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Strong coupling effects in proton scattering from 8He
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We present dynamic polarization potentials (DPPs), due to both neutron and neutron-pair pickup coupled
reaction channels, contributing to the proton-nucleus interaction for the case of 8He at 15.66, 25, and
61.3 MeV/nucleon. The available elastic scattering and transfer data were fitted in coupled reaction channels
calculations that allowed full interpartition couplings. In addition, the contributions with various different
combinations of coupled reaction channels were considered; we show that this can throw light on the nonlocality
of the underlying DPP, for which we determine the local and L-independent equivalent.
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I. INTRODUCTION

It has been known for some time that the coupling to
deuteron channels makes an important contribution to proton
scattering and can significantly improve the fit to certain
data. The earlier coupled reaction channel (CRC) calculations
[1–4] omitted nonorthogonality terms [5,6] but computational
developments have more recently allowed them to be included.
The development of inverse scattering techniques, whereby
the potential that yields a specific S matrix Slj can reliably be
calculated [7], makes it possible to determine a local potential
that represents the coupling effects. That is, we can find a
local single channel potential that precisely reproduces all
details of the elastic scattering as calculated by the full CRC
formalism. Such potentials are of interest for comparison with
pure phenomenologically fitted potentials and with potentials
derived by folding models. A consistent finding [8,9] of the
earlier work was that deuteron channels contribute a significant
repulsive component to the nucleon-nucleus interaction, in
addition to the expected absorptive component. The induced
potential, the dynamical polarization potential (DPP), is never
proportional to the bare potential so the coupling effects cannot
be represented as a renormalization of it.

Recent work [10], including nonorthogonality corrections,
confirms the repulsive effect of the contribution of the
8He(p, d)7He pickup reaction to p + 8He elastic scattering
at a bombarding energy of 15.66 MeV/nucleon and finds
very strong additional absorption. Although nonorthogonality
corrections significantly modified the details of the DPP, the
qualitative features were consistent with earlier findings. A
subsequent study [11] involving pickup from 10Be, a less
atypical nucleus, also found repulsion as well as absorption.
The absorption generated by 10Be(p, d)9Be coupling was less
than for 8He(p, d)7He, but the imaginary part of the DPP also
had a remarkable emissive region for r � 2 fm, suggestive of
strong nonlocality and possibly L dependence. Effects such
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as this make it unrealistic to correct a folding model potential
by uniformly renormalizing the real and imaginary parts, as is
commonly done. Indeed, the potentials extracted by inversion
from CRC calculations have properties that would not arise
naturally from any folding procedure based on a local density
model. This is consistent with the fact that precision fits
to precise and wide-range elastic-scattering data often show
evidence of such effects.

The nucleon-nucleus interaction is fundamental to nuclear
physics, so we need to establish such properties of the pickup
DPP as its dependence on energy and the nature of the target
nucleus. The continued development of CRC calculations [5,6]
affords us the opportunity to study the contribution of (p, d)
coupling, alone or together with other reaction channels;
in the present work we include coupling to the t + 6He
channels. Various combinations of different reaction channels
are defined in Sec. IV. This work provides the first evaluation
of the magnitude and energy dependence of the DPP arising
from two-nucleon pickup.

The calculations are carried out at three energies for
which there is elastic-scattering data: 15.66, 25, and
61.3 MeV/nucleon. The present work extends, with a different
emphasis, previous calculations [12] at 15.66 MeV/nucleon
and 61.3 MeV/nucleon for which fits for the (p, d) and
(p, t) angular distributions were published. We shall show
that different contributions to the overall DPP vary with
energy in sharply different ways related to angular-momentum
matching. The combination of different reaction channels
will be made to throw light on the nature of the underlying
nonlocality of the channel-coupling contribution to the DPP,
particularly its energy dependence. This nonlocality is very
different to that associated with knock-on exchange and
described phenomenologically by Perey and Buck [13]. Perey-
Buck nonlocality, while very important, is certainly not, as
seems sometimes to be assumed, the only form of nonlocality
that is important for nuclear scattering.

Pickup coupling presents a challenge to elaborate theories
of nucleon-nucleus interactions that do not include it explicitly.
Thus, it is important to establish the contribution of reaction
channels unambiguously. In support of the validity of the
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CRC framework that underlies our results, we note that
the same formalism and numerical procedures successfully
explain the threshold anomaly in heavy ion scattering [14,15].
Although, for nucleon scattering, reaction channel coupling
does not so clearly correspond to a previously recognized
anomaly, the effects are not less in magnitude, implying that
such coupling is a part of the nucleon-nucleus interaction
that cannot be ignored. Even if an averaged, local, and
L-independent representation of reaction channel effects is
implicit within microscopic folding theories, their explicit
inclusion is essential for precise fits for specific target nuclei.

The DPPs we present are determined by applying the
iterative perturbative (IP) SL to V (r) inversion proce-
dure [7] to S matrices calculated using the CRC method:
the “CC-plus-inversion” procedure. Other means of calcu-
lating the DPP exist, and our brief overview of them will
be drawn on when we discuss our conclusions, particularly
concerning the effects of nonlocality. Since we include both
coupled reaction channels (CRC) and continuum discret-
ized coupled channels (CDCC), representing breakup in
certain coupled partitions, we simply refer to coupled-channels
(CC) calculations.

Section II reviews the deceptively slippery concept of the
DPP. Section III reviews the many alternative ways in which
it has been determined, with some account of their advantages
and disadvantages, together with a specification of the method
we have employed. Section IV gives a full specification of the
CC calculations carried out, including details of the parameters
employed and fits to the data. Section V presents details of the
DPPs for all the different CC calculations at the three energies
studied. In Sec. VI we describe the extent to which our general
findings depend on the choices of various parameters that enter
into our calculations. Section VII discusses the nonlocality of
the DPP and the light thrown on this property by the results of
Sec. V and Sec. VIII summarizes the findings, discusses
the general implications for understanding nucleon-nucleus
interactions, and notes certain directions in which the present
work should be followed up.

II. THE DYNAMIC POLARIZATION POTENTIAL

A formal approach to calculating the DPP follows from
the reaction theory of Feshbach [16], relevant parts of
which are reviewed in subsection II A. Many articles write
down an equation for the nucleon-nucleus or nucleus-nucleus
interaction VOM(r) of the form

VOM(r) = VFM(r) + VDPP(r) (1)

in which expressions for the folding model (FM) potential
VFM(r) and the dynamic polarization potential (DPP) VDPP(r)
are either given or referenced, see, e.g., Ref. [17]. The
FM potential typically depends only on the densities of the
interacting nuclei and an effective nucleon-nucleon interaction
(assuming double folding) which may depend on the nuclear
densities and the asymptotic energy, E. In general, it will
depend smoothly on N , Z, and E. Strictly, VFM(r) is nonlocal
as a result of exchange processes (Fock term), though, for
elastic scattering, a local equivalent potential is generally

used. Due to the Perey effect [18], this local potential is not
equivalent for nonelastic processes, although this becomes less
significant as the mass number of the projectile increases [19].
We emphasize that exchange nonlocality is not the same as the
nonlocality of the DPP discussed below.

The focus of this article is on VDPP(r), which depends
on the specific characteristics (collectivity, the nature of the
strongly coupled channels, etc.) of the interacting nuclei, the
energy (particularly in the threshold region) and the effects
of the nuclear density gradients that are not represented
in a local density model. Local density models cannot
lead to L dependence which is predicted by the Feshbach
approach and for which there is phenomenological support.
The formal expression for VDPP(r), see below, reveals that
it is nonlocal and L dependent and hence more properly
written V L

DPP(r, r ′). After many years of optical model studies,
the nonlocality and L dependence of VDPP are far from well
understood. The physical processes, see subsection III C, that
lead to the L dependence and nonlocality are responsible
for the fact that the optical model potential cannot be fully
represented by a folding model that is based on a local
density model. These processes must be understood before
nucleon-nucleus or nucleus-nucleus scattering can be said to be
understood.

