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Microscopic description of 295 MeV polarized protons incident on Sn isotopes
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We present a Brueckner theory analysis of proton-scattering data from Sn isotopes at 295 MeV. A soft-core
Urbana v14 internucleon potential has been used to calculate reaction matrices that are folded with point-nucleon
(both proton and neutron) densities obtained in the relativistic mean field (RMF) framework to calculate the optical
potential. We get reasonably satisfactory agreement with the differential cross-section and analyzing-power data
using only three scaling parameters for all isotopes. It is observed that the calculated neutron skin increases
smoothly as the neutron number increases, in conformity with earlier findings.
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I. INTRODUCTION

The scattering of intermediate-energy protons provides an
excellent means of extracting information about certain aspects
of nuclear structure as well as the two-nucleon interaction
inside nuclear matter. The dependence of scattering observ-
ables on neutron- and proton-density distributions in nuclei is
expected to provide information that may be compared with
results using other probes and also with nuclear structure calcu-
lations. The relative transparency of the nucleus at intermediate
energies increases the sensitivity of the models used and, in
particular, to the components depending on spin. It has been
observed that the differential cross-section data show greater
sensitivity to the spin-orbit potential at intermediate energies
[1]. Thus, the intermediate-energy nucleon scattering can be
used as a test of the effective nucleon-nucleon interaction and
the density distribution of nucleons.

Electron scattering has proven to be helpful in obtaining
reliable charge distributions and thus proton densities in
nuclei. It has been shown [2,3] that the neutron skin is
closely related to the symmetry term of the equation of state.
Thus, the determination of the neutron-density distribution
has become increasingly important. Karataglidis et al. [4],
using a reaction-matrix approach, have shown that the proton
differential cross section is sensitive to the assumed neutron
distribution in target nuclei. In view of this, Amos et al.
have studied [5] the proton- and neutron-matter distribution
in tin isotopes in an extensive analysis of proton-scattering
data up to 200 MeV using matter densities obtained from the
spherical mean field Hartree-Fock-Bogoliubov (HFB) model
with Skyrme-type interactions.

Dirac phenomenology [6,7], involving several param-
eters, has proven to be quite successful in explaining
proton-scattering data—especially spin observables—in the
intermediate-energy region. Huthcheon et al. [8] analyzed the
200- to 500-MeV proton-scattering data from 40Ca and 208Pb
using two phenomenological and two microscopic models.
They found that the reaction matrix approach [9] gives agree-
ment only in the extreme forward angles and overestimates
the differential cross sections at intermediate angles. They
conclude that it is perhaps due to inadequate treatment of self-

consistency in obtaining the reaction matrices. Furthermore,
their results indicate that even at these energies the scattering
observables are sensitive to only the surface region of the
potentials used. Kaki and Toki [10] successfully analyzed the
200- to 400-MeV proton elastic scattering data from 58Ni and
120Sn by using the relativistic impulse approach [10–12] and
RMF densities with the TMA parameter set [13].

Recently Terashima et al. [14] have measured differential
cross-section and analyzing-power data for the scattering of
295-MeV protons from five tin isotopes with an aim of
studying systematic changes in neutron distribution. They were
able to obtain satisfactory agreement with the data using the
relativistic impulse approximation [11]. However, as a first
step they rescaled [14,15] masses and coupling constants of
some of the mesons to fit the proton-scattering data from 58Ni
at 295 MeV, assuming the same neutron- and proton-density
distribution in this target. This rescaling is identified as the
medium effect [14–16]. By using these rescaled interactions,
they parameterized the neutron distribution in tin isotopes as
a sum of twelve Gaussians for each target. The parameters
of the Gaussians were adjusted to obtain agreement with
the proton differential-scattering and analyzing-power data
at 295 MeV. The neutron skin thus obtained is in satis-
factory agreement with results obtained from other sources
(see Fig. 12 in Ref. [14]).

In this article we present an analysis of this new data [14] for
tin isotopes (116−124Sn) at 295 MeV using first order Brueckner
theory with a soft-core Urbana v14 internucleon potential.
The required nucleon density distributions are obtained in the
relativistic mean field (RMF) approach [17–19]. The RMF
theory is now known to give an exceptionally good account
of the ground-state properties of nuclei spread over the entire
periodic table. Here, the relativistic Hatree-Bogoliubov (RHB)
equations [17–19] are solved in the spherical oscillator basis
employing the NL3 [20] Lagrangian parameter set along with
the Gogny D1S interaction [21,22] in the pairing channel.

