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Time scales in nuclear giant resonances
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We propose a general approach to characterise fluctuations of measured cross sections of nuclear giant
resonances. Simulated cross sections are obtained from a particular, yet representative, self-energy that contains
all information about fragmentations. Using a wavelet analysis, we demonstrate the extraction of time scales
of cascading decays into configurations of different complexity of the resonance. We argue that the spreading
widths of collective excitations in nuclei are determined by the number of fragmentations as seen in the power
spectrum. An analytic treatment of the wavelet analysis using a Fourier expansion of the cross section confirms
this principle. A simple rule for the relative lifetimes of states associated with hierarchies of different complexity
is given.
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I. INTRODUCTION

Nuclear giant resonances (GRs) have been the subject of
numerous investigations over several decades [1]. Some of the
basic features such as centroids and collectivity (in terms of the
sum rules) are reasonably well understood within microscopic
models [2,3]. However, the question of how a collective mode
like the GR dissipates its energy is one of the central issues in
nuclear-structure physics.

According to accepted wisdom, GRs are essentially excited
by an external field through a one-body interaction. It is
natural to describe these states as collective 1p-1h states. Once
excited, the GR progresses to a fully equilibrated system via
direct particle emission and by coupling to more complicated
configurations (2p-2h, 3p-3h, etc.). The former mechanism
gives rise to an escape width, while the latter yields spreading
widths (�↓). An understanding of lifetime characteristics
associated with the cascade of couplings and scales of
fragmentations arising from this coupling (cf. [4–7]) remains
a challenge. Recent high-energy-resolution experiments of the
isoscalar giant quadrupole resonance (QR) [8–10] provide new
insights into this problem.

It has been shown by Shevchenko et al. [8] that the fine
structure of the QR observed in (p, p′) experiments is largely
probe independent. Furthermore, a study of the fine structure
using wavelet analysis [11–13] reveals energy scales [9,10]
in the widths of the fine structure displaying a seemingly
systematic pattern, as can be seen in Figs. 8 and 9 of Ref. [10].
The power spectrum patterns vary with the structure of the
nucleus being studied. They are obtained by summing the
wavelet coefficients (an integrated overlap of the mother
wavelet and the excitation energy spectrum) onto the wavelet
energy-scale axis. While the physical meaning of the results
of such an analysis is still being debated, we try here to
offer a general explanation. However, we do not embark on a
specific microscopic analysis, but rather make use of general
and well-established techniques of many-body theory. Gross

effects attributable to nuclear deformation and coupling to the
continuum [5] are not discussed; we rather focus on the decay
of the QR into configurations of various complexity.

II. SELF-ENERGY AND CROSS SECTION

To proceed, we use the Green’s function approach. A central
role is played by the self-energy whose finer structure is
imparted upon the Green’s function via the solution of Dyson’s
equation, which reads [14]

Gα,β (ω) = {[
G0

α,β (ω)
]−1 − �α,β(ω)

}−1
, (1)

where we assume G0(ω) = δα,β/(ω − ε) to be diagonal in the
basis α, β, . . . , while the complicated pole structure of G(ω) is
generated by that of the self-energy �α,β (ω). The pole structure
of G carries over to the scattering matrix given by

Tα,β(ω) = �α,β(ω) + �α,β ′(ω)Gβ ′,α′ (ω)�α′,β(ω), (2)

from which a cross section ∼|Tα,α(ω)|2 is obtained.
Within the excitation energy range of the QR, the nucleus

has a high density of complicated states of several tens of
thousands per MeV and even more for heavy nuclei. These
many states appear in the self-energy as poles in the complex
energy plane close to the real axis. The small widths imply they
are long-lived states and traditionally classed as compound
states. The simpler intermediate structure of the excitation is
expressed by the substantial fluctuations of the corresponding
residues associated with the poles of the self-energy �(ω)
[15]. In other words, while the individual pole positions of
�(ω) are virtually unstructured [16], it is the variation of the
corresponding residues that bears all the information about
intermediate structure. Note that our approach differs from a
traditional microscopic calculation in that from the outset we
start from a random distribution of pole terms representing
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compound states. Traditional microscopic approaches cannot
address such finer structures [17].