A. Overview of the Feshbach theory

We outline implications of Feshbach’s theory of nuclear
reactions in order to facilitate the ensuing discussion. The
theory provides a formal expression for the entire optical
model potential (OMP), but it also provides the basis for a
calculation of the contribution of specific coupled channels
against a background of many channels that are included
phenomenologically. This is justified formally in Ref. [20]
and provides a means of calculating the variation in the OMP
as nuclear properties change with energy or with Z and A.
It also makes it possible to study the contribution of specific
coupled channels.

Various calculations of the entire potential have been
made, see, for example, Refs. [3,21,22]. Reference [22]
includes references to other DPP studies and has a substantial
discussion of the nonlocality generated by channel coupling.
For simplicity, the present account is for nucleon-nucleus
scattering but can be generalized to composite projectiles.

Feshbach defined projection operators P for the target
nucleus ground state and Q for the excited states of the
target nucleus. They obey the standard rules for projection
operators: P 2 = P , Q2 = Q, PQ = QP = 0, P + Q = 1.
Formal expressions can be written for the contributions from
specific channels by dividing the Q space by writing Q =
p + q where p projects onto specific states to be considered,
and q projects onto the rest. The q space represents the
very many states whose contribution may be considered to
vary slowly with N , Z, and E. The difference between the
effective potential for the space defined by projection operator
π = P + p and the effective interaction for space P may be
considered to be the DPP that is due to the states included
within the space defined by p. The formal justification is
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given in Ref. [20], leading to an explicit expression for the
DPP, VDPP, that requires an evaluation of the complex and
nonlocal propagator in terms of Green’s functions. It is, in
terms of the local coupling potential V1m between the elastic
channel (channel 1) and all inelastic channels m within the
space defined by p:

VDPP =
∑

m,m′∈p

V1m(r)Gmm′(r, r ′)Vm′1(r ′). (2)

Being both nonlocal and L dependent, VDPP strictly should
be written V L

DPP(r, r ′). It is important that the interactions V1m

and Vm1 are effective interactions resulting from coupling to
the entire q space, although in practice, local representations
must be used. Models of the entire OMP, Refs. [3,21,22],
effectively consider p = Q with q = 0. Equation (2) pre-
sumes no coupling to rearrangement channels, pointing to
the problem of nonorthogonality when reaction channels are
considered.

The Green’s function Gmm′ (r, r ′) is the coordinate space
representation of 1/(E − H ) and, as such, involves the
interchannel coupling between all the channels m ∈ p. Omit-
ting this interchannel coupling is equivalent to replacing
propagator G by G0 = 1/(E − H0) where H0 involves a
diagonal potential only. In this case, and only in this case,
the nonlocal contributions of particular channels are additive,
a point that will be important later. An alternative to evaluating
Eq. (2) involves carrying out coupled-channels calculations as
described in subsection III B.

III. EVALUATION OF THE DPP

Two general methods have been applied to the calculation
of VDPP: direct evaluation of the Green’s function expression,
Eq. (2), and “coupled-channels plus inversion,” both to be
described below. References to earlier work will be found in
Ref. [22].

A. Direct evaluation

If coupling between the nonelastic channels is neglected,
the Feshbach expression can be directly evaluated as a
sum over Green’s functions sandwiched between interactions
coupling to the elastic channel. For special cases, such
as the long-range term generated by Coulomb excitation,
analytical evaluation is possible, see, e.g., Refs. [23–25].
More generally, the absence of the analytic properties of the
Coulomb interaction and the coupling between the nonelastic
channels seriously complicate the evaluation. Advantages of
direct evaluation include:

(i) The (nonlocal and L dependent) contribution to the
complex potential due to the coupled channels is
calculated directly.

(ii) When interchannel coupling is not included, the con-
tributions from different excited states may be directly
added.

(iii) The use of the Sturmian [22] method allows a restricted
class of interchannel coupling to be included.

Disadvantages or problems with this method:

(i) The L dependence and nonlocality of the resulting
potential make it hard to relate to local empirical
potentials.

(ii) It is not straightforward to include coupling between
the various channels that are coupled to the elastic
channel, an elaborate iterative procedure being required
except in the cases where the Sturmian method [22] is
applicable.

(iii) It is not straightforward to include nonorthogonality
and finite-range effects where there is coupling to re-
arrangement channels. Coulter and Satchler [3] exploit
the fact that a zero-range approximation gives separable
nonlocal pickup terms.

(iv) The representation of effects arising from antisym-
metrization is very difficult.

(v) Angular distributions to specific coupled channels
(sometimes important, not least as a check on the
calculations) are not a straightforward by-product.

B. Methods based on CC calculations

Early attempts at evaluating the DPP typically involved first
performing coupled-channels calculations and then attempting
to refit the resulting elastic channel angular distributions with
an optical model search code, e.g., Ref. [20]. Subtracting
the bare potential of the CC calculation from the result of
the potential search gives a measure of the effect of the
particular coupled channels but is unsatisfactory because of
the ambiguities and the restricted parametrization. A better
procedure is to invert the elastic channel S matrix from the
CC calculation to obtain an exact local and L-independent
representation of the DPP corresponding to the particular
channels included in the CC calculation.

Coupled-channels calculations permit any number of
channels, collective, breakup, or transfer, to be included,
limited only by the available computing power. Finite-range
and nonorthogonality corrections are now routinely imple-
mented in transfer calculations. There is no problem with cou-
pling between nonelastic channels. Alternative representations
of the DPP can be derived from the elastic channel S matrix,
Slj , or the elastic channel stationary state wave function, ψlj (r),
from the CC calculation. We list the main methods:

(i) Efficient Sl → V (r) inversion procedures permit a
direct evaluation of a local L independent potential that
exactly represents the effects of the channel coupling.
It is possible to invert Slj for spin-half and S

j

ll′ for
spin-1 projectiles, leading to spin-orbit and TR tensor
interactions.

(ii) Potentials that are spatially dependent (dependent on
angle as well as radius) but L independent can be
derived directly from the elastic channel wave function
[26,27].

(iii) L-dependent trivially equivalent local potentials
(TELPs) following the formulation of Franey and
Ellis [28].

(iv) The method closest to the exact inversion method is
the weighted TELP method as embodied, for example,
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in the code FRESCO [6]. It too yields a local and L-
independent potential that in certain cases is quite close
to that from direct inversion of the S matrix.

Advantages of the CC-plus-inversion method:

(i) Existing CC codes permit large numbers of channels
to be included, with full inter-partition coupling incor-
porating nonorthogonality corrections and finite-range
coupling.

(ii) The calculation directly produces the differential cross
sections for all coupled channels. This permits compari-
son with experimental data, thus enabling an evaluation
of the whole reaction formalism and the extraction of
spectroscopic information.

(iii) For certain strongly coupled inelastic channels [29,30],
exchange effects can be included by extending to
coupled integrodifferential channels.

Concerning point (iii), the future development of coupled
integrodifferential codes would be a key step in nuclear reac-
tion analysis, with inversion providing an exact L-independent
representation that can be compared with purely phenomeno-
logical potentials. This is useful because model-independent
fitting provides potentials giving precise and complete fits to
experimental elastic scattering data.

