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A simple straightforward method has been presented to predict the dependence of barrier distributions at
arbitrary orientations on different deformations. The proposed interpretation is developed independently of the
complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in
the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using
a realistic density dependent nucleon-nucleon (NN ) interaction, BDM3Y, for the interaction between spherical,
48Ca, and deformed, 244Pu, nuclei, as an example. To do so, the double-folding model for the interaction
of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at
several separation distances and orientation angles using the density dependent NN force without consuming
computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar
patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the
Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height
distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation
barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease
and at which orientations they will be independent of the deformation. This also allows us to estimate the compact
and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.
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I. INTRODUCTION

Recently, the understanding of the enhancement effects
due to nuclear deformations in the different nuclear reactions
received particular attention especially in fusion reactions and
synthesis of superheavy nuclei (SHN) [1–7]. This supports
analyzing and suggests new experiments. It has long been
recognized that nuclear deformations affect the Coulomb
barrier between the interacting nuclei. The cross section of
various nuclear reactions and production of the superheavy
elements are controlled by the Coulomb barrier through
the barrier penetrability [8–10] and the potential energy
surfaces. The different macroscopic and microscopic models
[11–18] proposed to understand the production mechanism
of SHN through cold [19] or hot [20,21] fusion reactions,
confirm the role of deformation. Indeed, the reasonable
prediction of the formation cross section of SHN would require
knowledge of the interaction potential energy surfaces at
different orientations for spherical-deformed and deformed-
deformed interacting pairs of nuclei, which essentially influ-
ences the competition between fusion and quasifission cross
sections.

When one or both of the interacting nuclei are well
deformed in their ground states, the microscopic calculation
of Coulomb and nuclear contributions of the interaction
potential are time consuming where six-dimensional integrals
are involved. So, it is desirable to find an alternative simple
method to derive the heavy-ion (HI) potential for interacting
deformed oriented nuclei with acceptable accuracy. This will
help to reduce time consumed in such approaches which need
to calculate the interaction potential at different orientations
several times such as the coupled-channel method. Different
phenomenological methods have been proposed to this aim

such as Wong’s expression [22] for the Coulomb interaction
between two deformed nuclei, considering nonoverlapping
densities, and the nuclear proximity potential [23,24] which
is frequently used in the most recent SHN studies [24–28].
For microscopic calculations, the double-folding model with
a density-dependent finite-range direct part of the nucleon-
nucleon (NN ) interaction, but with simple zero-range ex-
change part, has been used to generate the HI interaction
potential at different orientations [29] giving Coulomb barrier
distributions with smooth orientation behavior.

To get the optimum orientations for hot and cold fusion
of the colliding nuclei [24], to produce SHN, the role of
deformations is of great interest when one or both of the nuclei
participating in the reaction are deformed. It is clear that the
general behavior of Coulomb barrier parameters, its height and
radius, is the key to understanding the role of deformations.
The distribution of Coulomb barriers in the orientation degrees
of freedom is related in a clear way to the reacting nuclei
deformations [25,26], their signs and magnitudes. For instance,
while the sign of the quadrupole deformation determines the
optimized orientations, it is found that the reacting nuclei may
affect the hexadecapole deformation contribution according to
the charge number, Z, of the produced nucleus [24]. When
the interacting deformed nuclei, or one of them, are prolate,
it is shown that the lowest barrier is at orientation 0◦ (180◦)
[30] which is pole-to-pole configuration (polar configuration
in case of spherical-deformed interacting nuclear pair). The
belly-to-belly or the equator-cross, equatorial, configuration
which is the orthogonal symmetry axes orientation, 90◦, gives
the most compact configuration [31] that describes the hot
fusion reactions. The presence of hexadecapole deformation
with small and/or negative values keeps the equatorial-cross
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compact configuration [25] but it is not the case for the
large positive values. An optimized equatorial-cross compact
configuration, hot fusion reaction, is attributed to the inter-
acting prolate nuclei with negative or positive hexadecapole
deformation for the reactions leading to Z � 114 nuclei. The
reaction leading Z < 114 is a cold fusion reaction for the
deformed nuclei with large positive hexadecapole deformation
[25]. Large positive hexadecapole deformation results in
nonequatorial compact configurations, with a difference of
about 20◦, for the 48Ca + 244Pu collision. For an oblate nucleus
with positive or negative hexadecapole deformation interacting
with a spherical one, a compact configuration is obtained at
orientation 0◦ [24] while the elongated configuration is given
at the orthogonal orientation, 90◦. These results are obtained
theoretically using phenomenological approaches, such as the
nuclear proximity approach and Wong’s expression, and most
of them are further experimentally confirmed [11,19,20,32].
The different simple approximate methods used to calculate
the HI potential lead to Coulomb barriers that differ consid-
erably for the same colliding system. The uncertainty of the
HI potential near the touching point of the two interacting
nuclei arises from the different approximations giving rise to
a variety of different proposed nuclear reaction mechanisms
leading to SHN formation. So, one can decrease this uncer-
tainty by deriving the HI potential microscopically without
making severe approximations. In this work we perform a
microscopic study using the double-folding model that is based
on a zero-range and finite-range density dependent exchange
NN interaction part, in addition to the finite-range direct
part, to study the deformation and orientation effects on the
Coulomb barrier. We try to interpret the behavior of the
Coulomb barrier parameters in deformation and orientation
degrees of freedom in a simple way. We found that the
variation of these parameters follow to a good extent the
change of the deformed nucleus radius, RT (β), in the direction
of the separation vector joining the centers of mass of the
interacting nuclei, ⇀