We assume that the QR, being a collective 1p-1h state,
decays via a cascade progressing through (2p-2h) to (3p-3h)
configurations and so forth to the eventual compound states.
In turn, each of the intermediate states (including the initial
QR) can decay to the ground state either directly or via some
more complicated intermediate state. We will show that it is
this mixture that is seen in the cross section and extracted
by wavelet analysis, and it is the variety and cascading
complexity of states that invokes the structure of the residues
of the poles of the self-energy. Of importance to note is
that the number of states available within the energy domain
of the QR increases with its complexity: for example, 6 (2p-2h)
states, 11 (3p-3h) states, down to several thousand compound
states (the numbers 6 and 11 should be taken as examples
without claim for quantitative correctness). Moreover, the
corresponding lifetimes are expected to increase in line with
their increasing complexity, which is in accordance with their
decreasing spreading widths (we come back to this particular
aspect of scaling later in this article).

As a typical case study we investigate here a wavelet
analysis of a simulated cross section that results from a
particular input for the self-energy. Because arbitrary units
are used, we concentrate on the energy interval [0, 1] and
use for the pole position ε = 0.5 − i0.5 of the single pole of
G0 [see Eq. (1)]. The number of compound states is assumed
to be 300; this is of course much less than the experimental
level density in the region of a QR for a medium or heavy
nucleus, but it suffices for our demonstration. The real parts
of the pole positions are assumed to be randomly distributed
with a uniform distribution of the mean distance 1/300; the
imaginary parts are randomly distributed in the interval [0.004,
0.007].

For illustration, we consider as a specific example four
different sets of residues of the self-energy. The self-energy
reads

�(ω) =
300∑
k=1

rk

ω − ωk

, (3)

where each residue rk is the sum of four subsets; each subset
is distributed by a Lorentzian with specific widths γi, i =
1, . . . , 4, around the four sets of positions pi ≈ 1/fi . Formally,
it reads

rk =
4∑

i=1

hi,k, hi,k = s

fi∑
j=1

γ 2
i(

k
300 − jpi

)2 + γ 2
i

, (4)

with an overall strength s = 10−5. This order of magnitude is
based on the mean value of the widths of the compound states
being about 10−4 to 10−5 times smaller than the �↓ (γi).

The poles at the complex positions ωk occur in the lower
ω plane, with ω being the energy variable. If only i = 1
was to occur with f1 = 6, a typical pattern of the residues
h1,k is illustrated in the top panel of Fig. 1; similarly for
f2 = 11 with h2,k being illustrated by the bottom panel of
Fig. 1. The inclusion of further terms would simply add
additional peaks to the pattern. In the case presented in
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FIG. 1. Schematic illustration of the residues of the self-energy:
for 6 (top) and 11 (bottom) intermediate states. The heights of each
of the 300 bars that are situated at the real parts of the poles of
the self-energy illustrate the relative variation of the residues. The
randomization is clearly discernible.

what follows, we have chosen f3 = 17 and f4 = 29 totaling
6 + 11 + 17 + 29 additional peaks (not easily visualized, but
beautifully discernible in the final analysis). We stress again
that the four values of fi were chosen for demonstration
purposes and that more than four—or other values—are
equally suitable.

These arbitrary numbers used in the example chosen
describe particular fragmentations of the QR into altogether
6, 11, 17, and 29 states of increasing complexity. The widths
γi giving rise to the Lorentzian shape of the residues are,
in reality, determined by the product of the density of the
compound states and the coupling of the ith group to the
compound states. The widths are the spreading widths of
the respective states considered [15]. As the complexity
increases with label i, we shall assume γ1 > γ2 > γ3 > γ4.
In the simulation we endow each γi with a random fluctuation
with mean value γi/4. As stated previously, we refrain from
specifying a microscopic structure causing the residue pattern
assumed for the self-energy; in what follows it becomes clear
that guidance comes from experiment.

We also assume that each set fi is uniformly distributed
over the whole energy interval. This is similar in spirit to
the assumption used in the local-scaling-dimension approach
[6]. The positions pi in Eq. (4) are set to be ∼1/fi , which
spreads the actual jpi positions equidistantly over the whole
interval, with j running from 1 to fi ; however, we endow them
with a small random fluctuation with mean value pi/8. Note
that the random fluctuation of widths and positions generate
a mild degree of asymmetry in the energy interval [0, 1],
resulting in slightly different patterns in the intervals [0, 0.5]
and [0.5, 1]. The near equality of the positions, that is—apart
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FIG. 2. (Color online) Simulated cross section (left) in arbitrary
units and power spectrum (right). The abscissa of the cross section
is the unit energy interval, the energy values δ on the abscissa of the
power spectrum refer to the wavelet parameter using the same energy
units.

from slight random fluctuations—the regular pattern of the
various fragments as illustrated in Fig. 1, is basically dictated
by experimental findings: If there is no near regular pattern,
there will be no discernible structure in the power spectrum
of the wavelet analysis. However, we shall return later in this
article to the case where regular patterns may occur only in a
smaller portion of the interval.