Iterative perturbative (IP) SL → V (r) inversion [7] pro-
vides an efficient means for determining the potential corre-
sponding to any theory that determines the S matrix directly,
such as theories based on the impulse approximation or
the resonating group model. It efficiently determines the
local equivalent for any nonlocal potential [31]. All the
DPPs presented here are derived using the CC-plus-inversion
approach in which IP inversion is applied to the elastic channel
SLJ from CC calculations using the code FRESCO [6].

C. Problematic features of the Feshbach approach

By whatever means the DPP is evaluated, there remains
a fundamental problem with the Feshbach theory as it is
generally applied. The folding model term cannot be calculated
with the bare NN interaction, yet the modifications to the
interaction to make a folding model tractable clearly involve
excitations that are not orthogonal to inelastic excitations.
The first, “folding model” term VFM would therefore, in prin-
ciple, be complex. This is specifically true with folding models
derived from elaborate G-matrix calculations [32,33] based on
realistic nucleon-nucleon interactions. Current folding models
generally involve some form of local density approximation
and cannot represent L-dependent effects since they do not
contain any representation of the angle between the local
nucleon momentum and the gradient of the nuclear density, i.e.,
a k · r term. Particles in reaction channels which do sense the
whole nuclear surface would, in general, make L-dependent
contributions to the effective potentials in other partitions.
The nonorthogonality between particular reaction channels
and channels that are implicitly included in G-matrix-derived
V1m and Vm1 suggests the development of an approach that is
analogous to the Strutinsky model of nuclear structure. The
folding model would provide a smoothly varying background

to which fluctuations extracted from the analysis of reaction
channel contributions would be added.

With the exact Green’s function methods, the treatment of
nonorthogonality corrections, and also finite-range corrections
to reaction channel contributions, are very difficult. Such
problems are less intractable within the CC-plus-inversion pro-
cedure. The inclusion of exchange terms is also difficult within
the formal Feshbach framework but, as noted above, they
could be included in inelastic-scattering calculations within the
CC-plus-inversion approach, extended to integrodifferential
equations.

IV. COUPLED-CHANNELS CALCULATIONS FOR p + 8He

We present details of a series of CC calculations involving
protons incident on 8He in which the following reaction
channels were included: (p, t) to 6He and (p, d) to 7He,
including breakup and reorientation channels in the deuteron
partition. Full complex remnant terms and nonorthogonality
corrections were included in all couplings between partitions.

We determined DPPs for the case when all possible
couplings between reaction channels (with some exceptions
as noted) were included. However, in order to get a more
complete understanding of the contribution of CC channels to
elastic scattering, we also carried out calculations with various
combinations of reaction channels. In Fig. 1 we show the

d1

d2

d3

d4

d5

d6

   He + p He + d t + eHp + eHt + eH He + d8 7 6 8 7 6

FIG. 1. Schematic representations of the six sets of coupled
reaction channels for which results are presented. The case labeled
d1 represents pickup to the 7He resonance channel, together with
deuteron breakup states of the outgoing deuteron. Case d2 represents
direct pickup of a neutron pair leading to ground and 2+ states of
6He, case d5 represents the “complete” calculation, and d3, d4, and
d6 represent the other possible couplings considered. There is no
coupling between the deuteron continuum and the triton channels.
The text specifies the spins, parities, and energies of the included
states.
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various possibilities, labeled d1, d2 . . . d6. We shall use these
labels extensively throughout this article as we discuss the way
in which these processes contribute to the effective p + 8He
interaction. We shall also introduce labels for certain modified
forms of these cases.

Analyses of cases d1 and d2 show how single-neutron
and two-neutron pickup respectively contribute to the nucleon
interaction (this seems to be the first evaluation of d2
contributions). Analysis of d3, in which single-neutron and
neutron-pair pickup channels are not mutually coupled, will
provide information concerning the nonlocality of the pickup
DPPs, and the energy dependence of nonlocal effects. Cases
d4 and d6 will demonstrate that the “b” channels in the generic
“gs <=> a <=> b” coupling can have a major effect on
“gs <=> a” coupling. Case d5 is the complete calculation.
The parameters for the proton interaction with 8He, as well
as the various other parameters, were chosen to give an
optimum fit to the elastic scattering and to the (p, d) and (p, t)
pickup angular distributions, where available, for the complete
calculation designated d5 in Fig. 1. The parameters were then
kept fixed for the other coupling systems d1–d4 and d6. The
DPPs will be presented for cases d1 to d5 at all energies and
for d6 at 15.66 MeV/nucleon. The effects of coupling between
the different partitions will become apparent, but the DPP for
case d1, for example, will not be exactly what it would be if the
parameters had been optimized for that case. We now present
the details of the parameters, the channels included and the
relevant fits to the elastic channels for case d5.

A. Parameters and fits at 15.66 MeV/nucleon

For protons interacting with 8He at 15.66 MeV/nucleon,
elastic scattering was calculated with a renormalized JLM [32]
folding model potential together with coupling to d + 7He
channels and t + 6He channels according to the schemes
labeled d1 to d6 in Fig. 1. The renormalization of the
JLM potential was chosen to give the optimum fit to the
elastic scattering for case d5, together with acceptable fits to
the transfer channel angular distributions. The fact that the
renormalization required was a factor of 1.02 for the real
part and 0.22 for the imaginary part suggests that in this
case the DPP will be predominantly absorptive. That is to
say, the channels shown in Fig. 1 are, in this case, evidently
the predominant source of absorption from the elastic channel
when protons interact with 8He. The fit to the elastic-scattering
angular distribution for the complete, d5, calculation is given
in Fig. 2 together with the neutron pickup calculation, d1.
Figure 3 shows the elastic scattering with no coupling (the
bare potential) and cases d1, d2, and d3. It can be seen that the
(p, t) effect is, as expected, much smaller than the (p, d) effect,
though the effect of the two together, without direct coupling
between the d and t channels (i.e., case d3) is much greater
than d1 alone near the minimum at 65◦. However, comparison
with the previous figure shows that the coupling between the
d and t partitions makes a crucial contribution to the fit at this
minimum.

The full calculation, case d5, was as described in Keeley
et al. [12]; we specify it here for ease of reference. The entrance
channel JLM potential was calculated using the no-core shell

20 40 60 80 100 120
θc.m.(deg)

10
0

10
1

10
2

10
3

dσ
/d

Ω
 (

m
b/

sr
)

d1
d5

FIG. 2. For proton elastic scattering from 8He at
15.66 MeV/nucleon, the calculated fit to the data for the full
(d5) calculation and the d1 case (neutron pickup).

model 8He density of Navrátil and Barrett [34]. In the d + 7He
exit channel the CDCC formalism was employed to model
the effects of deuteron breakup, with potentials of Watanabe
single-folding type using n and p plus 7He optical potentials
calculated according to the global parametrization of Koning
and Delaroche [35]. These were adjusted to give the best
fit to the measured (p, d) angular distribution, an increase
of a factor of 2 in the depth of the imaginary potential
wells being necessary to give a good description of the
data at angles greater than 50◦ in the center-of-mass frame.
Couplings to deuteron breakup states with the neutron and
proton in relative S and D states were included, along with all
allowed continuum-continuum couplings up to multipolarity
λ = 2. The neutron pickup transfer step was calculated using
the Reid soft-core potential [36] to bind the neutron and

20 40 60 80 100 120
θc.m.(deg)

10
0

10
1

10
2

10
3

dσ
/d

Ω
 (

m
b/

sr
)

Bare
d1
d2
d3

FIG. 3. For proton elastic scattering from 8He at
15.66 MeV/nucleon, the calculated fit to the data with the
bare potential (no coupling) and for the CC cases d1, d2, and d3.
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proton, including the small D-state component of the deuteron
ground state; the same interaction was used to calculate
the exit channel deuteron potentials. The n+ 7He binding
potential was of standard Woods-Saxon form, with radius
R0 = 1.25 × 71/3 fm, a0 = 0.65 fm, the well depth being
adjusted to give the correct binding energy. Pickup to unbound
states of the “deuteron” was included in addition to transfer to
the ground state.

