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Stochastic semi-classical description of fusion at near-barrier energies
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3Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5, France
(Received 15 January 2010; published 12 March 2010)

Fusion reactions of heavy ions are investigated by employing a simple stochastic semi-classical model, which
includes coupling between the relative motion and low frequency collective surface modes of colliding ions
similarly to the quantal coupled-channels description. The quantal effect enters into the calculation through
the initial zero-point fluctuations of the surface vibrations. A good agreement with results of coupled-channels
calculations as well as experimental data is obtained for fusion cross sections of Ni isotopes. The internal
excitations in nonfusing events as well as the fusion time are investigated.
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I. INTRODUCTION

Over the past years various models with different levels of
approximation were developed to explain the enhancement of
subbarrier fusion cross sections close to the Coulomb barrier
energy. The description of fusion reactions is generally realized
by phenomenological models such as barrier penetration mod-
els (see Ref. [1] for a review) or more sophisticated approaches
like the coupled-channels approach [2–4]. These models
provide some qualitative as well as quantitative explanations to
the enhancement of the cross sections as a result of coupling to
selective collective modes. In such macroscopic approaches,
one of the main ingredients is the nuclear interaction potential
that can be taken as the Bass potential [5], the proximity
potential [6,7], or the double-folding potential [8]. Some
microscopic approaches equipped with full quantum treatment
such as the time-dependent Hartree-Fock model are also used
to give quantitative explanations of nuclear fusion reactions
by providing a connection between the macroscopic and
microscopic phenomena [9–13].

In this article, we investigate fusion reactions of heavy
ions by employing a simple stochastic semi-classical model.
In this model, the coupling between the relative motion and
low-frequency collective surface modes is incorporated into
the description in a manner similar to quantal coupled-channels
calculations. Quantal effects enter into the calculation through
the initial zero-point fluctuations of the surface modes. In
the calculations, we include the coupling of relative motion
with the low-lying quadrupole and octupole surface modes.
The zero-point fluctuations of surface vibrations are simulated
in a stochastic approximation by generating an ensemble of
trajectories in accordance with the Gaussian distribution of
zero-point fluctuations. The zero-point quantum fluctuations
of surface modes lead to barrier fluctuations, which enhance
the fusion cross section at near and subbarrier energies. This
stochastic semi-classical model was proposed in Ref. [14] (see
also Ref. [15] for a detailed review). However, only a few
applications of the model were carried out so far [16–18]. This
is probably due to insufficient computation power at the time it
was proposed. In this work, employing this stochastic model,
we investigate fusion reactions of Ni isotopes at near-barrier

and subbarrier energies. We compare our results with the
experimental data as well as the quantal coupled-channels
calculations with the same input parameters. In Sec. II, the
model is briefly described. In Sec. III, calculations of the fusion
cross sections of Ni isotopes are presented. In Sec. IV, further
applications of the approach are illustrated and conclusions
are given in Sec. V.

II. STOCHASTIC SEMI-CLASSICAL MODEL

To describe heavy-ion collisions and fusion at near-barrier
and subbarrier energies, we follow the idea originally proposed
by Esbensen et al. [14]. In this semi-classical model, heavy-ion
collisions are described by a Hamiltonian in which the relative
motion is coupled to a number of low-lying collective modes
(surface vibrations) of the colliding ions. Treating the surface
vibrations in harmonic approximation, the semi-classical
Hamiltonian for the colliding ions is given as

H = P 2

2µ
+ l(l + 1)h̄2

2µR2
+ VC(R) + VN (R,�, αiλ)

+
2∑

i=1

N−1∑
λ=0

[
�2

iλ

2Diλ

+ 1

2
Ciλα

2
iλ

]
, (1)