The first obvious choice for the widths assumes simply γi =
1/(2fi), yielding the simulated cross section shown in Fig. 2
[in what follows, a precise analytic expression confirming the
1/(2fi) law is given]. A variation of such a choice is rather
significant; we shall return to this aspect in detail.

III. THE WAVELET ANALYSIS

The analysis using a Morlet-type mother wavelet,

	(ω, δ) = 1√
δ

cos
k(ω − ω0)

δ
exp − (ω − ω0)2

2δ2
, (5)

is used to calculate the coefficients

C(δ, ω0) =
∫

dσ (ω)

d�
	(ω, δ) dω, (6)

from which the power spectrum

PSP(δ) =
∫

|C(δ, ω0)|2 dω0

is obtained as a function of the scaling parameter δ. It is shown
on the right-hand side of Fig. 2; we use the value k = 6 for
the wave number of the mother wavelet. There is in fact a
k dependence of the positions of the maxima of the power
spectrum, which is given in analytic terms later in this article.
A contour plot of C(δ, ω0) is illustrated in Fig. 5.

On the right part of Fig. 2 we clearly discern the four
maxima that are produced by the four different values fi of
the number of fragmentations. In fact, the fragmentation into
f1 = 6 produces (for k = 6) the maximum roughly at δmax

1 =
1/f1 = 1/6; similarly, the other three maxima occur at δmax

i =
1/fi , i = 2, 3, 4. This is one of our major findings:

The maxima of the power spectrum occur at

δmax
i ≈ k/(2π )I/fi,

with I being the interval of the whole range of the QR
considered and fi the number of fragmentations. The factor
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FIG. 3. (Color online) Power spectrum for a particular asymmet-
ric situation discussed in text. The dotted curve originates from a
scan of the interval [0, 0.5], the dashed curve from [0.5, 1], and the
solid curve from the total interval. Note that the peak on the far left is
virtually absent in the dashed curve while fully present in the dotted
curve. Units are as in Fig. 2.

k/(2π ) originates from the analytic expression given in Eq. (7).
Here we note that this result does not depend on whether we
use a real wavelet as in Eq. (5) or its complex version where
the cosine function is replaced by its complex counterpart
cos(·) + i sin(·).

The asymmetry found in some experimental data can
obviously be accounted for by our analysis. We refer to cases
where the analysis yields a pattern in the first half of the
whole resonance that is different from that in the second half,
or in principle for any subdivision of the whole resonance.
For illustration, we take f4 = 14 while leaving all other
parameters unchanged. In this way the total of 29 maxima
of the residues rf4 are confined to only 14 within the left half
of the interval. The effects are clearly seen in Fig. 3. Note that
the positions of the maxima remain unchanged. This type of
asymmetry is clearly discernible in Fig. 9 of Ref. [10]: from
the two-dimensional wavelet transform, the wavelet power
would give a similarly different pattern when taken at different
portions of the whole interval.

The folding (integration) of the cross section with the
Morlet wavelet has to be done numerically. To obtain an
analytic expression relating the number of fragmentations fi

to the positions of the maxima of the power spectrum, we
consider an expansion of a cross section into a Fourier series:

dσ (ω)

d�
=

∑
m

cm sin(mπω/I ) +
∑
m

c′
m cos(mπω/I ). (7)

An intermediate structure manifests itself if a few terms in
Eq. (7) are appreciably stronger than the others. In Fig. 2 the
terms with c12 ≈ c22 ≈ c34 ≈ c58 (and similarly for the primed
coefficients) are dominant; of course, terms for different m

values also occur but are smaller by roughly an order of
magnitude or more (here our analysis does not focus on
m � 4: while giving larger contributions, such values would
correspond to δ � 0.5 and represent gross and bulk structure).
Performing analytically the wavelet transform of each term
in Eq. (7) (MATHEMATICA gives a closed expression for the
integral from which the formula below can be extracted), one
obtains an analytic evaluation of the positions and heights
of the maxima of the power spectrum. For each sin(mπx) or
cos(mπx) term, the positions of the local maxima in the power
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spectrum turn out to be

maxm = k + √
2 + k2

2mπ
I. (8)

For k = 6 (and the unity interval I ), this yields 0.16, 0.088,
0.057, and 0.033 for m = 12, 22, 34, and 58, respectively, as
verified in Fig. 2. Note that a different choice of k moves the
positions of the local maxima, yet the ∼1/m law prevails.
The expression (8) provides an obvious tool to be used to
ascertain the number of fragmentations when the maxima are
determined from an analysis of experimental data. Clearly, the
number fm of fragmentations introduced previously is related
to the value m in Eq. (7) by m = 2fm.

