0 < pT < 1.5
GeV/c and (b) 1.5 < pT < 2.0 GeV/c. In each panel there
are three sectors of φ values corresponding to �φ = (0, 15◦),
(30◦, 45◦), and (75◦, 90◦) analyzed in Ref. [1], although the
legend in the figure approximates them as integral fractions of
π . The curves are the results of our evaluation of f (pT , φ,Np)
at the corresponding values of the parameters. The agreement
between theory and experiment is excellent.

Another way is to exhibit directly R′
AA(pT , φ,Np) vs. Np

in Fig. 8 and RAA(pT , φ,Np) in Fig. 9. The calculated results
based on Eq. (32) are shown by solid, dash-dotted, and dashed
lines for φ = (0, 15◦), (30◦, 45◦) and (75◦, 90◦), respectively.
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FIG. 8. Alternative R′
AA(pT , φ,Np) vs. Np for φ and pT values as

in the figure caption of Fig. 7. Data points are obtained from Ref. [1]
by rescaling RAA(pT , φ,Np). The lines are calculated results.
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FIG. 9. Standard RAA(pT , φ,Np) vs. Np . Data points are from
Ref. [1] as in Fig. 8. The lines are calculated results.

They agree with the data essentially all within errors. The
spread for different values of φ is therefore to be interpreted
as a consequence of the physics of ridges. We now see that
the flatness of the NMF RAA along the normal to the reaction
plane, pointed out especially in Ref. [1], is not caused by
any extraordinary, single piece of physics. It is due to the
cancellation of the linearly rising behavior of R′

AA shown by
the dashed lines in Fig. 8 and the decreasing behavior of Np/Nc

in the rescaling factor Z(Np)/Z′(Np) in Eqs. (4) and (5). The
question is why R′

AA(φ = π/2, Np) rises with Np. At low pT

path length is not an important issue. The rising behavior is
the consequence of a combination of factors that include the
broadening of the tip of the ellipse, when b is decreased, and
the increasing likelihood for semihard partons directed at large
φ1 to produce ridge particles with a narrow cone of angular
correlation around φ2 ≈ π/2. That likelihood is quantified by
S(φ, b), as shown by the dashed line in Fig. 3.

In the above we have considered only pion production at low
pT , where TT recombination dominates. For pT > 2 GeV/c,
the contributions from TS and SS recombination must be
added, as have been calculated before for all centralities [22].
But now with the new parametrization of C(Np) given in
Eq. (34) for TT recombination, we can revisit the single-
particle distributions at higher pT , averaged over all φ, even
though the TT component is not dominant. The calculated
result is shown in Fig. 10 for nine bins of centrality. The
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FIG. 10. Inclusive distributions of π 0 for all centralities ranging
from 0–10% (top) to 80–90% (bottom) in 10% steps, each displaced
by a factor of 0.2. The data are from Ref. [1].

agreement with data [23] is evidently very good. How they
depend on φ remains to be investigated.

With this section we have completed the circuit and
returned to the original question about the characteristics of
the nuclear modification factor raised in Sec. I. By reproducing
the data on its φ dependence at low pT , we have demonstrated
that all φ dependencies in ridges, elliptic flow, and NMF are
interconnected.

VIII. CONCLUSION

We have given a unified description of all the azimuthal
dependencies of all observables on π0 production at low pT

in heavy-ion collisions. They are: RAA(φ,Np), v2(Np) and
ridge yield YR(φs,Np) as functions of Np, the number of
participants. The main physics input is that the semihard
scattering near the surface drives the azimuthal anisotropy
on the one hand and the production of ridge particles on the
other with or without trigger. The geometrical factor, S(φ, b),
that makes precise the bridge between the two aspects of the
problem follows from a study of the correlation between the
φ directions of the trigger and ridge particles. The main
understanding achieved in this picture is that the single-
particle distribution dNπ

AA/pT dpT dφ has two components:
one is the φ-independent bulk B(pT ,Np), differing from the
conventional bulk that is φ dependent, and the other is the ridge
component R(pT , φ,Np) that carries all the φ dependence. It
is the latter that can be tested by correlation experiment using
triggers.

A number of parameters are involved in this analysis,
but most of them are adopted from previous studies. The
correlation width σ is an important input, and its value
was determined in Ref. [9] in connection with the study of
ridgeology. The values of T and T ′ are from Refs. [3] and [21],
and that of δr is an approximation of what was found relevant
in Ref. [9]. The parametrization of C(Np) is an improvement of
that found in Ref. [20] and is a description of the dependence on
centrality, not on φ. The one parameter that we have adjusted
in this article to fit the normalization of v2(pT , b) is a, which
appears in Eq. (21) and affects the magnitude of the ridge. The
basic properties of the φ dependence that we can calculate,
such as S(φ, b) and YR(φs, b), do not depend on a, although
RAA(pT , φ, b) depends on it indirectly.

The concern in this article has been exclusively about low-
pT pions at pT < 2 GeV/c. Conventionally, such particles are
regarded as products of soft processes. However, our view is
that some of them can be due to semihard processes that can
copiously produce semihard partons whose footprints are the
ridge particles at low pT . Triggers select a subset of events for
the study of correlations, but without triggers the effect of the
semihard partons must nevertheless be taken into account in
the calculation of inclusive distributions at low pT .

The production of proton has not been considered, either in
this article or in the experimental study of the φ dependence
of RAA [1]. Theoretically, large baryon/meson ratio has been
a signature of the recombination model [10,11]. Since the
same hadronization mechanism applies to both inclusive and
ridge production, we expect that RAA for proton will have
the same characteristics as that for pion. There are some
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differences in the pT dependence because of the difference in
the recombination functions, but the physics connecting RAA

and YR is the same. That is, at a fixed centrality S(φ, b) exhibits
the range of variation when φ is varied from 0 to π/2, which in
turn describes the ranges of variation of YR(φs) and RAA(φ), as
shown in Figs. 5 and 9, respectively. The behavior for proton
production should be similar. This is a good testing ground for
any exotic model that attempts to explain the so-called baryon
anomaly.

At intermediate pT above 2 GeV/c the dominance of TS
recombination changes the physics considered here. Ridge is
a manifestation of the enhanced thermal partons, and the peak
sitting above the ridge is localized in �η and is more closely
associated with the hard parton through the intermediary
shower partons [11]. Correlation in a jet peak is different from
that in the ridge, so the geometrical effect is also different.
Although the data on RAA(pT ,�φ,Np) vs. �φ in Ref. [1] do
not show significant difference between 1.0 < pT < 1.5 and
4.0 < pT < 5.0 GeV/c sectors, their Np dependencies are
quite different. For example, RAA(�φ ≈ π/2) is not constant

in Np for 4 < pT < 5 GeV/c, in contrast to the behavior
at 1.0 < pT < 1.5 GeV/c. It is clear that the physics at
intermediate pT is very different and requires a fresh approach
that is not a simple extrapolation from the study described here.
However, the TT component at higher pT , though smaller, can
be reliably calculated only if the formalism developed here is
used for the description of the φ dependence. Such a study
has been carried out and a remarkable scaling behavior has
been found in the dual dependence on φ and centrality [24], a
property that is contained in the PHENIX data [1].
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