R. The deformed nucleus radius is given
by a simple linear combination of Legendre polynomials,
functions of orientation angel (β), and the deformation
parameters of the target nucleus. Consequently, the simple
behavior of RT (β) in the orientation degrees of freedom and its
deformation parameters dependence could be used to simulate
the orientation and deformation parameters variation of the
more complicated quantities, barrier height and radius. The
relation between the variation of RT (β) and barrier parameters
helps to study the following problems:

(i) The compactness of hot fusion reactions between
spherical projectiles and deformed target nuclei in
the synthesis of superheavy elements (SHE). Compact
configuration means highest barrier and smallest barrier
radius. The variation of RT (β) in the direction of
⇀
R for a given spherical-deformed pair of nuclei,
according to the orientation of the deformed nucleus
and its deformations, could clarify certain aspects
of the reaction compactness. It could predict that
either the reaction is equatorial compact hot fusion,
with the collision in the direction of the minor axis of

the deformed nucleus, or it is nonequatorial one, when
the compactness occurs at orientation angle less than
90◦. This problem depends essentially on the values of
deformation parameters.

(ii) The importance of high-order deformation parameters
such as β6 and β8 in calculating the Coulomb barrier
parameters. Do they reinforce the contribution of
the low-order ones (β3 and β4) to the quadrupole
deformation or do they cancel each other leaving the
effect of quadrupole deformation only [27]? Eventually
our goal will be to discuss the microscopic results
for the orientation dependence of the Coulomb barrier
distribution of a spherical-deformed interacting nuclear
pair in a simple way through the variation of the
deformed nucleus radius. We further investigate to
what extent other simple calculations [24–28] describe
successfully the Coulomb barrier behavior in the
orientation degrees of freedom. We consider the fusion
of 48Ca to 244Pu, which leads to the formation of
the superheavy element 292114, as an example for the
spherical-deformed reacting pair. The recent measured
excitation functions for the 4n channel of this reaction
was an evidence for the compactness of hot fusion
reactions [32].

In the next section, we first describe the details of the
extended double-folding formalism we use in the present
work to calculate both the nuclear and Coulomb parts of the
HI potential for a spherical-deformed interacting nuclear pair.
We then present and discuss the obtained results of the
orientation barrier distribution for the system 48Ca + 244Pu in
Sec. III. From this discussion we will show that the variation
of the deformed nucleus radius simulates the Coulomb barrier
distribution in the orientation degrees of freedom. Finally, the
summary and conclusion are presented in the last section.

II. THEORETICAL FRAMEWORK

In this section we outline the double-folding procedure that
will be used to perform the microscopic calculations of the
Coulomb and nuclear, direct and exchange, potential parts.
We adopt an improved density dependent version, BDM3Y1
[33], of the realistic effective M3Y NN force based on the
G-matrix elements of the Paris [34] NN potential. The density
dependence has been introduced to reproduce the cold nuclear
matter saturation properties.

The interaction potential between spherical projectile and
deformed target at separation distance, R, between their centers
is given by

U (R, β) = UD(R, β) + UEx(R, β). (1)

β is the orientation angle of symmetry axis of deformed
target nucleus measured from the separation distance vector
⇀
R between the centers of the interacting nuclei, Fig. 1. The
direct, UD , and exchange, UEx, HI potential parts are then
given, respectively, as

UD(R, β) =
∫

d
⇀
r 1 d �r2 VD(s, ρ) ρP (⇀

r 1) ρT ( �r2), (2)
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FIG. 1. Schematic representation of the two interacting nuclei
shows the coordinate system.

UEx(R, β) =
∫

d
⇀
r 1 d �r2 VEx(s, ρ) ρP (⇀

r 1,
⇀
r 1 − ⇀

s )

× ρT ( �r2,
⇀
r 2 + ⇀

s )e
i
M

⇀
k (R) ·⇀s , (3)

where ⇀
s = ⇀

R + ⇀
r 1 − ⇀

r 2, Fig. 1. ρP (⇀
r 1) and ρT ( �r2) denote

the density distributions for projectile and target, respectively,
VD(Ex) (s,ρ) is the direct (exchange) NN force. The local wave
number, |⇀k (R)|, is given as

|⇀k (R)|2 = 2µ

h̄2 [ECM − U (R, β) − UC(R, β)]. (4)

µ is the reduced mass for the reacting nuclei and UC is their
interacting Coulomb potential that also can be calculated by
Eq. (2) by replacing the matter density distributions with
the charge density distributions and using e2

s
instead of VD

(s,ρ). For each value of the separation distance, R, and the
orientation angle, β, we have to calculate the six-dimensional
folding integrals, Eqs. (2) and (3), for both the direct and
exchange parts of the nuclear HI potential and for the Coulomb
interaction as well. The evaluation of these integrals is an
intricate numerical problem. So, we try here to simplify them
in a similar way as that used in case of two interacting spherical
nuclei. To do so we start by taking the Fourier transforms of
the NN force as

VD(s, ρ) =
∫

ei
⇀
k ·⇀R ei

⇀
k ·⇀r 1e−i

⇀
k ·⇀r 2 ṼD(k, ρ)d

⇀
k , (5)

where

ṼD(k, ρ) = 1

(2π )3

∫
e−i

⇀
k ·⇀r VD(r, ρ)d⇀

r . (6)

The density dependent M3Y-Paris effective NN force con-
sidered in the present work, BDM3Yn, has the factorized
shape [33,34]

VD(s, ρ) =
[

11061.625
e−4s

4s
− 2537.5

e−2.5s

2.5s

]
F (ρ)g(E),

(7)

VEx(s, ρ) =
[
−1524.25

e−4s

4s
− 518.75

e−2.5s

2.5s

− 7.8474
e−0.7072s

0.7072s

]
F (ρ)g(E), (8)

with the density and energy dependence, respectively,

F (ρ) = c(1 − γρn),
(9)

g(E) = (1 − 0.003EAp).

