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Complete fusion of 9Be with spherical targets
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The complete fusion of 9Be with 144Sm and 208Pb targets is calculated in the coupled-channels approach. The
calculations include couplings among the 3/2−, 5/2−, and 7/2− states in the K = 3/2 ground-state rotational
band of 9Be. It is shown that the B(E2) values for the excitation of these states are accurately described in the
rotor model. The interaction of the strongly deformed 9Be nucleus with a spherical target is calculated using the
double-folding technique and the effective M3Y interaction, which is supplemented with a repulsive term that is
adjusted to optimize the fit to the data for the 144Sm target. The complete fusion is described by ingoing-wave
boundary conditions. The decay of the unbound excited states in 9Be is considered explicitly in the calculations
by using complex excitation energies. The model gives an excellent account of the complete fusion (CF) data for
9Be + 144Sm, and the cross sections for the decay of the excited states are in surprisingly good agreement with the
incomplete fusion (ICF) data. Similar calculations for 9Be + 208Pb explain the total fusion data at high energies
but fail to explain the CF data, which are suppressed by 20%, and the calculated cross section for the decay of
excited states is a factor of 3 smaller than the ICF data at high energies. Possible reasons for these discrepancies
are discussed.
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I. INTRODUCTION

The influence of breakup on the complete and incomplete
fusion (CF and ICF) of weakly bound nuclei with stable targets
is currently being studied at many experimental facilities
around the world. Experiments with unstable nuclei are
particularly challenging because of weak beam currents and
poor statistics. Fortunately, there are several light elements
that are both stable and weakly bound and they provide the
opportunity to study the influence of breakup on fusion with
good statistics.

A good example of a stable and weakly bound nucleus is
9Be, and its fusion has been measured with 208Pb and 144Sm
targets [1–3]. The simplest view of 9Be is a strongly deformed
three-body system consisting of two α particles held together
by a weakly bound neutron. The Q value for the α + α + n

three-body breakup is −1.574 MeV. In both experiments it
was possible to separate the complete from the ICF.

One of the most dominant features in coupled-channels cal-
culations of fusion of the strongly deformed 9Be nucleus with a
stable target is the excitation of states in the K = 3/2 ground-
state rotational band of 9Be. The large quadrupole deformation
of 9Be (derived from the measured quadrupole moment of
the ground state) implies that conventional calculations that
are based on a deformed Woods-Saxon potential may become
unrealistic, for example, if the curvature corrections to the
ion-ion potential [4], which are caused by the deformation of
the reacting nuclei, are ignored. These problems are overcome
in the following by using the double-folding technique [5,6]
to calculate the Coulomb plus nuclear interaction between the
deformed 9Be nucleus and a spherical target.

Another interesting feature of 9Be is the nonzero spin of
the ground state. This feature was pointed out in Ref. [3], and
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it was recommended that the spin of the 3/2− ground state
and the 5/2− and 7/2− excited states of 9Be should be treated
explicitly in the calculations. In particular, the fusion cross
section should be calculated for each of the initial magnetic
quantum numbers, m = ±1/2 and m = ±3/2, of the 3/2−
ground state of 9Be, and the average cross section should be
compared to measurements. In the rotor model one can easily
calculate the necessary matrix elements from the multipole
expansion of the total interaction between projectile and target.

The structure and parametrization of the one-body density
of 9Be are discussed in Sec. II. Calculation of the double-
folding interaction between 9Be and a spherical target is
presented in Sec. III. A model for calculating the CF cross
section is presented in Sec. IV. The results of coupled-channels
calculations of the fusion of 9Be + 144Sm and 9Be + 208Pb are
presented in Sec. V, and Sec. VI reports the conclusions.