In view of the failure of the earlier reaction matrix approach
[9] and the importance of relativity [10] at intermediate
energies, we use relativistic kinematics for calculating the
reaction matrices. Furthermore, we have made a careful
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calculation of the spin-orbit potential avoiding the short range
approximation [23,24] for the dominant direct part of the spin-
orbit potential. Thus, the present approach differs from the
one used in Refs. [23–25] in two important respects: First, we
use relativistic kinematics, which necessitates a recalculation
of the self-consistent nucleon-matter optical potential and, to
see their effect on observables, we compare our results with
those obtained by using nonrelativistic kinematics. Second, the
folding integral for the direct part of the spin-orbit potential
has been calculated exactly, and we show that the effect of
approximation used by Brieva and Rook (to be denoted as BR)
[26] on the calculated spin-orbit potential is non-negligible.
Furthermore, we note that the approximation affects the
cross-section and analyzing-power data, even at intermediate
angles. For the exchange parts we use the equivalent local
approximation [23,24,26]. A similar approximation has also
been used in Ref. [8] and for p-40Ca [25] at 200 MeV.
We are able to obtain satisfactory agreement with the data
using only three scaling parameters for all five isotopes
of tin.

Recently [27], we have used our approach for analyzing the
65-MeV proton- and neutron-scattering, reaction, and total
cross-section data over a wide mass region: 12C – 208Pb. The
agreement with the data is satisfactory.

The method of calculating the optical potential is described
briefly in Sec. II. Our results for the proton differential cross-
section and analyzing-power data from 116, 118, 120, 122, 124Sn are
discussed in Sec. III. In the same section, we also show that
the predictions of our model give fairly good agreement with
proton total-reaction cross-section data at two energies from all
even isotopes of tin (for which the data is available). Section IV
gives our conclusions.

II. METHOD OF CALCULATION

In order to calculate the microscopic optical potential in
Brueckner theory, one requires only two inputs; namely, the
basic nucleon-nucleon interaction to calculate the reaction
matrices and point-nucleon densities to be used for folding.

We solve the Bethe-Goldstone integral equation to obtain
reaction matrices using the soft-core Urbana v14 [28] internu-
cleon potential, as in Refs. [23–25], with the difference that
we use relativistic kinematics for calculating the momenta
of both the incident and target nucleons. Furthermore, we
use relativistic kinematics for calculating the energies with
a continuous choice for intermediate states. Self-consistency
is achieved in about five cycles for each of the 17 nuclear
matter densities spread evenly over the range 0.6–2.0 fm−1

of Fermi momentum kF , in the incident momentum region
0.0–8.0 fm−1. In order to obtain the proton-nucleus optical
potential, we fold the appropriate reaction matrices (as defined
in Ref. [24]) over the proton- and neutron-matter densities
obtained with in the RMF framework [17,19].

In view of the importance of spin at intermediate energies,
we avoid the normally used short-range approximation and
calculate the folding integral for the direct part without any
approximation, as described bellow. Furthermore, Hutcheon
[8] also finds that the empirical spin-orbit potential required at

these energies is smaller than that calculated microscopically
[9]. The direct part VD,p

SO (r1, E) of the proton-nucleus spin-orbit
potential in the folding model approach [23,24,26] as obtained
by BR [26] is

V
D,p

SO (r1, E) = − 1

2r1

[∫
ρp(| �r1 + �x|)gD,pp

SO x cos(θ ) d�x

+
∫

ρn(| �r1 + �x|)gD,pn
SO x cos(θ )d �x

]
�l1. �s1, (1)

where gD,pp
SO and gD,pn

SO are the direct parts of the proton-proton
and proton-neutron effective interaction (reaction matrices),
ρp and ρn are the proton and neutron densities in the target,
and �l1 and �s1 are the orbital and spin angular momentum of
the incident nucleon.

After obtaining Eq. (1), BR makes an expansion of ρ around
x = 0, assuming the short-range nature of the effective spin-
orbit reaction matrix by retaining only first-order terms in the
derivative of the density. Thus, BR uses only the lowest order
term of an infinite series. However, we calculate the integral
numerically in Eq. (1) without making any approximation.
The differences between our results and those using the BR
approximation are discussed in Sec. III. We find that these
differences have substantial effects on both differential cross-
section and analyzing-power data at 295 MeV.

