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Gamow-Teller transitions from 9,11Li to 9,11Be
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Gamow-Teller (GT) transitions in β decays of 9Li and 11Li are investigated with theoretical calculations of
antisymmetrized molecular dynamics. The calculated B(GT) values are small for transitions to low-lying states
in Be isotopes, whereas relatively large B(GT) values are found for excited states at excitation energy Ex �
10 MeV. The sum of the B(GT) values is discussed for each spin-parity of final states. The calculated results
seem to be inconsistent with an experimental report of the strongest GT transition from 9Li to the 5/2− state of
9Be at 11.8 MeV.
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I. INTRODUCTION

Experimental studies of the β decays from unstable nuclei
near drip lines are currently progressing owing to recent
advances in experimental techniques. Gamow-Teller (GT)
transition strength values B(GT) were extracted for transitions
to not only low-lying states but also highly excited states.
Moreover, the B(GT) values have also been determined in
high-resolution experiments of charge-exchange reactions, as
well as the β decays.

In recent years, the β decays of 9Li and 11Li have been
measured in several experiments, for example, at the ISOLDE
facility in CERN. They provide information on new states in
9Be and 11Be, such as their excitation energies, spins, and
B(GT) values. In the β decay of 9Li, the GT transitions to
the low-lying 9Be states at Ex � 10 MeV are weak, while
strong transitions have been reported to the 11.81-MeV state
[1,2]. The extracted B(GT) value for the 9Be state at Ex =
11.81 MeV is surprisingly large, B(GT) = 8.9(1.9), which
takes 62% of the Ikeda sum rule, 9(gA/gV )2 ∼ 14.3. In a new
measurement of the β decay [3], its spin and parity were
assigned to the 5/2− state. Because this value is larger by a
factor of four than the B(GT) value for the mirror transition
in 9C β decays to the 9B(5/2−) state at 12.19 MeV [4], it
suggests the abnormally large mirror asymmetry [3]. However,
the shell-model calculations in p-shell configurations indicate
neither such large B(GT) values for the 9Be(5/2−) state in 9Li
decays nor a large mirror asymmetry [5].

The β decay has also been measured experimentally for the
drip-line nucleus, 11Li [6–9]. Many excited states of 11Be were
observed in the low-energy region. The GT transitions to 11Be
states at Ex � 10 MeV are not strong and the extracted B(GT)
values are less than B(GT) = 0.5 for the low-lying states [8].
In a recent measurement, a new state was observed at 18 MeV
in 11Be, and B(GT) = 1.9 for this state was extracted from the
branching ratios [9].

As mentioned previously, in the β decays of neutron-rich Li
isotopes, the GT transitions to the low-lying states of 9Be and
11Be are relatively weak compared with the rather strong GT
transitions to highly excited states. This is easily understood
because of the cluster features of Be isotopes. Theoretical
studies of Be isotopes have suggested that 2α + n and 2α + 3n

cluster structures develop in most of the low-lying states of 9Be
and 11Be, respectively [10–16]. The GT transitions to such

cluster states should be suppressed, because a GT transition
to an ideal α cluster, written as the (0s)4 configuration, is
strictly forbidden owing to the Pauli principle. In other words,
the high-lying states in Ex � 10 MeV with the strong GT
transitions are expected to have significant cluster-breaking
components.

In this article, I investigate the GT transition strengths of
the β decays 9Li → 9Be and 11Li → 11Be with a theoreti-
cal method of antisymmetrized molecular dynamics (AMD)
[17–19]. The distribution of the B(GT) values is analyzed for
each spin of final states. Particular attention is paid to the strong
GT transitions to the 9Be(5/2−) state at 11.81 MeV suggested
in the experimental report.

This article is organized as follows. In the next section, I
describe the formulation of the present calculations. I explain
the adopted effective interactions in Sec. III and show the
calculated results and the experimental data in Sec. IV. Finally,
in Sec. V, I give a summary and an outlook.