II. STRUCTURE OF 9Be

The nucleus 9Be behaves like an almost-perfect rotor with
respect to quadrupole excitations of the K = 3/2 ground-state
rotational band with spins Iπ = 3/2−, 5/2−, and 7/2−. This
can be seen by comparing the measured, reduced transition
probabilities for quadrupole transitions to the results obtained
from Eq. (4.68a) of Ref. [7]:

B(E2,KI → KI ′) = 5Q2
0e

2

16π
〈IK20|I ′K〉2, (1)

which applies to a perfect rotor. Here Q0 is the intrinsic
quadrupole moment. The measured quadrupole moment of the
3/2− ground state of 9Be is 5.29(4) fm2 [8], which translates
into the intrinsic quadrupole moment Q0 = 26.45(20) fm2,
according to Eq. (4-69) of Ref. [7]. Inserting this value into
Eq. (1), one obtains the reduced transition probabilities that are
shown in the last column in Table I. They are in good agreement
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TABLE I. Measured reduced transition probabilities
B(E2, 3/2− → I−) for exciting the K = 3/2 ground-state
rotational band of 9Be [8] are compared to predictions of the rotor
model. Excitation energies EI and decay widths �I [9] are also
listed.

Spin Iπ EI (MeV) �I (keV) B(E2) (e2 fm4)

Experiment Rotor model

3/2− 0 0 14.0(2) 14
5/2− 2.429 0.78 40.7(6) 36
7/2− 6.38 1210 18.9(3) 20
Sum 73.6(11) 70

with the measured values shown in the fourth column in
Table I. The sum of the B values is shown in the last row
in Table I. The sum is 5Q2

0e
2/(16π ) in the rotor model, which

differs from the experimental value by about 5%.
A great advantage of the rotor model is that it can be applied

to calculate the transition matrix elements in cases where they
have not been measured, for example, for the transition from
5/2− to 7/2− and the quadrupole moments of the excited
states. One can also calculate matrix elements of the total
interaction between 9Be and a spherical target from a multipole
expansion of this interaction as discussed in Sec. III.

The excitation energies and widths of the three states are
shown in the second and third columns in Table I. Note that
the width of the 7/2− state is very large, which implies that the
state, if excited, may decay by particle emission before fusion
with the target takes place. This possibility is investigated in
Secs. IV and V.

There are other low-lying states in 9Be but they are not
expected to play any significant role in heavy-ion collisions.
Thus the spin-orbit partners of the ground-state rotational
band, that is, the 1/2−, 3/2−, and 5/2− states, will be ignored
because the spin excitations are weak. The excitation of
positive-parity states, starting with the lowest 1/2+ state, is
also weak and will be ignored.

A. Density parametrization

The densities of the deformed projectile and spherical target
nuclei are parametrized by the expression

ρ(r, θ ′) = C
1 + cosh(R/a)

cosh(r/a) + cosh(R/a)
, (2)

where C is a normalization constant, R is the radius, and
a is the diffuseness. The radius of the deformed, axially
symmetric projectile depends on the direction with respect
to the symmetry axis. It is parametrized as

R(θ ′) = R0[1 + β2Y20(θ ′)], (3)

where θ ′ is the angle between the position vector r and the
direction e of the symmetry axis.

The advantages of the parametrization, Eq. (2), are that it is
similar to a Fermi function at larger values of r and it is well
behaved as a function of θ ′ for r → 0, where it approaches
an orientation-independent constant. Another advantage of

TABLE II. Density parameters for 9Be, 144Sm, and 208Pb.
Measured rms charge radii [11], listed in the last column, are
reproduced, and so is the intrinsic quadrupole moment of 9Be,
Q0 = 26.45(20) fm2 [8]. The last row lists the adopted neutron
(ν) density parameters for 208Pb; the “rms-exp” radius is estimated
from Skyrme Hartree-Fock calculations [12].

Nucleus R (fm) a (fm) β2 〈r2〉1/2 rms-exp

9Be 2.08 0.375 1.183 2.540 2.52(1)
144Sm 5.829 0.54 0 4.941 4.947(9)
208Pb(π ) 6.60 0.546 0 5.500 5.503(2)
208Pb(ν) 6.82 0.546 0 5.66 5.66

Eq. (2) is the analytic properties it has for spherical nuclei [10].
For example, the Fourier transform is an analytic function, and
the expression for the root-mean-square (rms) radius,

〈r2〉 = 3
5

[
R2 + 7

3 (aπ )2
]
, (4)

is an exact relation (see the appendix in Ref. [10].) These
features are utilized for the spherical target nuclei, 144Sm
and 208Pb. The parameters chosen are reported in Table II.
They were adjusted so that the measured rms charge radii [11]
were reproduced. The parameters for neutron (ν) densities
were assumed to be the same as for protons (π ), except in
the case of 208Pb, where a slightly larger radius is used to
accommodate the neutron skin of this nucleus. The adopted
skin thickness δnp = 〈r2〉1/2

n − 〈r2〉1/2
p ≈ 0.16(6) fm was cho-

sen because it falls in the midst of values predicted by Skyrme
Hartree-Fock calculations [12]. Moreover, it is also consistent
with the skin thickness δnp = 0.16 ± (0.02)stat ± (0.04)sys fm
that has been extracted from antiprotonic 208Pb atoms [13].
The parameters for 9Be are determined in Sec. II C.