The exchange part of the spin-orbit interaction is calculated
as in refs. [23,24,26].

The required nucleon-density distributions are obtained
in the RMF approach [17]. We solve the RHB equations
[17–19] in the spherical oscillator basis employing NL3 [20];
the most successful Lagrangian parameter set along with the
Gogny D1S interaction [21,22] in the pairing channel. The
calculations reproduce the experiment rather well, as ex-
pected. The calculated RHB density distributions both for
protons and neutrons resemble closely the corresponding HFB
distributions with Skyrme-type interactions, as reported by
Amos et al. [5]. The neutron skin predicted by the RHB
densities used here are slightly higher compared with those
of Refs. [5,14]. These RHB densities for tin isotopes have
recently been used [29] in a reaction-matrix approach to
predict the weakening of proton-nucleus spin-orbit interaction
with the addition of neutrons. By using these RHB densities
and the reaction matrices, we calculate the optical potential
[V (E, r), W (E, r), VSO(E, r), and WSO(E, r)] using the
folding procedure [23,24] for all five tin isotopes at 295 MeV.
In order to obtain agreement with the experimental data we
multiply each component of the calculated potential by scaling
parameters λ. The potential used by us in a spherical optical
model code is

U (E, r) = λRV (E, r) + iλIW (E, r) + λR
SOVSO(E, r)

+ iλI
SOWSO(E, r). (2)

Thus, we have four adjustable parameters (λR, λI, λR
SO, and

λI
SO) to obtain the best fit to the data by minimizing χ2/DF

(where DF stands for degrees of freedom).
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FIG. 1. The neutron and proton distribution in tin isotopes as
obtained by our RMF calculations.

III. RESULTS AND DISCUSSION

The calculated neutron and proton densities are shown in
Fig. 1. Our results show that the RHB density distributions both
for protons and neutrons resemble closely the corresponding
HFB distributions with Skyrme-type interactions as reported
by Amos et al. [5]. Notice that, as we add more neutrons (going
from 112Sn to 124Sn), the shape of the proton-density distribu-
tion remains almost unchanged, whereas the depression at the
center changes to a hump in the neutron distribution because
of shell filling, which is consistent with the results of Ref. [5].

The rms charge radius, shown in Fig. 2(a) and which
increases with neutron excess, is in close agreement with
electron scattering [30], muonic x-ray data [31], and the
combined results of electron scattering and muonic x-ray
data [32].

The rms radii of both the proton and neutron densities
slowly increase with the addition of neutrons. The neutron
skin [shown in Fig. 2(b)] increases with neutron excess from
0.115 fm for 112Sn to 0.280 fm for 124Sn; a value slightly
higher than those found in Ref. [14]. Figure 2(b) shows that
our RMF results for neutron thicknesses, although higher,
are still within the uncertainties of results from 800-MeV
proton scattering [33], giant-dipole resonance [34], spin-dipole
resonance [35], antiprotonic x-ray data [36], and results from
Terashima et al. [14]. Thus, various probes are able to give a
range of skin thicknesses consistent with the data [37].

By using the method described in Sec. II, we have calculated
the optical potential for the scattering of protons from tin
isotopes.

In Fig. 3, we show the calculated direct and exchange
parts of the real central [Fig. 3(a)] and the spin-orbit part
[Fig. 3(b)] of the optical potential for p-120Sn at 295 MeV. We

FIG. 2. (a) Existing experimental data on rms charge radii of the
tin isotopes along with the present RMF results (solid triangles). Solid
squares, solid stars, solid circles, and open triangles are respectively
the results from electron scattering using different shapes of the
charge distribution [30], muonic atom x-ray [31], and combined
electron scattering and muonic x-ray data [32]. (b) Neutron skin
thicknesses. Solid triangles are the results from present work (RMF).
Solid squares, open triangles, crossed circles, stars, and shaded circles
are respectively the results from Terashima et al. [14], 800-MeV
proton scattering [33], giant dipole resonances [34], spin-dipole
resonances [35], and anti-protonic x-ray data [36].

note that the exchange part at this energy is quite small, and
thus the equivalent local approximation would not cause a big
error. Figure 3(b) shows our results (denoted as NEW) for the
calculated real spin-orbit potential using Eq. (1) and the BR
approximation (denoted as OLD) (Eq. (9) of Ref. [26]). We
find that, besides reducing the strength near the origin, the use
of Eq. (1) leads to non-negligible changes around the peak
value.