The potential in the t + 6He exit channel was based on the
3He + 6Li parameter set A of Basak et al. [37], as no suitable
triton potentials are available. The 6He 0+

1 → 2+
1 coupling

was included using a standard collective model form factor
and the isoscalar deformation length of Khoa and von Oertzen
[38], the potential parameters being adjusted to recover the
same t + 6He elastic scattering given by an optical model
calculation using the unaltered parameters of Ref. [37]. The
adjusted potential parameters are given in Table 1 of Ref. [12].
Direct stripping of the two neutrons to both the 0+

1 ground
and 1.8 MeV 2+

1 excited states in 6He assumed transfer of
a di-neutron-like cluster. The 2n+ p binding potential was
taken from Guazzoni et al. [39] and the 2n+ 6He potential
was of Woods-Saxon form with radius R0 = 2.5 fm, close to
the matter radius of 8He, and diffuseness 0.7 fm.

The 8He(p, d)7He(d, t)6He two-step transfer was included
in addition to direct pickup of the two neutrons. The n+ d

binding potential was taken from Eiró and Thompson [40]
and the n+ 6He potential was of Woods-Saxon form with pa-
rameters R0 = 1.25 × 61/3 fm, a0 = 0.65 fm. The 7He/6He0+
form factor was calculated within a bin of width 320 keV with
the potential depth adjusted to give a resonance at the correct
energy: doubling the width of the bin did not change the results
of the calculation.

The various spectroscopic amplitudes required are listed in
Ref. [12], those for the light particle overlaps being fixed from
the literature, as were those for the n+ 6He overlaps, the rest
being obtained by fitting the ensemble of the available data, as
described in Ref. [12].

B. Parameters and fits at 25 MeV/nucleon

The calculations at 25 MeV/nucleon were exactly as
described above for 15.66 MeV/nucleon, with the exception
of the optical potentials in the entrance and exit channels.
The entrance channel JLM potential was calculated with the
same 8He density but for the appropriate incident energy. The
Watanabe single-folding potentials in the d + 7He exit channel
were calculated using the global parametrization of Koning
and Delaroche for the n and p + 7He potentials. No adjustment
of these potentials was made in this case. Finally, the t + 6He
potential in the exit channel was derived from the 3He + 6Li
set B potential of Görgen et al. [41], the parameters being
adjusted to recover the same t + 6He elastic scattering from a
CC calculation, including the 6He 0+

1 → 2+
1 coupling as given

by an optical model calculation using the unaltered potential
of Ref. [41]. The resulting parameters are given in Table I.

To fit the elastic-scattering data [42] at 25 MeV/nucleon
with the full, d5, calculation, quite extreme measures were
required: the JLM real part was multiplied by a factor of
0.85 and the imaginary part was multiplied by 0.05. This

TABLE I. The t + 6He potential parameters for the
25 MeV/nucleon calculation. The real part is of Woods-Saxon and
the imaginary part of Woods-Saxon derivative form.

V rV aV WD rD aD

70.0 1.35 0.75 5.74 1.61 0.9

implies that almost all the absorption for this case is a
result of reaction channel coupling; in subsection VI B, we
describe steps taken to determine the extent that the extracted
DPP depends on the extreme normalization of the imaginary
part. The d5 calculation fit to the measured elastic-scattering
differential cross section is shown as a solid line in the upper
panel of Fig. 4. The dashed line presents the calculation with
the same renormalized JLM potential (“bare” potential) but
with coupling switched off. The lower panel shows the effect
of the coupling on the analyzing power, for which there are no
measurements in this energy range.

C. Parameters and fits at 61.3 MeV/nucleon

The calculations at 61.3 MeV/nucleon were also as
described for 15.66 and 25 MeV/nucleon, with the exception
of the optical potentials in the entrance and exit channels.
The entrance channel JLM potential was calculated with the
same 8He density but for the appropriate incident energy. As
there are no elastic-scattering data available at an incident
energy of 61.3 MeV/nucleon the normalization factors of the
JLM potential in the d5 calculation were adjusted to match
an optical model calculation using the JLM potential with
both real and imaginary parts renormalized by factors of 0.8.
This prescription was found to give a reasonable description

10
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1

10
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FIG. 4. For proton elastic scattering from 8He at
25 MeV/nucleon, the solid line shows the calculated fit to
the data for the full, d5, calculation. The dashed line is with the d5
couplings all switched off. The upper panel shows the differential
cross section, the lower panel the analyzing power.
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FIG. 5. For proton elastic scattering from 8He at
61.3 MeV/nucleon, the upper panel compares the angular
distribution for the full, d5, calculation (solid line) with that (dashed
line) when all the couplings are turned off. The circles denote the
66 MeV/nucleon data of Ref. [43]. The lower panel compares the
analyzing powers for the same two cases.

of the existing 8He + p elastic-scattering data in this energy
region. A limited data set is available for the nearby incident
energy of 66 MeV/nucleon [43] and we compare the bare,
no-coupling, and full, d5, calculations with it in Fig. 5. The
resulting normalization factors of the JLM potential for the
d5 calculation were 0.9 (real) and 0.7 (imaginary), suggesting
that, at this energy, the DPP will be found to be repulsive and
absorptive but to a more modest extent than at the lower en-
ergies. Analyzing power data is expected to become available
for this reaction at 71 MeV/nucleon, having recently been
measured for 6He projectiles [44]. The effect on the analyzing
power seen in the lower panel of Fig. 5 suggests that a search
for spin-orbit parameters must be undertaken in the context of
d5-type calculations, a substantial project for future work.

The Watanabe single-folding potentials in the d + 7He exit
channel were calculated using the global parametrization of
Koning and Delaroche for the n and p + 7He potentials. No
adjustment of these potentials was made in this case. The
t + 6He potential in the exit channel was derived from the
72-MeV type A 3He + 6Li potential of Bragin et al. [45],
the parameters being adjusted to recover the same t + 6He
elastic scattering from a CC calculation, including the 6He
0+

1 → 2+
1 coupling as given by an optical model calculation

using the unaltered potential of Ref. [45]. The resulting
parameters are given in Table 1 of Ref. [12].

V. CALCULATION OF THE DPP

A. The DPP for 15.66 MeV/nucleon protons

As in earlier work, Ref. [10,11] and articles cited therein, we
apply Slj → V (r) inversion, using the IP method [7,46,47], to
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FIG. 6. For 15.66 MeV/nucleon protons, the bare potential and
the inverted potential for case d1 and the full calculation, d5. As in
subsequent figures, the potentials are ordered as follows from the top
down: real central, imaginary central, real spin-orbit, and imaginary
spin-orbit.

the diagonal (elastic-scattering) part of the S matrix produced
in the CC calculations to yield a potential Vcc(r). The resulting
local potential precisely reproduces in an optical model code
the theoretical elastic scattering from the CC calculations. The
complex potential Vcc(r) contains a complex spin-orbit term.
The difference VDPP(r) = Vcc(r) − Vbare(r), between Vcc(r)
and the bare potential Vbare(r), is a local and L-independent
representation of the contribution of the coupled pickup
channels to the DPP of the proton-nucleus potential.