B. Multipole expansion of density

The density of the deformed nucleus is expanded on
Legendre polynomials,

ρ(r, θ ′) =
∑

λ

ρλ(r) Pλ[cos(θ ′)], (5)

where ρλ(r) is calculated numerically:

ρλ(r) = 2λ + 1

2

∫ 1

−1
dx Pλ(x)ρ(r). (6)

The multipole expansion of the Fourier transform of the
density is

ρ(k) =
∑

λ

i−λρλ(k) Pλ[cos(θ ′
k)], (7)

where θ ′
k is the angle between k and the direction e of the

symmetry axis, and

ρλ(k) = 4π

∫ ∞

0
drr2ρλ(r)jλ(kr). (8)

The preceding expressions are used in the next section
to calculate the double-folding potential. They are also used
to calculate the electric multipole moments of the deformed
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FIG. 1. (Color online) Correlation between the intrinsic
quadrupole moment and the rms charge radius of 9Be. Curves were
obtained by varying β2 for the fixed radius parameter R = 2.08 and
the three values of diffuseness indicated.

charge density ρc(r, θ ′):

M(Eλµ) = M(Eλ) Yλµ(e), (9)

where

M(Eλ) = 4π

2λ + 1

∫ ∞

0
dr rλ+2ρcλ(r). (10)

The intrinsic quadrupole moment Q0 is traditionally defined
as 2M(E2).

C. Calibration of the density of 9Be

The parameters of the density of the deformed 9Be nucleus
were adjusted so that both the intrinsic quadrupole moment
and the rms charge radius agree with experiments. That was
achieved as follows. The mean square charge radius of 9Be,

〈r2〉 = 4π

Z

∫ ∞

0
dr r4ρc,λ=0(r), (11)

and the intrinsic quadrupole moment,

Q0 = 2M(E2) = 4π

5

∫ ∞

0
dr r4ρc,λ=2(r), (12)

were calculated as functions of the deformation parameter
β2 for a fixed radius R = 2.08 fm and for three values of the
diffuseness. The results are shown in Fig. 1 as a correlation be-
tween the rms charge radius and Q0. It is shown that the curve
that is based on the diffuseness a = 0.375 fm passes through
the experimental values, and agreement with both values is
achieved for β2 = 1.183. This is the value that is used in the
following, and the shape it produces according to Eq. (3) looks
almost like two touching α particles, as illustrated in Fig. 2. In
fact, the intrinsic quadrupole moment of 9Be, Q0 =
26.45(20) fm2, is almost identical to the calculated quadrupole
moment of the unbound nucleus 8Be. The published value
obtained in variational Monte Carlo calculations is 26.6(3)
fm2 [14]. The intrinsic quadrupole moment of 10Be is slightly
smaller; the value one obtains from the measured B(E2) value
of the lowest 2+ excitation [8] is Q0 = 22.9 fm2.
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FIG. 2. (Color online) The shape of 9Be, Eq. (3), derived by
calibrating the density to reproduce the measured intrinsic quadrupole
moment Q0 and rms charge radius.

III. DOUBLE-FOLDING POTENTIAL

Having adopted the rotor model for 9Be and determined
the densities of the projectile and the spherical 144Sm and
208Pb targets, one can now use the double-folding technique to
calculate the potential that will be used in the coupled-channels
calculations. The double-folding potential is defined by

U (r) =
∫

dr1

∫
dr2ρ(r1, e)ρT (r2)v(|r2 + r − r1|), (13)

where v is the effective nucleon-nucleon interaction and r is
the relative distance between projectile and target. The target
density ρT is assumed to be spherical, whereas the density of
the projectile 9Be is deformed and parametrized as described
in the previous section.