The parameters c, γ , and n are adjusted to reproduce normal
nuclear matter saturation properties for a given equation of
state for cold nuclear matter. For BDM3Y1, c = 1.2521, γ =
1.7452 fm3 and, n = 1 which generate nuclear matter equation
of state with incompressibility value, K = 270 MeV. EAp is
the incident energy per projectile nucleon in the laboratory
system.

However, in view of the short range of the effective
interaction, it is sufficiently accurate to use the convenient
form, ρ = ρT (⇀

r 1) + ρP (⇀
r 2), for the total density, Eq. (9), that

underestimate the folded potential up to about 15% in the
inner radial region when the projectile penetrates deeply into
the target nucleus [35,36]. So, we can express the direct part
of the HI potential for the case of density dependent NN force
of the form BDM3Yn, n = 1, as

UD(
⇀

R, β)

= cg(E)
∫

d
⇀
k ṼD(k)ei

⇀
k ·⇀R

[∫
d

⇀
r 2 e−i

⇀
k ·⇀r 2ρT (⇀

r 2)

×
∫

d
⇀
r 1 ei

⇀
k ·⇀r 1ρP (⇀

r 1) − γ

(∫
d

⇀
r 2 e−i

⇀
k ·⇀r 2ρ2

T (⇀
r 2)

×
∫

d
⇀
r 1 ei

⇀
k ·⇀r 1ρP (⇀

r 1) +
∫

d
⇀
r 2 e−i

⇀
k ·⇀r 2ρT (⇀

r 2)

×
∫

d
⇀
r 1 ei

⇀
k ·⇀r 1ρ2

P (⇀
r 1)

)]
. (10)

ṼD(k) is the Fourier transformation of the ordinary M3Y force,
the quantity between square brackets in Eq. (7). For spherical
projectile nucleus, one can integrate over the angular part of
⇀
r 1 to get the one-dimensional integrals,

A1
P (

⇀
k ) = 4π

∫ ∞

0
dr1r

2
1 j0(kr1)ρP (r1),

(11)

A2
P (

⇀
k ) = 4π

∫ ∞

0
dr1r

2
1 j0(kr1)ρ2

P (r1).

On the other hand, by choosing the orientation angle of the
symmetry axis in the z-axis direction, the integration over
⇀
r 2 will be independent of the azimuthal angle, φ2. So, the
three-dimensional integrals over ⇀

r 2 become two-dimensional
ones. Now, expanding e−i

⇀
k ·⇀r 2 into its multipole components,

assuming deformed target with axial symmetry, then defining

A1
T (

⇀
k ) = 2π

∫ ∞

0
dr2r

2
2 j�(kr2)

∫ π

0
dθ2 sin θ2ρT

× (r2, cos θ2)Y�,0(cos θ2),
(12)

A2
T (

⇀
k ) = 2π

∫ ∞

0
dr2r

2
2 j�(kr2)

∫ π

0
dθ2 sin θ2ρ

2
T

× (r2, cos θ2)Y�,0(cos θ2),
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and integrating over the angular part of
⇀
k , Eq. (10) becomes

UD(
⇀

R, β)

= 4π
∑

�

Y�,0(
⇀

R ·	̂)cg(E)
∫ ∞

0
dkk2j�(kR)ṼD(k)

× [
A1

T (k)A1
P (k) − γ

(
A2

T (k)A1
P (k) + A1

T (k)A2
P (k)

)]
.

(13)

	̂ is in the direction of the symmetry axis of the target
nucleus. This expression has several important advantages.
The most obvious one is that the six-dimensional integral of
the folding potential is reduced to a one-dimensional one over k
containing four form factors. Two of them are one-dimensional
integrals, A

1,2
P (k), while the other two are two-dimensional

ones, A
1,2
T (k). These form factors are independent of both

the separation distance between the reacting nuclei and the
orientation angle, β, so they need to be calculated only once

for each � value. This allows the calculation of UD(
⇀

R, β)
at different values of R and β without consuming much
computational time. Moreover, the orientation dependence is

contained only in Y�m(
⇀

R ·	) which is outside the integral.
On the other hand, the sum over � converges rapidly. In the
presence of quadrupole and hexadecapole deformations only,
� takes even values and then one needs five � values to get
almost exact results. Eventually, this expression, Eq. (13), is
simple as that of the HI potential for interacting spherical
nuclei [37] except that it involves two-dimensional integrals.
In fact, the integration over the nondiagonal densities for
projectile and target to calculate the exchange part of the
HI nuclear potential, Eq. (3), contains a self-consistency prob-
lem where

⇀
k (R) depends on the potential itself, Eq. (4). So, in

order to calculate the exchange contribution of the HI potential,
we first approximate the nonlocal (one-body) densities using
density matrix expansion [38] where the available densities are
in the local form. To do so, the nonlocal densities of projectile
and target are approximated [39], referring to Fig. 1, as

ρP (⇀
r 1,

⇀
r 1 − ⇀

s ) ∼= ĵ1
(
k

p

eff(|
⇀
y − ⇀

R |)s)ρP (| ⇀
y − ⇀

R |),
ρT (⇀

r 2,
⇀
r 2 + ⇀

s ) ∼= ĵ1
(
kT

eff(y, cos θ2)s
)
ρT (y, cos θ2,)

⇀
y = ⇀

r 2 +
⇀
s

2
, ĵ1(x) = 3j1(x)

x
, (14)

where j1(x) is the first order spherical Bessel function. For a
spherically symmetric ground state density, the average local
Fermi momentum, ki

eff(i = P, T ), is given in terms of the
kinetic energy density, τi , as [38]

∣∣ki
eff(r)

∣∣2 =
(

3

5ρi

τi(r) − 1

4
∇2ρi(r)

)
. (15)

Using the extended Thomas-Fermi approximation [39,40], the
kinetic energy density is then given by

τi(r) = 3

5

(
3π2

2

)2/3

ρ
5/3
i (r) + 1

3
∇2ρi(r) + 1

36

|∇ρi(r)|2
ρi(r)

.