Figure 6 compares the bare potential Vbare(r) (solid curve)
with the inverted potentials Vcc(r) for cases d1 (dashes) and
d5 (dots). The contribution of reaction channel coupling to the
imaginary central term is huge, but the contribution to the much
larger real central term is not negligible; they are more clearly
seen by examining the DPP itself, VDPP(r), presented for cases
d1 and d5 in Fig. 7. There are too many DPPs to be clearly
compared in a reasonable number of figures. However, they can
usefully be quantified using the conventionally defined [5] real
and imaginary volume integrals, JR and JI and rms radii, RR =
(
√

〈r2〉)R and RI = (
√

〈r2〉)I . Table II presents characteristics
of the bare potential and the various inverted potentials; the
volume integrals and rms radii for central components and
volume integrals for spin-orbit components.

One significant point is that the coupling has a systematic
effect on the rms radius of the real potential, reducing it by
some 10%. This reflects the fact, already clear from Fig. 7, that
the real central part of the DPP is not proportional, as a function
of r , to the corresponding term of the bare potential. This has
obvious consequences for any attempt to relate nuclear sizes
to the radial extension of the OMP. It shows why it is not
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FIG. 7. For 15.66 MeV/nucleon protons, the DPPs for case d1
and the full case, d5.

appropriate to fit data by multiplying folding model potentials
with an overall normalization; this can be meaningful only in
cases where the fit is sensitive only to a narrow radial range.

The volume integrals of the central components constitute
a useful way of characterizing the DPPs, and Table III presents
them, calculated by subtracting the corresponding values for
the bare potential. Certain results stand out: the DPP for case
d1 has a very much larger imaginary term than that for d2,
and this relates directly to the much larger deviation of the d1
dσ/d� from the “bare” dσ/d� in Fig. 3 than for the d2 case.
Other points to note:

(i) The DPPs for cases d1 and d2 do not add up exactly
to the DPP for case d3. In earlier studies, DPPs for
mutually uncoupled channels (here, mutually uncou-
pled sets of coupled channels) have been found to
add quite closely to give the total DPP when both

TABLE II. For 15.66 MeV/nucleon, characteristics of the bare
potential and the inverted potentials corresponding to coupling
schemes d1 to d6. In all tables, volume integrals are expressed in
units of MeV fm3 and rms radii in fm.

Case Real central Imag. central Real S-O Imag. S-O

JR Rrms JI Rrms JR−SO JI−SO

Bare 683.79 3.090 60.84 3.342 25.96 0.0
d1 637.51 2.845 256.53 4.307 30.55 −1.131
d2 606.03 2.900 80.736 3.323 26.37 0.018
d3 578.51 2.571 312.73 4.190 31.67 −2.123
d4 691.76 2.888 284.00 4.248 32.68 −3.553
d5 650.52 2.767 265.05 4.117 31.24 −2.422
d6 592.42 2.869 90.705 3.399 27.08 −0.059

TABLE III. For 15.66 MeV/nucleon, volume inte-
grals of the central components of the DPPs generated
by coupling according to schemes d1 to d6. The row
“d1 + d2” presents the sum of the DPPs for d1 and d2
couplings.

Case Real central Imag. central

JR JI

d1 −46.28 195.69
d2 −77.76 19.90
d3 −105.28 251.89
d4 7.97 223.16
d5 −33.27 204.21
d6 −91.37 29.864
d1 + d2 −124.04 215.59

channels are coupled to the entrance channel. The
present nonadditivity is discussed below in connection
with the effects of nonlocality. We note, for comparison
with the same ratios at higher energies, that the ratios of
the quantities in the d1 + d2 line to the same quantities
in the d3 line are not very close to 1.0, being 1.18 for
the real part and 0.846 for the imaginary part.

(ii) Coupling of the deuteron channels to the triton channels
(case d4) surprisingly reverses the sign of the real DPP
due to deuteron channel coupling and similarly reduces
the repulsion in the comparison between d3 and d5.
This effect is energy dependent, as will be seen.

(iii) Reaction channels have a substantial effect on the spin-
orbit potential, generating an imaginary part in all cases
except, reassuringly, those involving the pickup of a
spin-zero neutron pair, d2 and also d6 to a lesser extent.
Although the imaginary spin-orbit DPP for d2 is small,
it was necessary to allow its inclusion for a satisfactory
inversion.

(iv) Concerning the coupling to the 6He channels, we found:
(i) DPPs for the 2+ state alone are two orders of
magnitude smaller than for the 0+ state alone; (ii) DPPs
for the 0+ alone and the 2+ alone add very closely to
give the DPP when both states are included without
coupling between them; coupling between the 2+ and
0+ states, as in case d2, increases the imaginary DPP by
10% and reduces the magnitude of (the negative) real
DPP by 2%, to give the numbers in row 2 of Table III.

B. The DPP for 25 MeV/nucleon protons

Table IV presents characteristics of the bare potential and
the various inverted potentials for 25 MeV/nucleon. The
volume integrals are not the full story, and the DPPs presented
in Fig. 8 show that at 25 MeV/nucleon the full, d5, calculation
is roughly approximated by the d3 calculation, in which there is
no mutual coupling between the deuteron and triton partitions.
The repulsion for case d5 has a peak at the nuclear center, but
there is also an extended repulsive region further out, with the
net effect of reducing the rms radius of the real central term
by about 0.45 fm, about 15%.
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TABLE IV. For 25 MeV/nucleon, characteristics of the bare
potential and the inverted potentials corresponding to coupling
schemes d1, d2, d3, d4, and d5.

Case Real central Imag. central Real S-O Imag. S-O

JR Rrms JI Rrms JR−SO JI−SO

Bare 523.33 3.090 14.88 3.373 26.47 0.0
d1 440.18 2.697 218.90 4.049 30.58 −0.533
d2 463.27 2.931 27.183 3.260 26.89 0.251
d3 399.88 2.444 267.04 3.942 31.75 −1.799
d4 489.23 2.735 258.20 3.904 32.76 −3.939
d5 462.36 2.641 243.53 3.856 32.39 −2.338

The bare potential found by fitting the elastic scattering at
this energy, in a full, d5, calculation, was very different from
that found at 15.66 MeV/nucleon, the imaginary component
being a factor of 4 less. This may in part be a result of the
quality of data that were fitted. In subsection VI A we exploit
this case to discuss how the extracted DPPs depend on the bare
potential.

Table V presents the volume integrals of the DPPs for the
central components by subtraction of the bare potential of
row 1 in Table IV. We see that the d3 DPPs are slightly
closer to the sum of the d1 and d2 contributions than for
15.66 MeV/nucleon. The ratios of the quantities in the d1 + d2
and the d3 lines are 1.16 for the real part and 0.927 for the
imaginary part.

The overall pattern of the DPPs at 25 MeV/nucleon is
consistent with what was found for 15.66 MeV/nucleon
except that in case d4, although coupling to the triton channel
still reduces the repulsive effect of case d1, the effect at
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FIG. 8. For 25 MeV/nucleon protons, the DPPs for case d3 and
the full case, d5.

TABLE V. For 25 MeV/nucleon, volume integrals
of the central components of the DPPs generated by
coupling according to schemes d1, d2, d3, d4 and d5.
The row “d1 + d2” presents the sum of the DPPs for d1
and d2 couplings. The bare potential that is subtracted
in these cases is given in the top row of Table IV.

Case Real central Imag. central

JR JI

d1 −83.15 204.02
d2 −60.06 27.18
d3 −123.45 252.16
d4 −34.10 243.32
d5 −60.97 228.65
d1 + d2 −143.21 231.2

25 MeV/nucleon is much less marked and does not reverse the
sign of the real part of the DPP. The d4 DPP is, like the d1 DPP,
repulsive. The effect on the spin-orbit potential of the neutron
pair transfer is again small at this energy.