where R represents the relative distance between two centers
of mass of the colliding nuclei and P is the corresponding
relative momentum. In this expression, the first and second
terms are the radial kinetic energy and the rotational kinetic
energy with orbital angular momentum l. The quantities VC(R)
and VN (R,�, αiλ) represent the Coulomb potential energy
and the nuclear interaction potential. The parameters set � =
{�1,�2,�3} in the nuclear potential describes rotation angles
of the vibration axes of the nuclei, which are specified in
the following. The last term in Eq. (1) is the Hamiltonian
for 2N harmonic oscillators corresponding to the vibrational
modes (λ = 0, . . . , N − 1) of projectile and target ions (i =
1, 2). The quantities αiλ, �iλ, Diλ, and Ciλ indicate variables
for the vibrational modes, that correspond to the deformation
variables, the corresponding momenta, inertia parameters, and
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spring constants, respectively. The spring constants and the
inertia parameters of harmonic oscillators are determined in
terms of the deformation parameters βiλ and the excitation
energies E�

iλ of the modes according to Ciλ = E�
iλ/2β2

iλ and
Diλ = h̄2/2E�

iλβ
2
iλ, respectively [18,19]. In the ground state,

the variances of vibrational variables and the variances of the
corresponding momentum are expressed according to σαiλ

=
βiλ and σ�iλ

= h̄/2βiλ.
The classical equations of motion for the relative distance

and the vibrational variables are given by

dR

dt
= P

µ
,

dP

dt
= −dVC(R)

dR
− ∂VN (R,�, αiλ)

∂R
+ l(l + 1)h̄2

µR3
,

(2)
dαiλ

dt
= �iλ

Diλ

,

d�iλ

dt
= −∂VN (R,�, αiλ)

∂αiλ

− Ciλαiλ.

In the model, a dissipation of the relative energy occurs due
to excitations of the surface modes. An important dissipation
mechanism due to nucleon exchange between projectile and
target nuclei [20,21] is neglected here. However, at low
bombarding energies, the mechanisms related to excitations of
the surface modes dominate compared to the nucleon exchange
mechanism (see Fig. 1 of Ref. [22]). Consequently, the model
provides a deterministic description of the average properties
of collision dynamics at low energies.

Due to a short de Broglie wavelength, the classical
approximation works well for relative motion at near-barrier
energies where the effect of tunneling is small compared
to that of the surface excitations. However, as a result of
a few phonon excitations during the collision process, the
dynamics of surface vibrations is far from the classical limit
and should be treated in a quantal framework. A standard
description is provided by the quantal coupled-channels
calculations. Here, instead of the standard coupled-channels
description, we include the quantal fluctuations of the surface
modes by incorporating the initial zero-point fluctuations of
the vibrational modes. We can determine the phase space
distribution function F (α,�) of a harmonic oscillator ground
state by taking the Wigner transform of the ground-state wave
function to find

F (α,�) = 1

2πσασ�

exp

(
− α2

2σ 2
α

− �2

2σ 2
�

)
, (3)

where α = αiλ and � = �iλ are the variances of coordinate
and momentum distributions for each vibrational mode.
The quantal zero-point fluctuations of the vibrational modes
are incorporated in a stochastic manner. An ensemble of
trajectories is generated by solving the classical equations
of motion with initial conditions αiλ(0) and �iλ(0) that are
randomly selected according to the corresponding Wigner
distribution F (α,�). Once the ensemble of trajectories is
generated, different observables are calculated by averaging
over the ensemble.

FIG. 1. (Color online) A schematic view of nuclei with
quadrupole vibrations. The red lines indicate the vibration directions.

The following approximation for the Coulomb potential is
employed

VC(R) =
⎧⎨
⎩

Z1Z2e
2

R
R > RC

Z1Z2e
2

RC

(
3
2 − 1

2
R2

R2
C

)
R < RC

, (4)

where RC = R1 + R2 is the sum of the equivalent sharp radii
[23,24]. The nuclear part of the interaction is computed using
the double-folding potential as

VN (R,�, αiλ) =
∫

ρ1(�r1,�1, α1λ)ρ2(�r2,�2, α2λ)

×VNN ( �R − �r1 + �r2)d3r1d
3r2. (5)

Figure 1 illustrates the geometry of two colliding ions in which
x1, y1, z1 and x2, y2, z2 denote two sets of coordinate systems
with fixed orientations and origins that are attached to the
centers of the nuclei. The red lines indicate the vibration
directions. The angles between position vectors �r1, �r2, and
the axes z1,2 are indicated by θ1 and θ2. The angles θ ′