Furthermore, an increased value of k can resolve a peak in
the power spectrum that is caused by two near values of fi . In
fact, the distance between adjacent maxima (say m = 17 and
m = 18) roughly doubles when k is doubled.

While—for fixed k—the 1/fi dependence of the maxima
of the power spectrum is an important finding, even more
significant is the result that the values at the maxima (the
heights) also obey the same 1/fi law if the corresponding
Fourier coefficients are about equal. Indeed, a straight line
can be drawn through the maxima in Fig. 2 because the four
values of cm, m = 12, 22, 34, 58 are about equal. We recall
that, for example, sin(12πx) generates fk = 6 peaks of a width
γk = 1/(2fk) in the energy (unit) interval for the cross section.
This can be exploited in a realistic analysis: A deviation
from this straight-line-rule signals effectively a deviation from
the spreading width being assumed to be 1/(2fi). This is
illustrated in Fig. 4, where the spreading width 1/(2f4) has
been decreased to 1/(2.8f4). As a result, the value of the
first peak becomes enhanced. Because the spreading width
is related to the lifetime of the states, we conclude that the
lifetimes are proportional to fi if the heights of the maxima lie
on a straight line; an increased (decreased) height signals an
even longer (shorter) life time.

In this context we note that the number of peaks and troughs
in Fig. 5 on the horizontal lines matches exactly the values
of the fi : 6 on the top, 11 further down, then 17 and 29
on the bottom. The actual values of these peaks and troughs
determine the heights of the bumps in the power spectrum,
that is, the information about the lifetimes of the respective
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FIG. 4. (Color online) Power spectrum: Dependence of height at
the maximum on spreading width. The curve with the lower value of
the leftmost maximum is identical to the one on the right-hand side
in Fig. 2, while the higher peak is attributable to a decrease of its
spreading width or an increase of its lifetime. Units as in Fig. 2.
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FIG. 5. (Color online) Wavelet contour plot of the cross section
shown in Fig. 2. The symbols δ and ω0 refer to the Morlet wavelet
parameters used in Eq. (5). The (positive) maxima are in light shading
and the (negative) minima in dark. For the uppermost pattern the
contours range from 0.4 to −0.4.

fragmented states. A similar wavelet transform obtained from
experimental data is presented in Figs. 8 and 9 in Ref. [10];
note that our schematic in vitro illustration is of course much
more symmetric.

IV. CONCLUSION

While in experiments the chaotic nature of the nucleus
usually shows at higher excitation energies [16], the pertinent
structure revealed in the analysis may come as a surprise.
We are of course familiar with order in the nuclear many
body-system, as shown in shell effects and simple collective
states. The fragmentations of the QR may be attributable
to a different quality: It could be a manifestation of self-
organizing structures [18–20]. Indeed, the lifetime of in-
creasingly complex configurations of the QR is increasing
toward the compound states and the ground state. There is
no generally accepted definition of conditions under which
the self-organizing structures are expected to arise. We may
speculate that in the case considered here, once the nuclear
QR state is created, it is driven to an unstable hierarchy
of configurations (metastable states) by quantum selection
rules which connect these different complex configurations
attributable to internal mixing. This problem needs of course
a dedicated study on its own and is beyond the scope of the
present article.

We now summarize the major points of our findings:
(i) the positions of the peaks in the power spectrum indicate the
number of fragmentations of a particular intermediate state;
the more complex states lie to the left of the simpler states
[see Eq. (8)]; (ii) the resolution of poorly resolved peaks
can be improved by a higher value of k; (iii) the values
(heights) at the peaks are related to the spreading widths,
implying knowledge about the lifetimes—if they lie along a
straight line, the lifetimes are proportional to the number of
fragmentations, and if they lie above (below) the straight line,
the corresponding lifetimes are longer (shorter). Finally, we
mention that a pronounced gross structure of the experimental
cross section, as found in lighter nuclei, would have no effect
on our findings. In fact, such gross structure had to occur at the
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far right end (values of δ appreciably larger than those used in
the literature) of the power spectrum.
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