The double-folding potential is calculated most conve-
niently from the Fourier transforms of the densities according
to the expression [5]

U (r) =
∫

dk
(2π )3

ρ(k)ρT (−k)v(k)eikr. (14)

Inserting expression (7) for the deformed projectile and
spherical target densities into Eq. (14), one obtains

U (r) = U (r, θ ′) =
∑

λ

Uλ(r)Pλ[cos(θ ′)], (15)

where θ ′ is the angle between r and e, and

Uλ(r) = 1

2π2

∫
dk k2ρλ(k)ρT (k)v(k)jλ(kr). (16)

The double-folding calculation of the ion-ion potential and
its multipole expansion, Eq. (15), will be based on the M3Y
effective interaction, supplemented with a repulsive term that
simulates the effect of nuclear incompressibility. This method
has been applied previously by Mişicu and Greiner [6] to
calculate the fusion between spherical and deformed nuclei.
It was also used in Ref. [15] to explain the hindrance in the
fusion of spherical nuclei at extreme subbarrier energies.

The repulsive term in the effective NN interaction is
parametrized as a contact interaction,

v
(rep)
NN (r) = vrδ(r), (17)

and the densities that are used in the associated double-folding
calculation have the same radius as reported in Table I, but
usually a much smaller diffuseness ar is chosen [16]. The
value chosen here is ar = 0.3 fm.
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The Coulomb interaction can also be generated from
Eq. (14) simply by replacing v(k) with the Fourier transform
4πe2/k2 of the proton-proton Coulomb interaction and re-
placing the nuclear densities with the charge densities ρc of
projectile and target. The result has the same form as Eq. (15):

UC(r, θ ′) =
∑

λ

UC
λ (r)Pλ[cos(θ ′)], (18)

where

UC
λ (r) = 1

2π2

∫
dk k2ρc,λ(k)ρc,T (k)

4πe2

k2
jλ(kr). (19)

For large separations of projectile and target, this interaction
approaches the usual monopole-multipole interaction:

UC
λ (r) = ZT e2M(Eλ)

rλ+1
. (20)

A. Matrix elements

Having expressed the total interaction U (r, θ ′)
(Coulomb + nuclear) in terms of the multipole expansion,
Eq. (15), one can now easily calculate the diagonal as well as
the off-diagonal couplings between states in the ground-state
rotational band of 9Be. All one needs to calculate is the matrix
elements of the Legendre polynomials,

Pλ[cos(θ ′)] =
∑

µ

Dλ∗
µ0(r̂)Dλ

µ0(e).

The matrix elements between different states are

〈KI ′M ′|Pλ[cos(θ ′)]|KIM〉 =√
2I + 1

2I ′ + 1

∑
µ

Dλ∗
µ0(r̂)〈IMλµ|I ′M ′〉〈IKλ0|I ′K〉. (21)

The calculation is even simpler in the rotating frame approx-
imation, which is used in the coupled-channels calculations
described in the next section. In this approximation one
assumes that r (the relative distance between projectile and
target) defines the z axis. The angle θ ′ is then identical to
the angle θe of the symmetry axis with respect to the z axis.
Becausee Dλ

µ0(ẑ) = δµ0, this implies that µ = 0 is the only
nonzero term in Eq. (21).

The total potentials one obtains for the two systems
9Be + 144Sm and 9Be + 208Pb are shown in Fig. 3. For each
system the monopole potential (solid line) and the entrance
channel potentials for the magnetic quantum numbers m =
1/2 and 3/2 of the 3/2−, K = 3/2 ground state of 9Be.
All three potentials were obtained with the strength vr =
410 MeV fm3 of the repulsive effective NN interaction (which
is determined in Sec. V A).

The magnetic quantum numbers m = 1/2 and 3/2 used
in Fig. 3 refer to a z axis that points in the direction of
the relative position of projectile and target. The m = 3/2
channel therefore corresponds to an orientation where the tip
of the deformed 9Be points toward the target, whereas the
m = 1/2 channel corresponds to the belly pointing toward the
target. Consequently, the Coulomb barrier for the m = 3/2
entrance channel is lower than the barrier for m = 1/2.
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FIG. 3. (Color online) Entrance channel potentials for 9Be +
144Sm and 9Be + 208Pb, respectively, obtained for the repulsive
strength vr = 410 MeV fm3. The solid (red) curve is the monopole
potential; the dotted (blue and black) curves are the entrance channel
potentials for the magnetic quantum numbers m = 1/2 and 3/2.
Ground-state energies of the two compound nuclei, 153Dy and 217Rn,
are indicated.