(16)

The first term in this expression stands for Thomas-Fermi
approximation while the other two terms represent the surface
correction. Inserting the above local approximation, Eq. (14),
with the NN density dependent exchange interaction, Eq. (8),
into the folding integral, Eq. (3), transforming the integration
variables from ⇀

r 1 and ⇀
r 2 into

⇀
y and ⇀

s (see Fig. 1) and taking
the Fourier transformation of the product ĵ1ρP , one gets the
exchange potential part as

UEx(
⇀

R, β) = 32π

∞∑
�=0

Y�,0(
⇀

R ·	̂)cg(E)
∫

dss2j0

(
k(R)s

M

)

×VEx(s)
∫

dkk2j�(kR)
[
A1

T (k, s)A1
P (k, s)

− γ
(
A2

T (k, s)A1
P (k, s) + A1

T (k, s)A2
P (k, s)

)]
(17)

The one- and two-dimensional integrals, A1
P (k, s) and A1

T (k, s)
are given, respectively, as

A1
P (k, s) =

∫
dx1x

2
1ρP (x1)ĵ1(kP

effs)j0(kx1).

A1
T (k, s) = 2π

∫ ∞

0
dyy2j�(ky)

∫ 1

−1
dxρT (y, x) (18)

× ĵ1
(
kT

eff(y, x)s
)
Y�,0(x)

where x ≡ cos θ . The integrals A2
P (k, s) and A2

T (k, s) are
similar to those given by Eq. (18) but they involve squared
projectile and target densities, respectively. Again, the integrals
An

i (k, s), i = P,T and n = 1,2, are assumed to be calculated
only once for a given reaction where they are independent
of both the separation distance and the orientation angle.
This turns out the time-consuming iterated self-consistent
calculations of UEx at several values of separation distance and
different orientations to be rather fast. The total HI potential is
then obtained by adding the nuclear, direct plus exchange,
parts to the Coulomb one. The matter and charge density
distributions of the deformed target nucleus are assumed in
the two-parameter Fermi shape,

ρT (r , θ2) = ρT
0

/
(1 + e[r −RT (θ2)]/aT ), (19)

where the half-density radius in presence of the quadrupole
(β2), octupole (β3), and hexadecapole (β4) deformations is
given by

RT (θ2) = R0T [1 + β2Y20(θ2) + β3Y30(θ2) + β4Y40(θ2)].

(20)

The angle θ2 is measured from the symmetry axis of the
deformed nucleus and the central matter (charge) density, ρT

0 ,
is determined from the conservation condition∫

ρT (⇀
r )d⇀

r = AT (ZT ), (21)

where AT (ZT ) is the mass (charge) number of the target
nucleus. The deformed nucleus density distribution in its
two-parameter Fermi form allows us to include the different
multipole deformations into the expressions of the direct,
Eq. (13), and exchange, Eq. (17), potential parts without
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complicating the numerical calculations. For the spherical
projectile nucleus we shall use the same two-parameter Fermi
form, to express its matter (charge) density distribution, but
with constant half-density radius, RP , value. The density
distribution parameters for 48Ca are chosen to verify its
root-mean-square radius calculated in the framework of the
relativistic mean-field theory [41]. We take the half-density
radius parameter, R0T , of 244Pu according to Refs. [24,25,27].

III. RESULTS AND DISCUSSION

To study the orientation behavior of the Coulomb barrier
of two interacting nuclei in clear, we use the microscopic

NN effective interaction (M3Y-Paris) characterized by finite
range direct and exchange parts. The exchange part has a
longer force range term, 1.414 fm, than the ranges of the
direct part terms, 0.25 and 0.4 fm, Eqs. (7) and (8). We
begin with the case of pure quadrupole deformation, which
has a wider value range [42] than that of the higher multipole
deformations. Figures 2(a) and 2(b) illustrate the changes of
the barrier height (Vb) and barrier radius (Rb), respectively, for
the reaction 48Ca + 244Pu → 292114 with respect to the
quadrupole deformation parameter value, β2, at different
orientations of the deformed target nucleus (54.7◦, 60◦,
70◦, 80◦, and 90◦). We have performed our calculations in
the double-folding model framework using the direct and

188

190

192

194

196

V
b

(M
eV

)

48Ca+244Pu
β3=β4=0.0

54.7

-
(a)

182

184

186

188

190

192

194

196

-0.35 -0.28 -0.21 -0.14 -0.07 0.00 0.07 0.14 0.21 0.28 0.35

V
b

(M
eV

)

β2

48Ca+244Pu
β3=β4=0.0

54.7
60
70
80
90
90 (β4=β2)

β (deg)

-
(a)

13.4

13.6

13.8

14

14.2

14.4

R
b

(f
m

)

(b)

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4

-0.35 -0.28 -0.21 -0.14 -0.07 0.00 0.07 0.14 0.21 0.28 0.35

R
b

(f
m

)