1
and θ ′

2 represent the angles between position vectors �r1,
�r2, and the vibration directions of the nuclei, respectively.
The nuclear folding potential, in addition to the relative
position R and the vibrational variables αiλ, also depends on
three independent angles � = {�1,�2,�3}, which specify
the relative orientation of vibration directions of the nuclei.
The angles �1 and �2 are defined as the rotation angles of
the vibration directions about x1 and x2 axes, respectively.
These two angles define orientations within the same plane
(x1,2 = 0) and to cover all possible orientation configurations,
one more angle �3 is needed to rotate the oscillation axis of
one of the nuclei about the corresponding y or z axis to account
for the off-plane orientations. For convenience, a rotation about
the y axis is considered. The �3 rotation is not indicated in
the figure. We approximate the nuclear density distributions
by two-parameter Fermi functions, which can be conveniently
expressed in terms of the angles θ ′

1 and θ ′
2 as

ρi(�ri, �i, αiλ) ≡ ρi(ri, θ
′
i , αiλ)

= ρ0i

1 + exp{[ri − Ri(θ ′
i , αiλ)]/ai} , (6)

where ρ0i is a normalization constant, ai is the diffuseness
parameter, and Ri(θ ′

i , αiλ) denotes the deformed nuclear radius
of each nucleus. For small amplitude vibrations, this quantity
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is expanded in terms of spherical harmonics

Ri(θ
′
i , αiλ) = R0i

(
1 +

∑
λ

αiλYλ0(θ ′
i )

)

= R0i

(
1 +

∑
λ

αiλ

√
2λ + 1

π
Pλ(cos θ ′

i )

)
. (7)

From the geometry displayed in Fig. 1, it is possible to deduce
the following relations between angles

cos θ ′
1 = cos �1 cos θ1 − sin �1 sin θ1 sin φ1, (8)

cos θ ′
2 = cos �2(cos �3 cos θ2 − sin �3 sin θ2 cos φ2)

− sin �2 sin θ2 sin φ2. (9)

The normalization constants ρ0i in Eq. (6) are obtained from
the equation ∫

ρi(�ri, �i, αiλ)d3ri = Ai, (10)

where Ai is the mass number of the ith nucleus. For the
equivalent sharp radii of the spherical nuclei, we take the values
given by R0i = 1.31A

1/3
i − 0.84 fm.

A global description of the nucleus-nucleus potential can
be achieved via the folding potential Eq. (5) by considering a
zero-range nucleon-nucleon interaction

VNN (�r) = V0δ(�r), (11)

which is equivalent to a finite-range nucleon-nucleon interac-
tion [25–28]. Then, the nuclear potential Eq. (5) becomes

VN (R,�, αiλ)

= V0

∫
ρ1(r1, θ

′
1, α1λ)ρ2(r2, θ

′
2, α2λ)r2

1 dr1d(cos θ1)dφ1,

(12)

where θ ′
1 and θ ′

2 are given by Eqs. (8) and (9), respectively,
with

cos θ2 = (r1 cos θ1 − R)/r2, (13)

r2 =
√

r2
1 + R2 − 2r1R cos θ1, (14)

φ2 = φ1. (15)

To simplify the numerical simulations, a further approximation
is introduced. For small amplitude vibrations, Taylor expan-
sions of the nuclear densities and the nuclear potential are
introduced to the first order around αiλ = 0 to give

ρi(�ri, �i, αiλ) ≈ ρi(�ri, �i, 0)

+
∑

λ

αiλ

[
∂

∂αiλ

ρi(�ri, �i, αiλ)|∀α=0

]
, (16)

VN (R,�, αiλ) ≈ VN (R,�, 0)

+
∑
i,λ

αiλ

[
∂

∂αiλ

VN (R,�, αiλ)|∀α=0

]
, (17)

respectively.
Figure 2 shows examples of potential energies in head-

on collisions of two 64Ni nuclei for different orientations
and deformations as a function of the relative distance. In
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FIG. 2. (Color online) The s-wave potential barriers of the 64Ni +
64Ni system are plotted versus center to center distance for different
quadrupole deformations and orientations. The blue curves represent
the oblate (upper curve) and prolate (lower curve) deformations along
the relative motion. The red curves stand for the prolate (upper curve)
and oblate (lower curve) deformations that are perpendicular to the
relative motion direction. The bare potential with no deformation
is indicated by the black color. The potentials are computed by
summing the Coulomb VC and nuclear VN contributions with
deformation variables equal to their variances, |α12| = |α22| = β2 =
0.215. The zero-range potential strength in Eq. (11) is taken as V0 =
−456 MeVfm3 [25].