Another observation is that the potential pocket is deeper for
m = 1/2 than for m = 3/2. This is a consequence of the larger
radius of curvature and the stronger nuclear attraction for the
m = 1/2 belly configuration.

IV. MODEL OF 9Be-INDUCED FUSION

The cross sections for the CF of 9Be with a heavy target
are calculated using the coupled-channels approach. CF is
simulated by ingoing wave boundary conditions that are
imposed in all channels at the minimum of the pocket in the
entrance channel potential. Coupled equations are solved in the
rotating frame approximation [17–19], where the z axis points
in the direction of the separation vector r between the reacting
nuclei. This approximation is also called the isocentrifugal
approximation [17] because the centrifugal potential is the
same in all channels and equal to the centrifugal potential in
the entrance channel. The total magnetic quantum number m is
also preserved in this approximation (see Ref. [20]). Because
the ground state of the target is a 0+ state and the ground state
of 9Be is a 3/2− state, one would have to solve the coupled
equations four times, for m = ±1/2 and ±3/2. For symmetry
reasons it is actually sufficient to calculate the fusion cross
section twice, for m = 1/2 and 3/2, and compare the average
fusion cross section with the data.
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FIG. 4. (Color online) Measured cross sections for the complete
fusion of 9Be + 144Sm [3] are compared to calculations for m = 1/2
and 3/2 and the average cross section [solid (red) curve]. The strength
of the repulsive interaction was set to vr = 410 MeV fm3.

The effect of the decay of the excited state in 9Be is
included explicitly in the coupled equations by employing
the complex excitation energies EI − i

2�I . The decay widths
�I are reported in the third column in Table I; it is seen that
the width of the 7/2− state is very large. The dominant decay
mode of the 7/2− state is neutron emission, and 55% of it
populates the 2+ excited state of 8Be [8]. The latter state has an
excitation energy of 3.03 MeV and a large width of 1.51 MeV,
with an exclusive decay into two α particles [8]. The two
α particles are emitted back to back in the 8Be rest frame, so
if one of them is emitted toward the target, the other α partner
will recoil away from the target nucleus and will most likely
escape. It is therefore assumed that the decay of the 7/2−
state will not lead to CF, and the CF will be calculated from
the ingoing flux as described previously, whereas the decay is
registered in the absorption cross section.

The data for the CF of 9Be + 144Sm [3] are compared
in Fig. 4 to the results of coupled-channels calculations.
The calculated CF cross sections were derived from the
ingoing flux as described previously. The top dotted curve
is the cross section for the m = 3/2 magnetic substate; the
lower dotted curve is for m = 1/2. The curve for m = 3/2
dominates the CF at all energies, consistent with the lower
Coulomb barrier for this magnetic substate (see Fig. 3.)
The data should be compared to the solid curve, which is
the average of the CF cross sections for m = 1/2 and 3/2. The
comparison is discussed in more detail in Sec. V A.

A. Incomplete fusion

The decay of the 7/2− state will end up in the breakup
of 9Be. The precise outcome of the decay in terms of ICF
or breakup is not as clear. It would require a multicluster
description to follow the two α particles after the decay. As
mentioned earlier, it is unlikely that both α particles fuse with
the target because they are emitted back to back. However, it
is possible that one of them will fuse with the target nucleus
and lead to ICF. It should also be emphasized that there are
other sources of ICF, for example, neutron transfer from 9Be,
which are not included in the coupled-channels calculations
presented here.

The calculated cross section for the decay of excited states
is henceforth referred to as the absorption cross section. In
view of the preceding discussion one should not expect that
absorption would account for the measured ICF cross sections,
but it is clearly of interest to compare the two cross sections.
The experimental total fusion (TF) cross section is the sum of
the CF and ICF cross sections. It is compared to the calculated
TF cross section, which is the sum of the CF and the absorption
cross sections.