II. FORMULATION

I use an AMD method that has been proven to be a useful
approach for studying the structures of light unstable nuclei. In
the present work, I first perform the variation after projection
(VAP) with respect to the total angular momentum and parity
projection (spin-parity projection) in AMD [20] and extend
the method to calculate the GT strength functions of final
states in a wide energy region. The detailed formulation of the
basic AMD method for nuclear structure study is described in
Refs. [17–19].

In the AMD method, a wave function of an A-nucleon
system is written as a Slater determinant of single-particle
Gaussian wave packets,

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written as a
product of spatial (φ), intrinsic spin (χ ), and isospin (τ ) wave
functions,

ϕi = φXi
χiτi, (2)

φXi
(rj ) ∝ exp

[
−ν

(
rj − Xi√

ν

)2
]

, (3)
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χi = (
1
2 + ξi

)
χ↑ + (

1
2 − ξi

)
χ↓, (4)

where φ and χ are represented by complex variational
parameters X1i , X2i , X3i , and ξi . The isospin function τi is
fixed to be up (proton) or down (neutron). I take a fixed
width parameter ν that is optimized for each nucleus. That
is ν = 0.20 fm−2 for 9Be and 9Li and ν = 0.18 fm−2 for 11Be
and 11Li in the present calculations. Accordingly, an AMD
wave function is expressed by a set of variational parameters,
Z ≡ {X1, X2, . . . , XA, ξ1, ξ2, . . . , ξA}.

For the lowest Jπ state, I vary the parameters Xi and
ξi(i = 1 ∼ A) to minimize the energy expectation value of
the Hamiltonian, 〈�|H |�〉/〈�|�〉, with respect to the spin-
parity projected AMD wave function; � = P Jπ

MK�AMD(Z).
Here, P Jπ

MK is the spin-parity projection operator. After the
energy variation, the optimized parameter set ZJπ

1 of the
minimum-energy solution for the lowest Jπ state is obtained.
The solution ZJπ

n for the nth Jπ state is determined by varying
Z to minimize the energy of the wave function orthogonalized
to the lower states,

|�〉 = ∣∣P Jπ
MK�AMD(Z)

〉 − n−1∑
k=1

∣∣�(k)Jπ
MK

〉〈
�

(k)Jπ
MK

∣∣P Jπ
MK�AMD(Z)

〉
,

(5)

where �
(k)Jπ
MK is the normalized wave function determined for

the lower states. This is the standard VAP calculation in AMD.
In the VAP calculations, the wave functions for the Jπ

n states
are obtained one by one from the lower energy states and it is
not easy to calculate all final states of the GT transitions,
which generally fragment into many high-lying states. To
exhaust the GT strengths from an initial state, I extend the basis
wave functions by applying one-body spin-isospin operators
to the VAP wave functions for the parent nucleus. Let us
consider the β− decay of 9Li. I perform the VAP calculation
of the lowest Jπ = 3/2− state of 9Li and obtain the wave
function �

9Li
AMD(Z3/2−

1 ) for the 9Li ground state. Here I denote
Z3/2−

1 for 9Li as Zinit. Final states of the GT transitions from
the 9Li ground state are Jπ

n = 1/2−, 3/2−, and 5/2− in the
daughter nucleus 9Be. For the final states in 9Be, I prepare
the basis wave functions in two steps. I first perform the VAP
calculations for the lowest two Jπ states of 9Be and obtain
the wave functions �

9Be
AMD(ZJπ

n ) for Jπ
n = 1/2−

1 , 1/2−
2 , 3/2−

1 ,
3/2−

2 , 5/2−
1 , and 5/2−

2 , which approximately describe the
corresponding low-lying states. Next, I create other basis wave
functions by applying the one-body spin-isospin operators to
�

9Li
AMD(Zinit),

�στ
k,α(Zinit) = 1√

A!
A{ϕ1, ϕ2, . . . , σατ−ϕk, . . . , ϕA}, (6)

where ϕk (k = 1, . . . , 6) is a neutron wave function in 9Li.
σατ− is the one-body GT transition operator, where σα(α = x,
y, and z) is the spin operator and τ− is the charge changing
operator. As a result, we get 6 × 3 = 18 basis wave functions,
�στ

k,α(Zinit), which exhaust the GT transition strengths from

�
9Li
AMD(Zinit).