this figure, for simplicity, only the quadrupole vibrations of
both nuclei in two different orientations are shown. One of
them corresponds to the case when vibrations are along the
direction of the relative motion indicated by blue curves.
In the following, this orientation is referred to as the ZZ

configuration. The other orientation corresponds to the case
when vibrations are perpendicular to the direction of the
relative motion indicated by red curves. We refer to this
orientation as the YY configuration. It is observed that in
the ZZ configuration, the difference between the potential
barriers for oblate and prolate deformations is larger than the
difference in the YY configuration. Any orientation in between
these two configurations leads to a difference in barrier
heights, which is smaller than that of the ZZ configuration
and larger than that of the YY configuration. Hence, the ZZ

and YY configurations represent the extreme states of barrier
fluctuations due to surface vibrations. When the off-plane
orientations are included (�3 �= 0), the difference in barrier
fluctuations becomes minimum for the configuration where
vibrations are perpendicular to the direction of the relative
motion and perpendicular to each other. This orientation is
referred to as the XY configuration, which is not included
in Fig. 2. It is clear that different orientations of the nuclear
surface vibrations have a very large influence on the fusion
barrier fluctuations. Therefore, we need to calculate any
observables by averaging over all possible relative orientations
of the vibration directions. We carry out this averaging by
sampling all three angles, {�1, �2, �3}, from a uniform
distribution in the interval [0,2π ].

III. FUSION CROSS-SECTIONS

Coupled-channels calculations are often employed for
describing fusion cross sections at subbarrier energies. These
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investigations indicate that low-lying surface modes such as
2+ and 3− make the dominant contribution to subbarrier cross
sections [29–31]. Retaining only these two modes, we carry
out stochastic simulations to describe the fusion process of
Ni isotopes. To compare our results with that of coupled-
channels calculations of Nobre et al. [32], we adopt the same
parameters as in that reference. It is important to note that none
of these parameters are adjustable. The quadrupole (λ = 2)
and octupole (λ = 3) deformation parameters are β2 = 0.215,
β3 = 0.263 for 64Ni and β2 = 0.205, β3 = 0.235 for 58Ni.
The excitation energies are E�

2 = 1.35 MeV, E�
3 = 3.56 MeV

for 64Ni, and E�
2 = 1.45 MeV, E�

3 = 4.48 MeV for 58Ni. The
zero-range potential strength and the diffuseness parameter
are V0 = −456 MeVfm3 and a = 0.56, respectively [25].
For simplicity, we consider that the quadrupole and octupole
vibrations of each nucleus are aligned in the same direction.

We calculate the fusion cross section using the standard
expression

σfus(E) = πh̄2

2µE

lmax∑
l=0

(2l + 1)Pl(E), (18)

where E and Pl(E) represent the incident center-of-mass
bombarding energy and the partial transmission probabilities,
respectively. Figure 3 shows the results of the stochastic
calculations and comparisons with the coupled-channels cal-
culations. The solid line corresponds to the cross section
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FIG. 3. Fusion cross sections of 64,58Ni + 64,58Ni systems cal-
culated with the CC model and the FA model of Nobre et al. [32]
are compared with our results (the solid line). Barrier heights are
indicated in the figures. The shaded areas are explained in the text.