The calculated optical potential is used in a spherical
optical model code to calculate the differential cross-section
and analyzing-power data for the scattering of 295-MeV
protons from 116, 118, 120, 122, 124Sn. The λ scaling parameters
are adjusted to minimize χ2/DF. A value of λ < 1 (>1)
implies that the calculated potential is larger (smaller) than
that required by the data.

We find that we are able to get good agreement with the
differential cross-section (Fig. 4) and a reasonable agreement
with the analyzing-power data (Fig. 5) for all isotopes
116, 118, 120, 122, 124Sn using only three scaling parameters in
comparison with twelve Gaussians for each target [14].
Our values are: λR = 0.722, λI = 0.760, and λR

SO = 0.831,
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TABLE I. Calculated reaction cross section σ theo
R (mb) for 22.8- and 65.5-MeV protons compared

with experimental reaction cross sections σ
Exp
R (mb).

Target Ep = 22.8 MeV Ep = 65.5 MeV

σ theo
R (mb) σ

exp
R (mb) Ref. [38] σ theo

R (mb) σ
exp
R (mb) Ref. [39]

112Sn 1447.5 1430 ± 61 1497.9 1411.4 ± 43.1
114Sn 1480.6 1461 ± 62 1528.0 –
116Sn 1515.2 1530 ± 45 1557.8 1502.6 ± 44.1
118Sn 1548.5 1559 ± 52 1586.6 1535.6 ± 47.3
120Sn 1566.8 1589 ± 38 1613.7 1513.2 ± 44.5
122Sn 1603.5 1595 ± 59 1638.9 –
124Sn 1625.2 1583 ± 55 1662.4 1623.3 ± 55.0
208Pb 1610.7 – 2143.3 2018.9 ± 54.3

whereas λI
SO = 1 for all targets. Thus we have only three

parameters for all five targets.
In order to test the applicability of our approach to other

observables, we have recently [27] analyzed the proton and
neutron elastic-scattering, analyzing-power, total, and reaction
cross-section data at 65 MeV from 12C to 208Pb. The agreement
with the data is satisfactory. Here, we present our results
(Table I) for only the total proton reaction cross section
from even isotopes of tin and 208Pb at 22.8 and 65.5 MeV.
It is satisfying to note that the predictions of our model for
almost all targets are within experimental uncertainties of the
measurements of Refs. [38,39]. Furthermore, to compare our
predictions over a wider energy region, we have also calculated
reaction cross sections for p-118Sn up to 220 MeV. Figure 6

FIG. 3. Shows the calculated direct, exchange, and total (a) real
central and (b) spin-orbit part of the calculated optical potential for
p-120Sn at 295 MeV. NEW denotes the results obtained using Eq. (1)
whereas OLD denotes the use of BR approximation [26] (see text for
details).

shows that we get satisfactory agreement using relativistic
kinematics with the data [38,40] up to 220 MeV. For the
low-energy region (10 � E < 65.5 MeV), we find that the
predictions of our model (i.e., all λ parameters set to unity)
are in good agreement with the data, whereas for energies
65.5 � E < 220 MeV, we have used the same normalizations
(λR = 0.722, λI = 0.760, λR

SO = 0.831, and λI
SO = 1.0) as for

Figs. 4 and 5.
In order to see the effect of relativistic kinematics, we com-

pare our results with those obtained by using nonrelativistic
kinematics. Although we do not show figures, the calculated
central potentials are slightly deeper whereas the effect on
the spin-orbit potential is marginal with the use of relativistic
kinematics. Thus, the normalizations obtained for p-120Sn
with the nonrelativistic potentials are different (λR = 0.80,

FIG. 4. Solid lines show the best fit obtained in the present work to
the differential elastic cross-section data for the scattering of protons
from tin isotopes. Sold circles are data from Ref. [14].
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FIG. 5. Same as for Fig. 4 but for the analyzing-power data.