Finally, I determine the wave functions of the final 9Be
states by spin-parity projection and the superposition of all the
6 + 18 basis wave functions,

�Jn =
∑
J ′Km

c
(Jn)
J ′,K,mP Jπ

MK�
9Be
AMD

(
ZJ ′π

m

)
+

∑
Kkα

c
(Jn)
k,α P Jπ

MK�στ
k,α (Zinit) . (7)

The coefficients c
(Jn)
J ′,K,m and c

(Jn)
k,α are determined by diagonal-

izing the Hamiltonian and norm matrices.
The B(GT) value of the GT transition strength is written by

the square of the reduced matrix element

B(GT) = (gA/gV )2
∣∣〈O(GT−)

µ

〉∣∣2
(8)

of the GT transition operator,

O(GT±)
µ =

∑
i

σµ(i)τ±(i), (9)

where gA and gV are the axial-vector and vector coupling
constants and are taken to be (gA/gV )2 = 1.262 in the present
calculations. It is worth mentioning again that the GT transition
strengths for β− decays from the 9Li ground state written by
the wave function P

Jπ=3/2−
MK �

9Li
AMD(Zinit) are exhausted by the

final states, �Jn (n = 1, . . . , 24), of 9Be.

III. EFFECTIVE NUCLEAR FORCES

The effective nuclear interaction adopted in the present
work consists of the central force Vcentral, the spin-orbit force
Vls, and the Coulomb force Vcoulomb. For the central force, the
MV1 force (case 3) [21] containing finite-range two-body and
zero-range three-body terms is used. For the spin-orbit force,
the same two-range Gaussian form as in the G3RS force [22]
is adopted.

The values of the interaction parameters in the MV1
force used in the present work are b = h = 0 and m = 0.62
of the Bartlett, Heisenberg, and Majorana parameters, and
the strengths of the spin-orbit force are taken to be uI =
−uII = 3000 MeV. These parameters are the same as those
used in the AMD + VAP calculations of 12C and 10Be in
Refs. [20,23]. Hereafter, I call this parameter set (A). To see
the interaction dependence of the GT transition strengths, I
also use two sets of modified parameters, (B) and (C). Set (B),
b = h = 0, m = 0.62, and uI = −uII = 2000 MeV, has the
same central force but a weaker spin-orbit force than (A), and
set (C) b = h = 0.15, m = 0.62, and uI = −uII = 3000 MeV,
contains the Bartlett and Heisenberg terms in the central force
but has the same spin-orbit force strength as (A). Here, I
comment that the b = h = 0 parametrization in (A) and (B)
yields the same strength for the p-n interaction in S wave
as that for the n-n channel, while the b = h = 0.15 values
yields a stronger S-wave p-n interaction than the n-n one.
The present values of the interaction parameters are also
consistent with the parameter set (b = h = 0.25, m = 0.62,
and uI = −uII = 2800 MeV) used for 11B in Ref. [24] except
for fine tuning of the b = h and uI = −uII values.

These effective interactions do not contain the tensor term as
often-used effective two-body interactions such as the Gogny
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and Skyrme forces. In such effective interactions without
the tensor force, the major effect of the tensor force on
binding energy is considered to be renormalized to the central
part. However, it has been suggested that in the shell-model
calculations [25], the GT strengths are affected by the tensor
components. To see the effect of the tensor components on
the GT strengths, I study the effect of the tensor matrix
elements on the obtained basis wave functions as follows.
The basis wave functions obtained by set (C) without the
tensor force for 9Be and 11Be are adopted. By adding a tensor
term Vtensor to the original interaction Vcentral + Vls + Vcoulomb,
the coefficients c

(Jn)
J ′,K,m and c

(Jn)
k,α in Eq. (7) are recalculated

by diagonalizing the Hamiltonian and norm matrices for the
basis wave functions. Then the B(GT) values are calculated
for the modified �Jn states in 9Be and 11Be. For simplicity,
the central and spin-orbit forces are not modified from the
original forces. This is because the present model space is
limited, and it is difficult to incorporate the effect of the tensor
force directly. In other words, the major effect of the tensor
force is still regarded as being renormalized to the central and
spin-orbit parts, and the effect of the tensor matrix elements
in the present configuration space is simply estimated in a
perturbative way. As an additional tensor term, I use the
tensor term of the Furutani potential [26], which is an effective
two-body force with tensor force adjusted to the 4Li properties
within a 3He + p cluster model. In the present calculations, I
omit the odd part of the tensor force.