obtained by averaging over all orientations. The shaded area
in the figure illustrates the cross-section fluctuations due to the
effect of different vibration orientations. The upper (lower)
boundary of the shaded area corresponds to the cross section
when vibrations are along (perpendicular to) the relative
motion direction, which gives rise to maximum (minimum)
cross section due to the largest (smallest) barrier fluctuations.
The coupling to surface vibrations increases the fusion cross
sections at subbarrier energies, whereas it decreases the
cross sections at over-barrier energies. This effect is further
enhanced due to the orientation configurations that can be
easily visualized by looking at Fig. 3. At very low bombarding
energies, the stochastic fusion cross sections tend to approach
the ZZ configuration limit since the barrier fluctuations are
larger in this case. However, at over-barrier energies, the
fusion cross sections tend to approach the XY configuration
limit since the transmission is reduced by very large barrier
heights appearing in the ZZ configuration. The reduction in the
ZZ configuration is eventually increasing the weight of events
in the XY configuration. In this figure, we also compared
our results with the coupled-channels (CC) calculations and
the frozen approximation (FA) of Nobre et al. [32], which
is an approximation to the CC calculations. Even though the
same parameters are used in both calculations, there are some
minor differences. While they used the double folding potential
in their CC calculations, a frozen density approximation is
further assumed. Both calculations, CC and FA, are performed
with a parabolic approximation for the potential barriers
with effective curvatures. The stochastic approach does not
have these drawbacks, which are important at low subbarrier
energies. Furthermore, in the stochastic description, the effects
of vibration direction orientation of the nuclei is incorporated
in a natural way. However, the stochastic model does not
include the effect of quantum tunneling. Consequently, the
stochastic approach provides a good description at near-
barrier energies where barrier fluctuations due to the surface
vibrations provide dominant contributions to the transmission
probability. In Fig. 3, it is seen that the stochastic semi-classical
description provides a good approximation to the quantal
CC model and its approximate FA version for Ni isotopes
fusion at near-barrier energies. In Fig. 4, the fusion excitation
functions obtained by the stochastic semi-classical model are
compared with three different data sets. Our results are in
good agreement with the data near and below the barrier.
The model overestimates the experimental cross sections
at over-barrier energies due to the following reasons. First,
the nuclear potential that we employ is energy independent.
Energy dependence of nuclear potential can have a significant
effect on fusion mechanism above the barrier. Actually, there
are contradictory claims for the energy dependence of nuclear
potentials. In Refs. [25–27], it is claimed that, at near-barrier
energies, the energy dependence vanishes while at higher
energies it becomes important. However, in some microscopic
calculations, an opposite behavior is found [12]. Second, the
folding potential that is employed here has a deep minimum
as a result of the zero-range interaction. It was shown that
a repulsive core within the M3Y nucleon-nucleon interaction
gives rise to shallower, more realistic nuclear potentials [36].
The maximum angular momentum lmax, up to which the partial
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FIG. 4. The fusion cross sections of 64,58Ni + 64,58Ni systems
calculated with the stochastic zero-point model are compared with
the data of Refs. [33–35]. Barrier heights are indicated in the figures.

transmissions are summed over in Eq. (18), is determined
by the fact that the potential pocket disappears. For deep
potentials, lmax is larger than that for shallow potentials, which
increases the over-barrier cross sections. We also believe that
the lack of dissipation in the relative motion as well as in
surface vibrations is the third reason for the overestimation of
data above the barrier. A dissipation mechanism can be easily
incorporated into the stochastic description. Nevertheless, it is
not considered in this study. Our task in this work is to test the
stochastic semi-classical model by carrying out simulations
of fusion mechanism and compare the results with the quantal
CC calculations. Therefore, we avoid employing a complicated
nuclear potential.

IV. DISCUSSIONS

The stochastic semi-classical model provides a simple
framework not only for fusion cross sections, but also to evalu-
ate some relevant observables such as the time distribution for
fusion and the kinetic energy distribution of nonfusion events,
which can hardly be accessed in a fully quantal framework.
Here, we restrict the study to collisions between 64Ni nuclei.
Figure 5 shows five illustrative events as a function of the
relative distance of 64Ni ions for head-on collisions at bom-
barding energy of 90 MeV. In this figure, the thick line indicates
the bare potential. Even though the bombarding energy is
below the bare barrier, as a result of barrier fluctuations,
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FIG. 5. The center-of-mass energies for five sample events with
incident energy of 90 MeV are plotted versus the relative distance
of two 64Ni nuclei. The center-of-mass energy is the sum of the first
four terms in Eq. (1), hence it is the energy of the relative motion.
The angular momentum is set to zero. The s-wave potential barrier
is shown for the bare case where there is no coupling to the surface
modes (thick line).