C. The DPP for 61.3 MeV/nucleon protons

Table VI presents characteristics of the bare potential and
the various inverted potentials for 61.3 MeV/nucleon. The
bare potential has a shallower real central term and a much
deeper imaginary central term than for 25 MeV/nucleon. The
DPPs presented in Fig. 9 show that at this higher energy, the
full, d5, calculation is quite closely approximated by the d3
calculation, in which there is no mutual coupling between the
deuteron and triton partitions. The repulsion has a peak at the
nuclear center but also has an extended region further out with
the net effect of reducing the rms radius of the real central
term by about 0.3 fm, about 10%. The qualitative features are
the same as at 25 MeV, but the wavy features have a shorter
wavelength, as expected.

Table VII presents volume integrals characterizing the
DPPs for the central parts, calculated by subtraction of the
bare potential. A number of trends become more definite at
61.3 MeV/nucleon. The DPPs for case d2 are now very much
smaller in magnitude than those for case d1. This is a signifi-
cant energy dependence: recall that at 15.66 MeV/nucleon, the

TABLE VI. For 61.3 MeV/nucleon, characteristics of the bare
potential and the inverted potentials corresponding to coupling
schemes d1, d2, d3, d4, and d5. The double occurrence of 283.57
in column 4 is coincidental and not a misprint.

Case Real central Imag. central Real S-O Imag. S-O

JR Rrms JI Rrms JR−SO JI−SO

Bare 389.46 2.981 158.65 3.224 23.57 0.0
d1 342.50 2.719 277.28 3.387 24.56 −2.310
d2 374.88 2.950 162.91 3.213 23.75 −0.066
d3 330.26 2.660 283.57 3.379 22.35 −1.704
d4 341.11 2.712 284.56 3.386 23.09 −1.305
d5 335.81 2.688 283.57 3.377 22.89 −1.505

034612-9



R. S. MACKINTOSH AND N. KEELEY PHYSICAL REVIEW C 81, 034612 (2010)

0

5

10

V
 (

M
eV

)
d3
d5

-4

-2

0

W
 (

M
eV

)

0

2

4

V
S

O
 (

M
eV

)

0 1 2 3 4 5 6 7 8 9 10
r (fm)

0

2

W
S

O
 (

M
eV

)

FIG. 9. For 61.3 MeV/nucleon protons, the DPPs for cases d3
and the full case, d5.

repulsive real DPP for case d2 was larger in magnitude than it
was for d1. At 25 MeV/nucleon the d2 repulsion was smaller
than for d1. The repulsion due to neutron pickup, d1, remains
substantial at 61.3 MeV/nucleon, especially as a fraction of
the bare potential. The effect on the spin-orbit potential of
neutron pair transfer is again very small.

It is clear from the 25 and 61.3 MeV/nucleon cases that the
additivity of DPPs due to mutually uncoupled partitions holds
more closely at higher energy, as can be seen by comparing
the d1 + d2 DPPs with the d3 DPPs at all three energies. At
61.3 MeV/nucleon, the ratios for the real and imaginary terms
are 1.04 and 0.984, respectively, much closer to unity than the
values at 15.66 and 25 MeV/nucleon. The additivity is also
close point by point at 61.3 MeV, as can be seen in Fig. 10.

TABLE VII. For 61.3 MeV/nucleon, volume inte-
grals of the central components of the DPPs generated
by coupling according to schemes d1, d2, d3, d4, and d5.
The row “d1 + d2” presents the sum of the DPPs for d1
and d2 couplings. The bare potential that is subtracted
is given in the top row of Table VI.

Case Real central Imag. central

JR JI

d1 −46.96 118.63
d2 −14.58 4.26
d3 −59.20 124.92
d4 −48.35 125.91
d5 −53.65 124.92
d1 + d2 −61.54 122.89
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FIG. 10. For 61.3 MeV/nucleon protons, comparing the DPP for

case d3 (solid line) with the sum of the DPPs for cases d1 and d2
(dashes).

The tendency for |JR| of the full, d5, DPP to be smaller
in magnitude than for case d3, decreases with energy.
The difference, substantial at 15.66 MeV/nucleon and in-
termediate at 25 MeV/nucleon, has almost disappeared at
61.3 MeV/nucleon.

Case d4 also exhibits a significant trend: at the lower ener-
gies, the coupling to the triton channels reduced the repulsive
effect of the neutron pickup (d1 case), actually reversing the
sign at 15.66 MeV/nucleon. At 61.3 MeV/nucleon, the real
d4 DPP is actually slightly greater in magnitude than the real
d1 DPP, i.e., the repulsive effect has increased. That is to say,
the effect of coupling the triton reaction channel has changed
with energy in a significant qualitative manner.

The different energy dependencies of the d1 and d2
cases is probably due to variation with energy of the de-
gree of angular-momentum mismatching. In particular, the
mismatch for ground-state (p, t) transfer rises from −2.9h̄
at 15.66 MeV/nucleon to −4.4h̄ at 61.3 MeV/nucleon. For
the (p, d) vertex these values are just −1.1h̄ and −2.4h̄. This
change, together with the greater absorption of tritons, suggests
why the d2 DPP falls much more rapidly with energy than the
d1 DPP.

VI. DEPENDENCE OF THE DPP ON CALCULATION
PARAMETERS

We now discuss the extent to which the calculated DPPs are
independent of various parameters. The DPPs presented above
were determined for calculations in which the optical model
parameters had been optimized to suit the d5 case. In principle,
for all CC calculations, the potentials for a specific partition
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should be readjusted according to what other partitions or
channels are coupled to that partition. To do this consistently
for all calculations is out of the question for practical reasons.
It is therefore important to know how the DPPs depend on
the particular choices of bare potentials; the observables and
the actual inverted potentials will certainly depend on them.
Here we address the stability of key results against changes
of optical model parameters. For the 15.66-MeV/nucleon
case, we also study the importance of a correct treatment
of the deuteron continuum. Finally, we also investigate the
sensitivity of our key results to a change in sign of the 6He + 2n

spectroscopic amplitude.

A. Parameter dependence for 15.66 MeV/nucleon protons

As indicated in Fig. 1, case d1 calculations and all the others
involving d + 7He channels, include coupling to the deuteron
continuum, calculated using CDCC. In order to determine
whether deuteron breakup makes an essential contribution to
the DPP, a number of variants of the d1 and d5 calculations
have been carried out. These correspond to the lines labeled
d5NC, d1NC, d1NCNR, and d1A in Table VIII and Table IX.
Cases d1NC and d5NC are variants of cases d1 and d5
in which the continuum states in deuteron channels are
omitted but in which the deuteron reorientation is retained.
In case d1NCNR, reorientation is also omitted. We did not
succeed in performing FRESCO calculations with breakup
represented by the continuum but no reorientation. Case d1A
involved the adiabatic approximation treatment of deuteron
breakup.

Table VIII and Table IX also include cases (d2t, d3t, d4t)
in which the imaginary potential in the triton partition was
halved. This was done to determine the dependence of the
effective proton elastic potential on the nature of the potential
in a coupled partition, in this case the t + 6He partition.

Comparing Table IX with Table III, the d1NC and d5NC
cases show that the explicit inclusion of the deuteron contin-
uum is essential. Its omission leads to an overestimation of the
pickup contribution to the real part of the central DPP and an
underestimation of the imaginary part. Comparing Table VIII

TABLE VIII. For 15.66 MeV/nucleon, characteristics of the
bare potential and the inverted potentials corresponding to modified
treatment of the deuteron breakup; refer to the text for an explanation
of NC, NCNR and A. The results for cases d2 to d4 with the imaginary
potential in the triton partition halved, are labeled d2t, d3t, and d4t.