IV. RESULTS

A. GT transition from 9Li to 9Be

The results of the present VAP calculations for low-lying
states of 9Be show that 2α + n cluster structure develops in
the ground state (3/2−

1 ) and excited states, 5/2−
1 , 1/2−

1 , 3/2−
2 ,

and 5/2−
2 . The calculated energy spectra of these low-lying

states are consistent with those calculated with the 2α + n

cluster models [10,11,14] and the experimental energy levels
(Table I).

As explained in Sec. II, by adding the basis wave functions
�στ

k,α(Zinit) constructed from the 9Li wave functions with spin-
isospin applied to the VAP wave functions, the final wave
functions of 9Be are obtained and the B(GT) values for the
transitions 9Li → 9Be are calculated. The calculated B(GT)
values for transitions to the final 9Be states up to Ex ∼ 13 MeV
are shown in Table I. The B(GT) values for transitions to the
ground state (3/2−

1 ) and the 5/2−
1 , 1/2−

1 , 3/2−
2 , and 5/2−

2 states
are small. This is because those states of 9Be have the 2α + n

cluster structure and overlap little with the initial state of 9Li,
having no developed cluster structure. Figure 1 shows the
density distribution in the intrinsic wave functions of the 9Be
ground state [�

9Be
AMD(Z3/2−

1 )] and that of the 9Li ground state
[�

9Li
AMD(Zinit)]. The intrinsic structure changes drastically from

the initial to final state. Moreover, as mentioned previously,
the GT transitions to such cluster states with the 2α core are
suppressed because of the Pauli principle. In other words, the
finite B(GT) values account for the slight dissociation of the
ideal α clusters in 9Be.

TABLE I. Experimental data on the GT strengths in the β− decays
of 9C and 9Li and theoretical values of the 9Li decay. Experimental
data on the B(GT) values are taken from Refs. [2,28].

J π Exp. Exp. Cal. (A)
9Be 9C (β+) 9Be 9Li (β−) 9Be 9Li (β−)
Ex B(GT) Ex B(GT) Ex B(GT)

3/2−
1 0 0.0326(56) 0 0.0301(2) 0 0.069

5/2−
1 2.361 0.0206(80) 2.43 0.0452(52) 2.0 0.091

1/2−
1 2.80 0.0151(77) 2.78 0.011(6) 5.3 0.020

3/2−
2 5.59 6.9 0.030

5/2−
2 7.94 0.048(20) 8.2 0.068

1/2−
2 12.0 2.1

3/2−
3 11.28b 1.4(5) 12.1 0.99

3/2−
4 12.4 0.68

5/2−
3 12.19a 1.9(2)a 11.81c 8.9(1.9) 13.1 0.82

aThe data is taken from Ref. [4].
bThe spin and parity 3/2− of the 9Li (11.28 MeV) state is the
assignment of Ref. [27] but it is not yet confirmed, and other
spin-parity candidates, 7/2− and 7/2+, are suggested [28].
c5/2− was assigned in Ref. [3].