three of the five events end up fusing, while two events
after inelastic collision re-separate. During inelastic collisions,
part of the incident energy is dissipated by excitations of the
surface vibrations. Using the ensemble of events generated
for description of the collision process, we can calculate
the final kinetic energy distributions of the nonfusion events.
The upper panel (a) of Fig. 6 shows the final kinetic energy
distributions of nonfusion events at different incident energies
in head-on collisions of 64Ni + 64Ni systems, while the lower
panel (b) presents the final kinetic energy distributions for
different relative angular momenta at an incident energy of
96 MeV. As it is expected, the mean final energy increases with
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FIG. 6. The distribution of the final energy of nonfusing events in
collisions of 64Ni nuclei is plotted for (a) different incident center of
mass energies and (b) different angular momenta. For each plot the
distribution function is normalized with the total number of scattered
(no-fusion) events.
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FIG. 7. The average values of (a) the total excitation energy and
(b) the final energy in head-on collisions of 64Ni nuclei are plotted
as a function of the incident center-of-mass energy. The excitation
energy is given by E� = Einc − Efinal.

the incident energy as well as with the angular momentum. The
variances of the distributions increase as incident energy in-
creases and angular momentum decreases. Indeed, in this case,
the rates of nonfusion events decrease eventually increasing the
uncertainty of the final energy. Figure 7 illustrates the average
value of the final energy of the relative motion of nonfusion
events. It is observed that, at very low incident bombarding
energies, almost no energy is transferred to surface excitations.
As the energy increases, the amount of dissipated energy into
the surface modes increases. After the energy exceeds the
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FIG. 8. The distributions of the fusion time in collisions of 64Ni
nuclei are plotted for (a) different incident center-of-mass energies
and (b) different angular momenta. For each plot the distribution
function is normalized with the total number of fusion events.

fusion barrier height at VB = 96.5 MeV, the mean final energy
is almost constant indicating that the total excitation energy
E� is almost linearly increasing with the incident energy. In
the simulations of the trajectories, we take the initial relative
distance as R = 20 fm. We call the event as a fusion event if
the trajectory evolves all the way until the separation distance
reaches to R = 5 fm. For fusion events, we define the time it
takes to travel from R = 20 to R = 5 fm as the fusion time.
The upper panel (a) of Fig. 8 indicates the distribution of
fusion times at different incident energies in central collisions
of Ni ions, while the lower panel (b) shows the fusion time
distributions for three different orbital angular momenta at
incident energy of 96 MeV. Again, as we expect, the mean
fusion time increases with increasing angular momentum and
decreasing incident energy.

V. CONCLUSION

Employing a stochastic semi-classical model for low-
energy heavy-ion collisions, which was proposed originally by
Esbensen et al. [14], we carry out simulations for describing
fusion and some other properties of the collision of Ni isotopes
at subbarrier and near-barrier energies. As known from
CC calculations, dominant effects for describing subbarrier
fusion arise from the coupling of the relative motion with
the low-lying surface vibrations. Therefore, in analogy to
CC calculations, we consider the coupling of the relative mo-
tion with low-lying collective surface vibrations. Since the de
Broglie wavelength is very short, a classical treatment provides
a good approximation for the relative motion. However, the
quantal aspects of surface vibrations play a dominant role
in the subbarrier fusion mechanism. In the present approach,
we incorporate quantal zero-point fluctuations of the surface
vibrations in a stochastic approximation. In the applications
presented here, only the quadrupole and octupole vibrations
of the projectile and target Ni ions are included. An ensemble
of trajectories of the relative motion are generated by picking
the initial conditions of surface vibrations according to the
quantal zero-point fluctuations of their ground states. Some
observables such as fusion cross sections and final kinetic
energy distributions of nonfusion inelastic collisions were
estimated by averaging over the ensemble of trajectories.
The simple stochastic semi-classical approach provides a
surprisingly good agreement with quantal CC calculations
as well as the experimental data for fusion cross sections of
Ni isotopes at subbarrier and near-barrier energies. Of course,
barrier penetration is not included in the description. However,
at near-barrier energies, the dominant effects on fusion arise
from the barrier fluctuations, which are well accounted for by
the stochastic approach.
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