β 2

(b)

FIG. 2. The variation of the Coulomb barrier (a) height, Vb, and (b) radius, Rb, for the interacting pair 48Ca + 244Pu relative to the quadrupole
deformation parameter, β2, at different orientation angles, β (degrees), of the symmetry axis of the deformed target nucleus 244Pu. The HI
interacting potential is calculated using the direct and exchange parts of the density dependent M3Y NN finite range force, BDM3Y1. The inset
shows the variation half-density radius of the interacting deformed target nucleus, 244Pu, at the same orientations.
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exchange parts of the HI interaction nuclear potential given
by Eqs. (13) and (17), respectively, together with the density
dependent finite range force (BDM3Y1), Eqs.(7)–(9). The
change of the half-density radius of 244Pu, relative to the
same considered values of the quadrupole deformation and
orientations presented in Figs. 2(a) and 2(b) is added to
Fig. 2(b) as a guide. At orientations β � 70◦, Figs. 2(a)
and 2(b) show that Vb and Rb, respectively, have nearly
linear dependence on the quadrupole deformation, β2. The
barrier height, Vb, increases with increasing β2, going from
the oblate shape into the prolate one, while the barrier radius,
Rb, decreases. This linearity is shown more clearly for oblate
deformations and for the change of the barrier radius. It
becomes perfect at β � 80◦. For orientations β < 70◦ there
is direct (reverse), but not linear, dependence for Vb (Rb) on
β2. This dependence decreases till it becomes minor or almost
vanishes at the orientation β = 54.7◦ where the Coulomb
barrier parameters, Vb and Rb, become independent of the
quadrupole deformation. We would like to remark that the
spherical harmonics, Y20 [cos(β)], which define the variation
of the half-density radius of the deformed nucleus, denoted in
Fig. 1 by RT (β) and given by Eq. (20) replacing θ2 by β, has a
zero value at β = 54.7◦. Also, the Coulomb barrier parameters
exhibit a weak dependence on the deformation parameters at
the orientation β = 90◦ when β2 = β4. The deformed nucleus
at these conditions has a fixed radius, Eq. (20). So, it is of
interest now to compare the variation of the Coulomb barrier
parameters and that of the half-density radius, RT (β), of the
deformed target nucleus, inset of Fig. 2(b), with respect to
the quadrupole deformation at the different orientations. As
can be seen, both the variation of the Coulomb barrier radius
and that of the deformed target radius, in the direction of the
separation vector joining the centers of mass of the interacting
nuclei, have similar behaviors in the orientation degrees of
freedom. The Coulomb barrier height, Vb, does the same but
with opposite dependence. Here, “opposite” means that there
is anticorrelation between Vb and RT (β).

Now, one of the great interests of studying the orientation
and deformation dependences of the Coulomb barrier is to
determine the optimum orientations for compact and elongated
configurations leading to hot and cold fusion reactions,
respectively. Figure 2(a) shows that the barrier height curve
corresponding to the orientation β = 90◦ is the highest for all
positive β2 values, prolate nucleus, and vice versa for the bar-
rier radius curve at the same orientation, Fig. 2(b), it is the low-
est. So, the compact configuration, with the highest Coulomb
barrier and smallest barrier radius, for a prolate nucleus inter-
acting with a spherical one will be at β = 90◦ giving equatorial
compact configuration, i.e., in the direction of the minor axis of
the deformed nucleus. An equatorial elongated configuration,
lowest Coulomb barrier height and largest barrier radius, is
obtained in the case of interacting oblate nucleus. It is of inter-
est now to draw firm conclusions about the decisive influence
of the variation of deformed nucleus radius on the orientation
distribution of the Coulomb barrier if one of the interacting
nuclei possesses no purely quadrupole deformation. To do so
we plotted in Figs. 3(a) and 3(b) the Coulomb barrier height,
Vb, and radius, Rb, respectively, as a function of the orientation
angle of the symmetry axis of the deformed target that has

small positive hexadecapole deformation, β4 = 0.062, besides
the quadrupole one. Four values of quadrupole deformation,
β2 = ±0.15, ±0.35, are chosen to simulate intermediate and
strong deformations of a prolate and oblate target nucleus.
Since both the quadrupole and hexadecapole deformations
have reflected symmetry we permit the orientation angle β

to vary from 0◦ to 90◦. We show in the inset of Fig. 3(b)
the change in the 244Pu half-density radius in the presence
of a hexadecapole deformation in addition to the quadrupole
one, with the same considered values. The figures show strong
orientation dependence of Vb and Rb. For a prolate (oblate)
deformed nucleus with small positive value of β4, the value of
Vb varies by about 21.8 MeV (−19.4 MeV) for the value of
β2 = 0.35 (−0.35) as the orientation angle varies from β =
0◦ to β = 90◦. In the same orientation angle range, the corre-
sponding change in the Coulomb barrier radius, Rb, is −2.6 fm
(2.2 fm). So, the effect of positive quadrupole deformation
is relatively greater than that of the negative one which has
the same value. Although there is a slight effect attributed to
the folding integrations over the volume of target appearing
around the orientation β = 54.7◦, we see that the orientation
behavior of Rb follows in a consistent way that of the deformed
nucleus radius, see inset of Fig. 3(b), while the behavior of
Vb reflexes it inversely. The same correspondence between
the orientation behavior of Coulomb barrier parameters and
that of deformed nucleus radius has been obtained when the
hexadecapole deformation gets larger, β4 = 0.15, Figs. 3(c)
and 3(d). Actually, for each orientation angle, β, Figs. 2(b)
and 3(b) show an almost constant difference between the
Coulomb barrier and the half-density radius of the deformed
nucleus, RT (β). This suggests a simple relation between the
Coulomb barrier radius, Rb, and the half-density radii of the
two interacting nuclei, RT (β) and RP , takes the form