In contrast to the small B(GT) values for transitions to the
low-lying states, the excited states at Ex = 12 ∼ 13 MeV show
significant GT strengths, which come from the non-α-cluster
states constructed from the spin-isospin operated 9Li wave
functions given in Eq. (6). The strongest GT transition is found
for the 1/2−

2 state in the present results. In the experimental
measurements of the β decay of 9Li, large B(GT) values were
reported for the states around Ex = 12 MeV [1–3]: B(GT) =
1.44 for the Ex = 11.28 MeV state and B(GT) = 8.9 for the
Ex = 11.81 MeV state. The former is suggested to be a 3/2−
state [27]; it might correspond to the theoretical 3/2−

3 state
in the present work. The calculated value of B(GT) = 0.99
agrees with the experimental value. The spin and parity of the
latter Ex = 11.81 MeV state were assigned as Jπ = 5/2− in
a recent analysis of the β− decay of 9Li [3]. Although this
state seems to correspond energetically to the calculated 5/2−

3
state, the theoretical B(GT) value is much smaller than the

(a)  Be

(b)  Li9

9 g.s.

g.s.

matter proton neutron

matter proton neutron

FIG. 1. Distributions of matter, proton, and neutron density in
the intrinsic wave functions of (a) �

9Be
AMD(Z3/2−

1 ) for the 9Be ground
state and (b) �

9Li
AMD(Zinit) for the 9Li ground state calculated with

interaction set (A).
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FIG. 2. B(GT) distribution to (a) 1/2−, (b) 3/2−, and (c) 5/2−

states of 9Be in the β decay of 9Li calculated with interaction set (A).

experimental value, B(GT) = 8.9, which exhausts 62% of the
Ikeda sum rule. Also in the shell-model calculation [5], it is
difficult to reproduce the extraordinarily large B(GT) value of
the experimental data for the 5/2− state. As shown below, the
present calculation yields no 5/2− state having such a high GT
strength compatible with B(GT) = 8.9.

Figure 2 shows the B(GT) distribution to excited states
of 9Be up to Ex = 30 MeV calculated using interaction set
(A). In the B(GT) values to 1/2− states, the largest peak is
found at Ex ∼ 12 MeV, and some strengths are distributed
around 20 MeV. The transition strengths to 3/2− states are
distributed mainly in the Ex = 10–20 MeV region. The B(GT)
values to 5/2− states in the Ex < 15 MeV region are relatively
small compared with those to 1/2− and 3/2− states. To show
the interaction dependence of the GT strength, I show the
B(GT) distribution calculated with three interaction sets (A),
(B), and (C) in Fig. 3. The calculated results for interaction
set (C) with the tensor force are also shown. The B(GT)
distribution is qualitatively similar for these three interaction
sets, though the broadness of the distribution changes slightly.
Comparing the results with and without the tensor force, we
see that the the tensor force has a minor effect on the GT
strength, at least in the present calculations. In all the results,
the B(GT) values are very small for transitions to low-energy
states (Ex < 10 MeV), while the strengths are distributed
mostly in the range Ex = 10–20 MeV. The GT transition peaks
in 9Be are close to the energy positions of the isobaric analog
state (IAS), shown by arrows. Compared with the shell-model
calculations in Ref. [25], which show the B(GT) distribution
concentrated at Ex = 10–12 MeV, the present calculations
show significant fraction of the B(GT) values to highly excited
states at Ex > 15 MeV.
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FIG. 3. B(GT) distribution for the decay 9Li → 9Be. The B(GT)
values to 1/2−, 3/2−, and 5/2− states of 9Be. Panels (a), (b), and
(c) show the results calculated with interaction sets (A), (B), and (C),
respectively. Calculated results for set (C) with tensor force are shown
in panel (d). Panel (e) shows the experimental data taken from the
same references as those in Table I. An arrow in each panel indicates
the energy of the IAS state.

B. GT transition from 11Li to 11Be

The B(GT) distribution in the 11Li → 11Be decay cal-
culated with interaction set (A) is shown in Fig. 4. The
B(GT) values to 1/2− states are concentrated around Ex =
16–18 MeV, and those to 3/2− states are distributed widely
in various excited states. The B(GT) values to the 5/2− state
exist in a higher energy region than those to 1/2− and 3/2−
states. The results of the B(GT) distribution calculated with
the three sets of interaction parameters, (A), (B), and (C), are
displayed in Figs. 5(a), 5(b), and 5(c), respectively, along with
the calculated results for interaction set (C) with the tensor
force in Fig. 5(d). Experimentally observed B(GT) data are
displayed in Fig. 5(e). The results are qualitatively similar
for these three interaction sets. The effect of the tensor force
on the GT strengths is minor in the present calculations. The
B(GT) values are small at Ex < 10 MeV, whereas they are
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distributed widely in the Ex = 10–25 MeV region and show
a broad peak structure centered around Ex = 15–20 MeV.
The small B(GT) values for transitions to low-lying states are
understood in terms of the 2α core structure, as was discussed
in the previous study of 11Be with the AMD method [15].
The highly excited 11Be states with significant GT strengths
are those with noncluster or less-cluster structures. This is a
similar situation to that for 9Be.