V. COMPARISON TO MEASUREMENTS

The results of coupled-channels calculations that are based
on the model presented in the previous sections are compared
here to the data for CF and ICF of 9Be + 208Pb [1,2] and
9Be + 144Sm [3]. Both targets are spherical, closed-shell nuclei
and the excitation of these nuclei is relatively weak compared
to the excitation of 9Be, so they will be ignored. Fusion with the
144Sm target is discussed first because the couplings are weaker
in this case and the adopted model is therefore expected to be
more successful. This case will also provide the opportunity
to calibrate the repulsive part of the effective NN interaction.

A. Fusion of 9Be + 144Sm

The calculated cross sections for the fusion of 9Be with
144Sm are compared in Fig. 5(A) to the data from Ref. [3].
The measured and calculated cross sections for CF are seen
to be in good agreement. This was achieved by adjusting the
repulsive part of the effective NN interaction that is used in
the calculation of the double-folding nuclear potential. The
best fit to the data is obtained for the strength vr ≈ 410 MeV
fm3, and that is the value that is used in the following. The χ2

per data point is shown in Fig. 6 as a function of the strength
of the repulsive interaction. There is another solution with a
small χ2 for vr � 300 MeV fm3 but it is unphysical because
it produces a pocket for 9Be + 208Pb that is deeper than the
energy of the compound nucleus.

The dotted curve in Fig. 5(A) shows the calculated cross
sections for the decay of the excited states of 9Be; it is in
surprisingly good agreement with the ICF data. The good
agreement may be accidental but it could also indicate that
the decay of the excited states of 9Be is the main source of
ICF for the 144Sm target. The best fit to the data for TF is also
achieved for vr ≈ 410 MeV fm3. This consistency of the CF
and TF is illustrated in Fig. 6 in terms of the χ2 per data point.

The measured and calculated fusion cross sections are
compared in a linear plot in Fig. 5(B). It is shown that
the different components of the measured and calculated
fusion cross sections are in good agreement. In particular,
CF is suppressed by about 10% compared to TF at high
energies, both experimentally and in the calculations. This
suppression is caused in the coupled-channels calculations by
the decay of the excited states of 9Be. Without any decay
in the coupled-channels calculations, the fusion cross section
obtained from the ingoing-wave boundary conditions would
be close to the measured TF cross section. In other words,
the suppression of CF compared to TF requires some sort of
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FIG. 5. (Color online) (A) Measured complete (CF) and incom-
plete (ICF) fusion cross sections for 9Be + 144Sm [3] are compared
to calculated cross sections for CF [solid (red) curve] and absorption
[dotted (blue) curve]. (B) This linear plot also shows the total fusion
(TF) cross section.

absorption mechanism, and the decay mechanism suggested
here seems to provide a natural explanation. Let us now
investigate whether this mechanism can explain the data for
the lead target.

B. Fusion of 9Be + 208Pb

The results of the coupled-channels calculations of the
fusion of 9Be + 208Pb are compared in Fig. 7 to the data from
Ref. [2]. The calculations are similar to those just presented
for 9Be + 144Sm. It is shown in Fig. 7(B) that the calculated
absorption cross section (owing to the decay of excited states)
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FIG. 6. (Color online) The χ 2 values per data point for complete
(CF) and total (TF) fusion of 9Be + 144Sm are shown as functions of
the strength vr of the repulsive interaction, Eq. (17).
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FIG. 7. (Color online) (A) Measured cross sections for complete
(CF) and incomplete (ICF) fusion of 9Be + 208Pb [2] are compared
to calculated cross sections for CF [solid (red) curve] and absorption
[dotted (blue) curve]. (B) This linear plot also shows the total fusion
(TF) cross sections.

can only explain one-third of the measured ICF cross section at
high energies. The suppression of the CF compared to the TF
cross section is about 30% in the experiment [2], whereas the
calculations show only a 10% suppression. There are evidently
other sources of ICF in collisions of 9Be with a 208Pb target,
besides the decay of excited states considered here.

A 30% suppression of the CF data was observed in
Ref. [2] by comparison to coupled-channels calculations. The
calculations were based on a deformed Woods-Saxon potential
but did not consider the effects of ICF or the decay of excited
states. It was shown that a scaling of the calculated fusion cross
section by a factor of 0.7 leads to a very good agreement with
the CF data at all energies. In Fig. 7 it is sufficient to multiply
the CF calculation by a factor of 0.8 to match the CF data at
high energies. The reason for the smaller scaling factor is that
the decay of the excited states has already taken care of a 10%
reduction.