Rb(β) = RT (β) + RP + δ, (22)

where δ is a constant independent of the orientation as well
as of the target nucleus deformation. For instance, the value
of δ extracted from the calculations presented in Figs. 2(b)
and 3(b) is about 2.2 fm and 2.2 ± 0.1, respectively. In
fact, the above relation can be expected if we refer to a
geometrical consideration of two closely-contacted nuclei
interacting with a short-range nuclear interaction having a
range of about 1.6 fm. For two interacting nuclei with sharp
surfaces, the radius of the Coulomb barrier is expected to be
Rb = RT + RP + (range of the force). The presence of a finite
diffuseness value (≈0.5 fm) increases the value of Rb beyond
the nuclear force range. Figure 3(e) shows the behavior of
δ = Rb(β) − RT (β) − RP with the target orientation angle
for the calculations presented in Fig. 3(b). As seen in Fig. 3(e),
the classical relation, Eq. (22), provides a good description
even if the deformed nucleus possesses a weak hexadecapole
deformation (β4 = 0.062) in addition to its quadrupole one
(β2 = ±0.35, ±0.15). The small increase of the value of δ at
the orientations around β = 45◦ is due to the diamond-like
shape of the nucleus which has a hexadecapole deformation.
At these orientations, the projectile faces flat surface area in the
target nucleus which increases the value of the Coulomb radius
compared to the case of two curved surfaces. For stronger
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FIG. 3. The distribution of the Coulomb barrier (a) heights, Vb, and (b) radii in the orientation degrees of freedom for the interacting pair
48Ca + 244Pu. The deformed target nucleus 244Pu has different quadrupole deformation values in the presence of small positive hexadecapole
one, β4 = 0.062. The inset shows the orientation variation of the half-density radius for the deformed target nucleus, 244Pu. (c) and (d) are the
same as (a) and (b), respectively, but the deformed nucleus has a large positive hexadecapole deformation, β4 = 0.15. (c) shows the variation
of the quantityδ = Rb(β) − RT (β) − RP , Eq. (22), with the target orientation angle for the results displayed in (b).

hexadecapole deformation, we found that the points are rather
spread out and the classical relation is no longer valid.

Regarding hot and cold fusion processes, presence of the
small positive hexadecapole deformation keeps the compact
configuration of the deformed prolate nucleus with large
quadrupole deformation at β = 90◦ giving an equatorial
compact configuration. An elongated configuration is obtained
at β = 0◦ (polar elongated configuration). It obtains also
the compact configuration of deformed oblate nucleus with
large quadrupole deformation at β = 0◦ keeping the elon-
gated configuration at β = 90◦. This is obviously not the
case for a deformed target nucleus with weaker quadrupole
deformation, β2 = ±0.15 [Figs. 3(a) and 3(b)], or with
stronger hexadecapole deformation, β4 = 0.15 [Figs. 3(c)

and 3(d)]. Small positive hexadecapole deformation, β4 =
0.062, changes the compact configuration in the case of prolate
(oblate) deformed nucleus with small quadrupole deformation,
β2 = 0.15 (−0.15), to be around the orientation β = 67◦
(β = 32◦). The orientation at which the deformed nucleus has
minimum radius value for the same case, inset of Fig. 3(b), is
β = 70◦ (β = 31◦). Larger positive hexadecapole deformation,
β4 = 0.15, changes the compact configuration in the case
of prolate (oblate) deformed nucleus with small quadrupole
deformation, β2 = 0.15 (−0.15), to be around the orientation
β = 57◦ (β = 42◦) and around the orientation β = 67◦
(β = 30◦) in the case of large quadrupole deformation,
β2 = 0.35 (−0.35), Figs. 3(c) and 3(d). The minimum
half-density radius of the deformed target nucleus for the
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FIG. 4. Same as Fig. 3 but the deformed nucleus has small negative hexadecapole deformation, β4 = −0.062 [(a) and (b)] and larger one,
β4 = −0.15 [(c) and (d)].

same cases, inset of Fig. 3(d), is obtained at orientations
β = 57◦ (β = 42◦) and β = 69◦ (β = 32◦), respectively. In this
context, it is important to note that the orientation distribution
patterns of the Coulomb barrier parameters and those of the
deformed nucleus radius, at the different deformations values,
are highly analogous to each other. The Coulomb barrier radius
(height) pattern agrees (reverses) the deformed nucleus radius
one with same (reversed) curvatures and local minima and
maxima positions.

Of course, there would be a significant change in the
orientation barrier distribution if the hexadecapole deforma-
tion is negative instead of the positive one, Figs. 4(a)–4(d).
Although the equatorial (polar) compact configuration remains
essentially unchanged when the deformed prolate (oblate)
nucleus involved in the reaction has, small or large, negative
hexadecapole deformation, it is not the case for the elongated
one. For instance, the elongated configuration when the prolate
nucleus has small quadrupole deformation (β2 = 0.15) in
addition to a small negative hexadecapole one (β4 = −0.062
becomes around the orientation β = 34◦, the deformed
nucleus has maximum radius at β = 31◦. Indeed, as the
negative hexadecapole deformation gets larger, β4 = −0.15,
the obtained elongated configuration in case of small prolate
(oblate) quadrupole deformation, β2 = 0.15 (−0.15), changes
to be around the orientation β = 43◦ (56◦), Figs. 4(c) and 4(d).
It becomes around the orientation β = 35◦ (66◦) in the case of
larger quadrupole deformation, β2 = 0.35 (−0.35). The corre-
sponding maximum value for the deformed nucleus radius in
these cases, inset of Fig. 4(d), is obtained at β = 42◦ (57◦) and