Let us discuss the relative positions of the GT peak and
the IAS. In Fig. 5, the energy positions of the IAS are
indicated by arrows. The IAS energy is sensitive to the
interaction parameter, and that calculated with interaction
set (C) is in good agreement with the experimental IAS
energy, 21.16 ± 0.02 MeV [29], whereas those calculated with
interaction sets (A) and (B) are smaller than the experimental
value. In the results for (C), the GT peak appears at an energy
around 4 MeV lower than the IAS energy in neutron-rich
nuclei. This is consistent with the shell-model calculations in
Ref. [30]. The energy difference between the GT peak and
the IAS in 11Li is larger than that in 9Li, which has a GT
peak close to the IAS energy. This result corresponds well to
the theoretical suggestion that the GT peak occurs below the
IAS in neutron-rich nuclei as a function of isospin asymmetry
(N − Z)/A [31].

Although 11Li is known to be a neutron-rich nucleus with
a neutron-halo structure, halo effects are not considered in the
present calculations because single-particle wave functions in
the present model are restricted to a Gaussian form and are
not suitable for describing the long tail of the halo-neutron
wave functions. The halo effects in the B(GT) values for the
11Li → 11Be decay were discussed in the shell-model study
of Ref. [30], which showed that the halo structure results in a
slight quenching of the B(GT) values.

 0

 2

 4

 6

 8

 0  5  10  15  20  25  30

5/2-
3/2-
1/2-

 0

 2

 4

 6

 8

 0  5  10  15  20  25  30

 0

 2

 4

 6

 8

 0  5  10  15  20  25  30

5/2-
3/2-
1/2-

 0

 2

 4

 6

 8

 0  5  10  15  20  25  30

5/2-
3/2-
1/2-

 0

 2

 4

 6

 8

 0  5  10  15  20  25  30

5/2-
3/2-
1/2-

B
G

T
B

G
T

B
G

T

(c) MV1−(C)

11Be

B
G

T

11Be

B
G

T

(b)

(a) MV1−(A)

MV1−(B)

exp

Ex  (MeV)

(e)

(d) MV1−(C) with Vt

FIG. 5. B(GT) distribution for the decay 11Li → 11Be. B(GT)
values to the 1/2−, 3/2−, and 5/2− states of 11Be. Panels (a), (b),
and (c) show the values calculated with interaction sets (A), (B), and
(C), respectively. Calculated results for set (C) with the tensor force
are shown in panel (d). Panel (e) shows the experimental data taken
from Refs. [8,9]. An arrow in each panel indicates the energy of the
IAS state.

C. Sum rule

The Ikeda sum rule for the GT transition strengths is given
as

S(GT−) − S(GT+) = g2
A

g2
V

〈0|[O(GT+),O(GT−)]|0〉

= g2
A

g2
V

3(N − Z). (10)

Here S(GT±) is the sum of the B(GT) values for the β± decay
and |0〉 is the initial state. Because S(GT+) for the β+ decays of
neutron-rich nuclei is very small, the sum rule is often approxi-

mated as S(GT−) = g2
A

g2
V

3(N − Z) by neglecting the S(GT+) term.
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TABLE II. Calculated results for the sum of the B(GT) values of
9Li and 11Li β decays to J −

f states in 9Be and 11Be. The values of the
Ikeda sum rule 3(N − Z) × (gA/gV )2 are 14.3 and 23.8 for 9Li (β−)
and 11Li (β−), respectively.