It is often necessary to employ a weak, short-range imagi-
nary potential to be able to reproduce the fusion data of stable
nuclei at high energies by coupled-channels calculations. This
is particularly the case when calculations are based on a
shallow entrance channel potential [10]. Because the potentials
shown in Fig. 3 are relatively shallow, it is of interest to
determine the effect of a weak imaginary potential on the
fusion of 9Be + 208Pb. Let us therefore choose the potential

W (r) = W0{1 + exp[(r − Rw)/aw]}−1, (22)

with aw = 0.2 fm and Rw = 9.5 fm, so that it acts near the
minimum of the potential pockets shown in Fig. 3. The strength
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FIG. 8. (Color online) Similar to Fig. 7. Calculations include, in
addition to the decay of the excited states of 9Be, a weak imaginary
potential with strength W0 = −2.5 MeV.

W0 was adjusted to optimize the fit to the CF data. The best
fit is shown in Fig. 8(A); it was achieved for W0 = −2.5 MeV
and has a χ2/N = 1.4.

The absorption cross section, which is the combined effect
of the imaginary potential, Eq. (22), and the decay of the
excited states is shown by the lower dotted curves in Figs. 8(A)
and 8(B). It is in good agreement with the ICF data at high
energies, but the discrepancy is large at low energies. The
discrepancy indicates that the breakup leading to ICF must take
place at larger separations of projectile and target than assumed
in the potential, Eq. (22). It may be possible to construct a more
realistic imaginary potential (of the volume + surface type),
but that idea is not pursued here.

There are other reaction channels that could be a source
of ICF. Examples are the dissociation of 9Be induced by
neutron emission into the continuum and into bound states
of the target nucleus. Both processes produce 8Be that decays
into two α particles, and one of them could end up as ICF.
These reaction mechanisms should be studied theoretically in
detail to develop a better understanding and description of the
breakup, CF, and ICF. In fact, recent experiments [21] show
that the 9Be breakup following neutron transfer dominates the
total breakup yield.

VI. CONCLUSIONS

The CF of 9Be with spherical target nuclei was calculated
using the coupled-channels approach. It was shown that the
B(E2) values for excitation of the ground-state rotational band
of the 9Be nucleus can be described quite well in the rotor
model. This feature was exploited in the calculation of matrix
elements of the interaction between the deformed projectile
and a spherical target.

The interaction of the deformed 9Be projectile with a
spherical target was calculated using the double-folding
technique and an effective M3Y NN interaction, which was
supplemented with an adjustable repulsive term. The deformed
density of 9Be was determined so the measured quadrupole
moment and rms charge radius were reproduced. The densities
of the spherical targets were calibrated to reproduce the
measured charge radii; the radius of the neutron density in
208Pb was calibrated to be consistent with the neutron skin
thickness predicted by Skyrme Hartree-Fock calculations and
with the value extracted from measurements of antiprotonic
208Pb atoms.

The double-folding potential was applied in coupled-
channels calculations of the fusion of 9Be with 144Sm. The
decay of the excited states of 9Be was included explicitly in
terms of complex excitation energies, whereas excitations of
the target were ignored for simplicity. The repulsive part of
the effective NN interaction, which essentially is the only
parameter that remains to be determined, was adjusted to
produce the optimum fit to the complete fusion data. The
calculated cross sections for the decay of the excited states
in 9Be turned out to be in very good agreement with the ICF
data.

Having determined all of the parameters of the theory,
coupled-channels calculations were performed for the fusion
of 9Be + 208Pb. At high energies the CF data were suppressed
by 20% compared to the predicted cross sections, and the
ICF data were a factor of 3 larger than the calculated cross
section for the decay of excited states. There are obviously
other reaction mechanisms, besides the decay of excited states,
that are responsible for the large ICF cross sections that have
been measured for the lead target. A likely candidate is the
neutron transfer from 9Be to bound states in the target and
to continuum states. This is also the conclusion of a recent
experimental investigation by Rafiei et al. [21].
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