β = 32◦ (69◦), respectively. This emphasizes again the simi-
larity between the orientation variation of RT (β) and the corre-
sponding variations of Vb (β) and Rb(β). Moreover, comparing
the variations of Vb (β) and Rb(β) for prolate and oblate de-
formed nuclei with small negative value of β4 we note that the
orientation response of the oblate nucleus is clearer than that
of the prolate one. Also, comparing the same values in case of
positive hexadecapole deformation, we would rather conclude
that the effect of hexadecapole deformation reinforce (oppose)
the orientation quadrupole deformation one if they have same
(opposite) signs. This can be seen clearly too if we consider
the orientation dependence of the deformed nucleus radius. For
example, as the orientation angle varies from β = 0◦ to β = 90◦,
the orientation variation of the oblate nucleus with β2 = −0.35
decreases from 2.44 fm (β4 = 0.0) to 2.20 (β4 = 0.062) while
the corresponding absolute orientation variation of the prolate
nucleus with β2 = 0.35 increases from 2.44 fm up to 2.68 fm.

For another trustworthy confirmation of our result con-
cerning the correlation (anticorrelation) of the orientation
variation of the Coulomb barrier radius (height) with that of the
interacting deformed nucleus radius, we shall consider these
variations in the presence of an asymmetry octupole deforma-
tion. Figures 5(a) and 5(b) show the orientation distribution of
Coulomb barrier parameters, VB and RB , respectively, when
the deformed 244Pu nucleus has an octupole deformation, β3,

in addition to its quadrupole and hexadecapole ones, β2 =
0.25 and β4 = 0.062. Five values of the octupole deformation
parameter, β3 = 0, ±0.05 and ±0.1, are assumed. We permit
the orientation angle β to vary from 0◦ to 180◦ where the
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FIG. 5. Same as Fig. 4 but the deformed target nucleus has octupole deformation, β3, with different values in addition to its quadrupole
deformation (β2 = 0.25) and the hexadecapole one with two different values, β4 = 0.062 [(a) and (b)] and β4 = 0.15 [(c) and (d)]. The
calculations are performed using zero-range exchange part of the M3Y NN interaction. Also shown are the results for β3 = 0.1 obtained with a
finite-range exchange part for comparison.

octupole deformation breaks the reflection symmetry of the
nucleus. For simplicity, we considered the density dependent
M3Y NN force with a zero-range exchange part. The strong
dependence of the Coulomb barrier parameters on the octupole
deformation is appearing clearly. The absolute maximum
variation of the Coulomb barrier height in the mentioned
orientation range is 20.1 MeV and 23.5 MeV for β3 =
±0.05 and ±0.1, respectively, while it is 17.0 MeV for
β3 = 0. As can be seen in Figs. 5(a) and 5(b), the Coulomb
barrier parameters follow an orientation pattern similar to the
deformed nucleus radius one, inset of Fig. 5(b). The inclusion
of the octupole deformation with different values of 0.1,
0.05, −0.05, and −0.1 changes the compact configuration
orientation to be at β = 71◦, 73◦, 106◦, and 109◦, respectively.
The minimum deformed nucleus radius for these octupole
deformation values occurs at β = 71◦, 75◦, 105◦, and 109◦,
respectively. The positive (negative) octupole deformation
values keep the polar elongated configuration to be at the
orientation β = 0◦ (180◦). To assess the effect of using a
zero-range exchange part of the NN interaction instead of the
finite-range one on the barrier behavior, the calculations made
for the case of β3 = 0.1 with the finite-range exchange part are
also displayed in Figs. 5(a) and 5(b) for comparison. As seen,
the use of the finite-range exchange force reduces the values of
the Coulomb barrier height by about 2.1–2.9 MeV increasing

the barrier radius by about 0.19–0.26 fm. Fortunately, these
changes do not affect the general behavior of the Coulomb
barrier parameters in the orientation degrees of freedom, which
is the issue of interest here.

Finally, in the case of larger positive hexadecapole deforma-
tion (β4 = 0.15), Figs. 5(c) and 5(d), the compact configuration
is obtained at the orientation β = 62◦ (β = 118◦) in presence
of a positive (negative) octupole deformation, irrespective of
its value. The corresponding minimum half-density radius
is obtained at the orientation β = 63◦ (β = 117◦), inset of
Fig. 5(d), which confirms our result.

IV. SUMMARY AND CONCLUSION

In summary, the orientation distribution of the Coulomb
barrier for reactions involving deformed target nuclei is
discussed in the context of the folding model formalisms based
on the density dependent NN interaction with the direct and
exchange parts of finite ranges. We implement folding expres-
sions which can be used to perform the microscopic calcula-
tions for the interaction potential between spherical-deformed
interacting nuclear pair, containing a self-consistency problem,
without consuming computational time. Specifically, we have
demonstrated that the orientation variation of the colliding
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deformed nucleus radius, in the direction of the separation
vector between colliding nuclei, has the substantial role in
forming the Coulomb barrier distribution in the orientation
degrees of freedom. The orientation dependence patterns of
the Coulomb barrier parameters, height and radius, are found
to behave in directly (inversely) reasonable agreement with the
deformed target radius orientation pattern. Taking advantage
of this result, our overall conclusion is that this correlation
(anticorrelation) provides a chance to deduce the orientation
barrier distribution and the optimum orientations for com-
pact and elongated configurations of colliding nuclei in an

acceptable accurate way without performing heavy calcula-
tions. Moreover, this correlation (anticorrelation) offers a great
help when we need to take into account the orientation degrees
of freedom in microscopic calculations instead of calculating
the interaction potential several times, up to hundreds of times,
as we have to do in the coupled channel calculations. This
correlation between the Coulomb barrier and the deformed
target nucleus radius can be achieved independently of the
NN force used in the calculations. We have used ordinary
M3Y-Reid and Paris versions with a zero-range exchange part
obtaining the same relation.