J π
f B (GT)

9Li(3/2−
1 ) → 9Be(J π

f ) Cal. (A) Cal. (B) Cal. (C)

1/2− 3.6 3.7 3.7
3/2− 5.5 5.8 5.5
5/2− 5.7 5.0 5.6
Total 14.8 14.5 14.9

11Li(3/2−
1 ) → 11Be(J π

f )

1/2− 5.3 5.3 5.3
3/2− 8.9 9.0 8.9
5/2− 9.8 9.6 9.7
Total 24.0 23.9 24.0

The values of the sum rule 3(N − Z) × (gA/gV )2 are 14.3
and 23.8 for the 9Li and 11Li β− decays, respectively. The
theoretical values of the sum of the B(GT) values to 1/2−,
3/2−, and 5/2− states in Be are listed in Table II. It is important
that the sum values are determined only by the initial structure
of the Li ground state but do not depend on the final states
of Be. Compared with the results using (A), (B), and (C),
the interaction dependence of the sum values is small. Thus,
the wave functions of the 9Li and 11Li ground states are not
sensitive to the adopted interactions in the present calculations.
The sum of the B(GT) values to 5/2− states is as large as that
to 3/2− states and it exhausts only 35%–40% of the calculated
total sum S(GT−) value in both the 9Li and the 11Li decays. This
result contradicts the experimental report of B(GT) = 8.9 to
the 5/2− state at Ex = 11.81 MeV in Ref. [3]. Theoretically,
the sum of the B(GT) values for each spin is determined
by the structure of the 9Li ground state with spin and parity
3/2−, and it is unnatural that the highest-spin 5/2− state
exhausts such a large fraction of the Ikeda sum rule. In other
words, the experimental value B(GT) = 8.9 for the 5/2− state
seems too large to be described by theoretical calculations if
the 9Li ground state has an ordinary structure.

V. SUMMARY AND OUTLOOK

The GT transitions in the β− decays 9Li → 9Be and 11Li →
11Be were investigated with a method of AMD. The calculated
B(GT) values are small for transitions to low-lying states of Be
isotopes because of the 2α-core structures in the final states.
Significant strengths are found in the B(GT) distribution to
noncluster states of 9Be in the Ex � 10 MeV region. The sum
of the B(GT) values for each spin-parity of the final states was
also studied.

Particular attention was paid to the strong β-transition from
9Li to 9Be(5/2−) state at 11.8 MeV, which was reported
experimentally [3]. The present results are inconsistent with
the strong GT transition to the 5/2− state, which shows a large
fraction of the Ikeda sum rule value. Also in terms of the sum
rule, the experimental value B(GT) = 8.9 for the 5/2− state
seems too large to be described by theoretical calculations if
the 9Li ground state has an ordinary structure.

This work is the first in which the AMD method was
applied to the study of GT transitions to highly excited
states. One advantage of the present method is that one can
describe various final states in the daughter nucleus (Be), such
as low-lying cluster states and high-lying noncluster states.
Although the present model space is not complete, it exhausts
the GT transition strengths; that is, the sum of the calculated
B(GT) for β− and β+ decays equals the Ikeda sum rule value.

Three sets of interaction parameters were used, and
it was found that the interaction dependence of the GT
strengths is not large, except for the energy of the IAS in
11Be. Also, the effect of the tensor component was found to
be minor in the present framework. The reason for such a
small sensitivity to the tensor term is considered to be that
the present model space is not large enough to incorporate
the tensor effect. To investigate the tensor effect in more
detail some extension of the AMD model space is required.
There was a trial of extension of the AMD model space to
treat the tensor force more explicitly [32]. In Ref. [32] it
was shown that superposing different-width Gaussians and
single-particle isospin mixing with the total charge projection
are important, though neither of them were performed in
the present calculations. Such extended AMD calculations
were achieved only for very light systems smaller than 4He,
and its application to heavier systems is not easy because of
numerical cost. Further improvement of the AMD framework
is necessary to discuss the tensor effect on the GT strengths.

The present framework is a kind of bound-state approxima-
tion, and continuum states are not incorporated. Coupling with
continuum states should be carefully considered in discussions
of the widths of excited states above the thresholds.
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