λI = 0.9, and λR
SO = 0.8). The results for other targets are

similar.
Figure 7 shows our results for the differential cross section

and the analyzing power due to the use of relativistic (solid
curve) and nonrelativistic (dotted curve) kinematics in our
model.

We see that the differential cross section shows notice-
able changes only for angles greater than 55◦, whereas the
analyzing-power data starts showing the effect of relativity
for smaller angles (>35◦) also. Note that there is negligible

FIG. 6. Calculated reaction cross section for p-118Sn. Solid line
shows our result whereas open circles are the experimental data taken
from Refs. [38,40].

FIG. 7. Our predictions of the differential cross section and ana-
lyzing power for p-120Sn at 295 MeV. Solid and dotted curves show the
results due to relativistic (Rel) and nonrelativistic (NRel) kinematics.
The dashed curve shows the effect of the BR approximation [26].
OLD and NEW symbols are same as for Fig. 3.

effect of relativistic kinematics for angles <35◦. Because the
proton-scattering data at this energy is available only up to
50◦, the analyzing-power data exhibits greater sensitivity to
the relativistic kinematics. In view of the above, we conclude
that the relativistic kinematic effects are non-negligible only
for angles >35◦ for proton scattering at 295 MeV.

In Fig. 7, we also show the effect on differential cross-
section and analyzing-power data of using Eq. (1) instead of
the BR approximation for calculating the spin orbit part of
the potential. To see the effect of the spin-orbit potential, we
keep the same central potential as used for Figs. 4 and 5.
The solid line shows our results and the dashed line shows the
results using the BR approximation for the direct part of the
spin-orbit potential. We note that the use of the approximate
spin-orbit potential overestimates the differential cross section
at all angles except the extreme forward angles. Furthermore,
the analyzing power predictions are also severely affected,
especially for angles �40◦. A similar result with the use of
Brueckner theory [8] was obtained for the proton scattering
data from 40Ca and 208Pb in the 200- to 500-MeV region.
Thus, we find that the proton differential cross-section data
is quite sensitive, even at intermediate angles, to the spin-
orbit potential at intermediate energies. Furthermore, because
Eq. (1) can be easily evaluated, there is no need to use
the approximation suggested by Brieva and Rook [26] for
calculating the direct part of the spin-orbit potential.

In conclusion, we find that the relativistic kinematic effects
are important at large angles whereas the spin-orbit potential
influences the observables even at small angles.
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FIG. 8. Our results for the differential cross section and analyzing
power for p-120Sn. Solid curves are same as in Fig. 4, whereas
dashed curves show our predictions after 10% reduction in neutron
density ρn.

In order to see the sensitivity of our predictions on neutron
distributions in the target, we have repeated our calculations
with neutron densities reduced by 10%. This reduction of
density would not change the rms radius of the neutron
distribution. Our results are shown in Fig. 8.

We note that there are only minor changes in the differential
cross section for angles �60◦, whereas non-negligible effects
on analyzing power are present even at small angles. In view of

the results of Ref. [37], it seems that the present angular range
and accuracy of the scattering data are consistent with a range
of values for neutron-skin thicknesses. It is important to note
that the experimental densities obtained at 800-MeV proton
scattering from 58Ni are consistent with a neutron skin [41,42]
from −0.036 to −0.011 fm, whereas our RMF calculations
give a value of 0.048 fm. Furthermore, Terashima et al. [14]
have used zero neutron-skin thickness for 58Ni. In addition,
we note that the radial shape of the experimental densities in
58Ni are substantially different from RMF results for distances
<4.0 fm. (see also Fig. 4(a) of Ref. [15]). Our detailed results
of the density dependence of proton scattering in the energy
range 30 to 300 MeV from 58Ni will be reported elsewhere.

IV. CONCLUSIONS

We obtain reasonably satisfactory agreement with the new
295-MeV proton scattering data [14] from tin isotopes using a
nonrelativistic g-matrix approach with relativistic kinematics
and an improved calculation of the spin-orbit potential. The
RMF (RHB) nucleon density distributions used here yields a
satisfactory description of tin isotopes and predicts a regular
increase in the neutron skin with increasing neutron number.
The skin thicknesses predicted by our RHB calculations are
slightly larger than the RIA results in Ref. [14]. In conclusion,
we find that the approach used here gives a satisfactory
description of proton scattering from tin isotopes at 295 MeV.
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