[1] D. J. Hinde, R. G. Thomas, R. du Rietz, A. Diaz-Torres,
M. Dasgupta, M. L. Brown, M. Evers, L. R. Gasques, R. Rafiei,
and M. D. Rodriguez, Phys. Rev. Lett. 100, 202701 (2008).

[2] Nan Wang, Jun-qing Li, and En-guang Zhao, Phys. Rev. C 78,
054607 (2008).

[3] V. Zagrebaev and W. Greiner, J. Phys. G: Nucl. Part. Phys. 34,
1 (2007).

[4] Yu. Ts. Oganessian et al., Phys. Rev. C 76, 011601(R) (2007).
[5] I. I. Gontchar, D. J. Hinde, M. Dasgupta, C. R. Morton, and

J. O. Newton, Phys. Rev. C 73, 034610 (2006).
[6] M. Manhas and R. K. Gupta, Phys. Rev. C 72, 024606 (2005).
[7] K. Hagino and N. Rowley, Phys. Rev. C 69, 054610 (2004).
[8] R. A. Gherghescu, D. N. Poenaru, W. Greiner, and Y. Nagame,

J. Phys. G: Nucl. Part. Phys. 32, L73 (2006).
[9] W. Li, N. Wang, F. Jia, H. Xu, W. Zuo, Q. Li, E. Zhao, J. Li, and

W. Scheid, J. Phys. G: Nucl. Part. Phys. 32, 1143 (2006).
[10] M. Ismail, W. M. Seif, M. M. Osman, H. El-Gebaly, and

N. M. Hassan, Phys. Rev. C 72, 064616 (2005).
[11] V. I. Zagrebaev, Y. Aritomo, M. G. Itkis, Yu. Ts. Oganessian,

and M. Ohta, Phys. Rev. C 65, 014607 (2001).
[12] G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys.

A 678, 24 (2000).
[13] W. Reisdorf, J. Phys. G 20, 1297 (1994).
[14] A. B. Balantekin, A. J. DeWeerd, and S. Kuyucak, Phys. Rev. C

54, 1853 (1996).
[15] J. G. Keller, K.-H. Schmidt, F. P. Hessberger, G. Munzenberg,

and W. Reisdorf, Nucl. Phys. A 452, 173 (1986).
[16] C. H. Dasso, H. Esbensen, and S. Landowne, Phys. Rev. Lett.

57, 1498 (1986).
[17] S. Bjørnholm and W. J. Swiatecki, Nucl. Phys. A 391, 471

(1982).
[18] R. G. Stokstad, Y. Eisen, S. Kaplanis, D. Pelte, U. Smilansky,

and I. Tserruya, Phys. Rev. Lett. 41, 465 (1978).
[19] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733

(2000).
[20] Yu. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
[21] S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007).

[22] C. Y. Wong, Phys. Rev. Lett. 31, 766 (1973).
[23] J. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, Ann.

Phys. (NY) 105, 427 (1977).
[24] R. K. Gupta, M. Balasubramaniam, R. Kumar, N. Singh,

M. Manhas, and W. Greiner, J. Phys. G: Nucl. Part. Phys. 31,
631 (2005).

[25] R. K. Gupta, M. Manhas, and W. Greiner, Phys. Rev. C 73,
054307 (2006).

[26] M. Manhas and R. K. Gupta, Phys. Rev. C 72, 024606 (2005).
[27] M. Manhas, Raj K. Gupta, Q. Li, S. K. Patra, and W. Greiner,

Phys. Rev. C 74, 034603 (2006).
[28] R. K. Gupta, N. Singh, and M. Manhas, Phys. Rev. C 70, 034608

(2004).
[29] M. Ismail, W. M. Seif, and M. M. Botros, Nucl. Phys. A 828,

333 (2009).
[30] M. Seiwert, N. Abul-Naga, V. Oberacker, J. A. Maruhn, and

W. Greiner, Gesellschaft für schwerionenforschung, GSI,
Annual Report, 1981.

[31] R. K. Gupta, M. Manhas, G. Münzenberg, and W. Greiner, Phys.
Rev. C 72, 014607 (2005).

[32] Yu. Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004); 70,
064609 (2004).

[33] Dao T. Khoa and W. von Oertzen, Phys. Lett. B 342, 6 (1995).
[34] N. Anantaraman, H. Toki, and G. Bertsch, Nucl. Phys. A 398,

269 (1983).
[35] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
[36] L. J. B. Goldfarb and P. Nagel, Nucl. Phys. A 341, 494 (1980).
[37] M. Ismail, W. M. Seif, and H. El-Gebaly, Phys. Lett. B 563, 53

(2003).
[38] X. Campi and A. Bouyssy, Phys. Lett. B 73, 263 (1978).
[39] Dao T. Khoa, Phys. Rev. C 63, 034007 (2001).
[40] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, New York, 1980), p. 542.
[41] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data

Tables 71, 1 (1999).
[42] S. Raman, C. W. Nestor Jr., and P. Tikkaneny, At. Data Nucl.

Data Tables 78, 1 (2001).

034607-10