Case Real central Imag. central Real S-O Imag. S-O

JR Rrms JI Rrms JR−SO JI−SO

Bare 683.79 3.090 60.84 3.342 25.96 0.0
d1NC 609.48 2.713 198.60 4.138 30.090 1.050
d1NCNR 612.05 2.716 197.90 4.134 29.461 0.786
d1A 604.35 2.762 195.69 4.283 27.99 −2.162
d5NC 621.63 2.627 197.62 3.984 32.409 1.534
d2t 601.95 2.900 75.952 3.336 26.37 0.016
d3t 572.12 2.565 311.50 4.189 31.85 −2.065
d4t 700.18 2.880 281.81 4.239 33.463 −2.571

TABLE IX. For 15.66 MeV/nucleon, volume inte-
grals of the central components of the DPPs correspond-
ing to cases in Table VIII.

Case Real central Imag. central

JR JI

d1NC −74.31 137.76
d1NCNR −71.74 137.06
d1A −79.44 134.85
d5NC −62.16 137.78
d2t −81.84 15.11
d3t −111.67 250.66
d4t 16.39 220.97

and Table II, we find that the deuteron continuum also changes
the sign of the induced imaginary spin-orbit potential although,
surprisingly, reorientation had little effect, case d1NCNR. The
d1A case suggests that representing deuteron breakup with the
adiabatic model is not adequate for these purposes, the DPP
being very like that found with no coupling to the continuum. In
summary, deuteron breakup makes an important contribution
to the absorption in the proton channels and simultaneously
moderates the induced repulsion.

A substantial reduction in the absorption in the triton
channels (compare cases d2 with d2t, etc.) leads to a very
small reduction of the absorption in the proton channel, as
measured by the reduction in the imaginary parts of the
DPPs. Nevertheless, the small decrease in the imaginary
DPP when the triton imaginary potential is reduced suggests
that the triton partition acts as a doorway for absorption of
protons.

B. Parameter dependence for 25 MeV/nucleon protons

We studied the dependence of the DPPs on substantial
changes in the bare nucleon potential. Cases d1 to d5 were
repeated using the very different bare proton potential that had
been used at 15.66 MeV/nucleon. The inverted potentials in
Table X and the DPPs in Table XI are labeled d1x to d5x.

The overall pattern of the DPPs is the same for the two bare
potentials. The repulsion for triton coupling is less than that
for deuteron coupling (compare d2x and d1x) as was seen in

TABLE X. For 25 MeV/nucleon, characteristics of the
15.66 MeV/nucleon bare potential and the inverted potentials, labeled
d1x, d2x, d3x, d4x and d5x, calculated with the 15.66 MeV/nucleon
bare potential of row 1.

Case Real central Imag. central Real S-O Imag. S-O

JR Rrms JI Rrms JR−SO JI−SO

Bare 683.79 3.090 60.84 3.342 25.96 0.0
d1x 617.16 2.858 256.51 3.933 29.98 −0.801
d2x 630.90 3.000 74.595 3.294 26.37 0.289
d3x 580.76 2.725 299.57 3.861 30.48 −0.799
d4x 662.97 2.855 281.30 3.861 31.75 −3.150
d5x 638.15 2.797 267.07 3.812 31.99 −2.297
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TABLE XI. For 25 MeV/nucleon, volume integrals
of the central components of the DPPs generated when
the bare proton potential used for 15.66 MeV/nucleon
was applied. The row “d1x + d2x” presents the sum of
the d1x and d2x DPPs.

Case Real central Imag. central

JR JI

d1x −66.30 195.67
d2x −52.89 13.75
d3x −103.03 237.38
d4x −20.82 220.46
d5x −45.64 206.23
d1x + d2x −119.19 209.42

Table V, in contrast to the situation at 15.66 Mev/nucleon and
consistent with the continuing trend at 61.3 MeV/nucleon,
subsection V C. The ratios of the quantities in the d1x + d2x
and d3x lines are 1.16 and 0.882 for the real and imaginary
parts, respectively. Recall that the corresponding values in the
d1 + d2 and the d3 lines of Table V were 1.16 and 0.927 so
the considerable difference in the bare potential had no effect
on the ratio for the real DPP and very little effect on the
imaginary DPP.

We conclude that the general character of the DPPs that
we find is robust, as is shown by the findings: (i) DPPs for
25 MeV/nucleon calculated with the potential appropriate to
15.66 MeV/nucleon are very similar to those calculated with
the very different potential determined for 25 MeV/nucleon
and (ii) substantial changes in the triton potential have quite
small effects in cases d2t, d3t, and d4t at 15.66 MeV/nucleon.

C. Dependence on spectroscopic amplitude

We investigated the dependence of our results on the
sign of the 2n spectroscopic amplitude. This was originally
determined in the course of fitting the reaction observables,
including the angular distributions of tritons feeding the 6He
states [12]. We carried out d5 calculations at 15.66 and
61.3 MeV/nucleon in which the sign of 7He + n spectroscopic
amplitude is reversed. This is equivalent to changing the
sign of the 2n spectroscopic amplitudes for both states in
6He. At the lower energy the effect on the elastic-scattering
angular distribution was considerable and any reasonable
modification of the OM parameters is unlikely to fit the
data. Nevertheless, all the qualitative features of the DPPs
were broadly the same; the volume integrals of the real
and imaginary central terms (all in MeV fm3) were −36.74
and +356.29 compared to the previous values of −33.27 and
+204.21. At 61.3 MeV/nucleon, changing the sign made a
relatively small difference to the elastic-scattering angular
ditributions. The central DPP volume integrals became −59.25
(real) and +141.74 compared to the previous values of −53.65
and +124.92, respectively. In summary, although the fits
to the observables [12] strongly support the spectroscopic
amplitudes used above, it is the case that a different sign for

the 2n spectroscopic amplitude would leave our major findings
concerning the strong DPPs unaffected.

VII. THE NONLOCALITY OF THE DPP

References to nonlocality in the nuclear physics literature
frequently assume that it has the well-known Perey-Buck
form, or the Fock term of the nucleon potential, the former
essentially a phenomenological representation of the latter. A
consideration of the Perey-Buck nucleon potential folded into
composite particles leads [19] to the conclusion that for heavy
projectiles, the nonlocality is of short range. But explicit DPPs
calculated from the Feshbach formalism [3,21,22] are highly
nonlocal in a way that differs significantly from the Perey-Buck
form. What consequences does this underlying nonlocality of
the DPP have for the local equivalents?

Formally, it is clear that DPPs arising from sets of channels
that have no mutual coupling add. This holds quite well for
local DPPs that are smaller in magnitude than in the present
case. (At 15.66 MeV/nucleon and 25 MeV/nucleon, the
imaginary part of the DPP far exceeds the imaginary part of
the bare potential.) However, strictly, the additivity applies to
the underlying nonlocal DPPs and not to the local equivalents.
Since we have calculated local DPPs for nonmutually coupled
sets of channels at all three energies, the additivity can be
tested. The sets of channels corresponding to the d1 and d2
processes are not mutually coupled in the d3 calculations, and
in Tables III, V, VII, and XI we have presented in rows labeled
“d1 + d2” the sums of the corresponding quantities in rows
d1 and d2. The results have been discussed quantitatively for
each energy. Figure 10 shows that additivity applies, point
by point, at 61.3 MeV/nucleon, but the tabulated volume
integrals show that it is only approximate at lower energies.
However, even at the lowest energy, weaker DPPs add, as
discussed in subsection V A in connection with the coupling
to the 0+ and 2+ states of 6He.

The general effects of nonlocality have been discussed by
Austern [48]. One characteristic feature is that flux is removed
from the elastic channel in one region of the target and fed back
elsewhere; an explicit example for inelastic scattering is given
in Ref. [26]. This idea suggests an interpretation of the fact that,
for strongly absorbed particles, channel coupling often results
in an increase in |SL| over a range of L values, typically for
lower L. For protons however, in all the cases discussed here,
coupling decreases |SL|, as expected for processes that absorb
flux from the elastic channel.

In the present case, we can infer that nonlocality has
had a substantial effect. The fact that the local equivalents
of nonlocal potentials do not add exactly can be seen by
noting that the semiclassical approximate local equivalents
to nonlocal potentials involve the local momentum in the
nucleus and must therefore be calculated by an iterative self-
consistent method. Since the local momentum depends on the
potential, local equivalents of nonlocal potentials cannot add
exactly.

As a simple example, the local equivalent of twice the
Perey-Buck potential is clearly not twice the local equivalent
of the Perey-Buck potential. Perey and Buck’s approximate
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expression for the relation between the depth VN of a nonlocal
nucleon potential of their form and the depth within the nucleus
of VL the equivalent local potential for nucleons of energy
E/MeV is

VN = VL exp

[
β2

84
(E + VL)

]
. (3)

Clearly, adding two nonlocal potentials does not lead to a
local potential that is the sum of the local equivalents; for
example, doubling a nonlocal potential does not double the
local equivalent potential. To take a concrete case, for 20 MeV
nucleons and β = 0.85, we trivially find that values of VN

of 46, 67, 91.2, and 119.4 MeV correspond respectively to
VL = 30, 40, 50, 60 MeV with values of VN/VL = 1.53,
1.68, 1.82, and 1.99.

Although the exact nature of the nonlocality of the reaction
channel DPP is unknown, we have found a plausible explana-
tion for nonadditivity of the local equivalents. The additivity is
more exact at the higher energy because, at the higher external
energy, the local energy at radius r is less dependent on the
(nonlocal) potential around r . Nevertheless, the non-locality of
the DPP differs substantially from that arising from exchange,
a point stressed by Rawitscher [22]. That author also points out
that the “Perey” damping factor (which will not necessarily be
that of the Perey-Buck potential) is related directly to the elastic
channel wronskian, a challenge for future work. Reference [22]
provides an overview of the rationale for studying the nonlocal
properties of the DPP and the significance of this nonlocality.

VIII. CONCLUSIONS

A. Summary of findings

We have extended the study of the influence of deuteron
coupling on proton scattering to include coupling to the triton
partition. Triton channels were included with various degrees
of interaction with deuteron channels revealing a richness of
phenomena that deserves further study. The present results,
at 15.66, 25, and 61.3 MeV/nucleon, involved fitting the
available experimental data, including some fits to transfer
reactions that have been published previously [12]. The
following results are specifically related to the atypical target
nucleus 8He; extension to more normal nuclei lies in the
future.

(i) At each energy, the full (d5) coupling leads to a DPP
with a repulsive real part, and a radial form resulting
in a substantial reduction in the rms radius of the real
potential. There is also a large absorptive term that
leads to an increase in the rms radius of the imaginary
potential.

(ii) Coupling to triton channels is important at the lowest
energy but much less so at the highest energy. The triton
channels by themselves have a repulsive/absorptive
effect, yet reduce the similar effect of the deuteron
channels alone. This was not significant at the highest
energy, but its effect at 15.66 MeV/nucleon presents a
challenge to our understanding.

(iii) The local DPPs were qualitatively similar at each en-
ergy, but the wavelength of the wavy features decreased
with energy, as expected. The overall magnitudes of
the real and imaginary DPPs are not small, even at the
highest energy studied.

(iv) A clue to the nonlocality of the underlying DPP (to
which we determine a local equivalent) lies in the
nonadditivity of the local DPPs for partitions that
are not mutually coupled. At 61.3 MeV/nucleon the
additivity is nearly exact.

(v) Coupled deuteron channels have a substantial effect
on the spin-orbit potential; coupled triton channels
(transfer of a spin-zero neutron pair) do not. It would
be of interest to study how the specific shell structure
of different target nuclei influences the spin-orbit
component of the DPP generated by pickup coupling.

B. Implictions for nucleon-nucleus interactions

The importance of coupled deuteron and triton channels
shows that the scattering of nucleons from nuclei is not simply
a problem of a single nucleon in the continuum. This raises
the question of how this can be assimilated to experiment and
phenomenology on the one hand and to formal theory on the
other.

It is important to find evidence, based on fits to experimental
data, for the effects that we have described. This requires
precision fits to precise and wide angular range elastic-
scattering data, including analyzing powers. This will not be
easy for unstable target nuclei, making it difficult to establish
the potentials unambiguously, but is possible in principle for
stable nuclei. Because DPPs are not proportional to folding
model potentials, model-independent fitting, either directly
or as a modulation of a folding model potential, is required.
Neither fits with standard parameterized forms, nor uniform
renormalization of folding model potentials will capture
the details necessary to verify the radial forms presented
here. Moreover, CC processes are not an exhaustive source
of “waviness” of nuclear potentials. It is known that the
interaction of nucleons with light nuclei has a parity-dependent
term arising from certain exchange processes (e.g., “heavy
particle stripping”) in the interaction with light nuclei. This
has been shown for nuclear targets as heavy as 16O and
is quite substantial in the case of protons on 6He [49].
The L-independent representation of this parity dependence
leads to wavy potentials, complicating the analysis of elastic
scattering or motivating precision fitting, according to one’s
point of view. To suggest what is involved, Fig. 11 shows the
L-independent potential that precisely reproduces SL (spin is
ignored) for proton scattering from 8He when SL is calculated
from the Koning and Delaroche [35] global potential in which
the real term (only) has been multiplied by [1.0 + 0.05(−1)L].
Note that the imaginary term as well as the real has a wavy
component.

To assimilate the effects presented here into a compre-
hensive theory of nucleon scattering from nuclei is very
challenging. As noted in subsection III C, it may be possible
to incorporate the variation with Z, N , and E of the influence
of reaction channels into a folding model theory as “shell

034612-13



R. S. MACKINTOSH AND N. KEELEY PHYSICAL REVIEW C 81, 034612 (2010)

-60

-40

-20

0

V
 (

M
eV

)

0 1 2 3 4 5 6 7 8 9
r (fm)

-10

-5

0

W
 (

M
eV

)

FIG. 11. Central potentials for protons, considered spinless,
scattering elastically from 8He at 15.66 MeV/nucleon. The solid
line represents a smooth phenomenological potential to the real part
of which a parity-dependent factor has been applied; the dashed line
represents the L-independent potential found by inverting SL from
the parity-dependent potential.

corrections” analogous to the Strutinsky approach to nuclear
masses.

C. What needs to be done

(i) How general is the reduction of the repulsive effect of
(p, d) coupling by the addition of (p, t) coupling and
the corresponding interpartition coupling? To answer
this, similar calculations are required involving target
nuclei that are less unusual than 8He for which the
pickup of a neutron pair may be unusually strong. This
is important particularly in view of earlier demonstra-
tions [10,11] of the contribution of (p, d) coupling to
the real part of the nucleon OMP.

(ii) Inversion should be applied to new approaches to
direct reaction theory, such as the development by
Fonseca and Deltuva [50] and collaborators of practical
implementations of the Faddeev formalism, providing
an alternative to the CRC formalism. Unfortunately,
the extension of such techniques to the d5 case is more
difficult.

(iii) More generally, there is a need for the implementation
of comprehensive antisymmetrized reaction theories
that can handle both the reaction channel and the
nuclear matter aspects of nucleon-nucleus scattering
in a consistent way.
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