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Experimental study of the electric dipole strength in the even Mo nuclei
and its deformation dependence
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Two methods based on bremsstrahlung were applied to the stable even Mo isotopes for the experimental
determination of the photon strength function covering the high excitation energy range above 4 MeV with its
increasing level density. Photon scattering was used up to the neutron separation energies Sn and data up to the
maximum of the isovector giant resonance (GDR) were obtained by photoactivation. After a proper correction for
multistep processes the observed quasicontinuous spectra of scattered photons show a remarkably good match to
the photon strengths derived from nuclear photoeffect data obtained previously by neutron detection and corrected
in absolute scale by using the new activation results. The combined data form an excellent basis to derive a shape
dependence of the E1 strength in the even Mo isotopes with increasing deviation from the N = 50 neutron shell
(i.e., with the impact of quadrupole deformation and triaxiality). The wide energy coverage of the data allows
for a stringent assessment of the dipole sum rule and a test of a novel parametrization developed previously
which is based on it. This parametrization for the electric dipole strength function in nuclei with A > 80 deviates
significantly from prescriptions generally used previously. In astrophysical network calculations it may help to
quantify the role the p-process plays in cosmic nucleosynthesis. It also has impact on the accurate analysis of
neutron capture data of importance for future nuclear energy systems and waste transmutation.
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I. INTRODUCTION: DIPOLE STRENGTH
IN HEAVY NUCLEI

The response to electromagnetic radiation plays an impor-
tant role not only for the fundamental understanding of nuclei
but also for the de-excitation processes following nuclear
reactions. Details of the dipole strength may significantly
affect the de-excitation path after neutron capture in heavier
nuclei and it is thus of importance for calculations designed to
predict properties of advanced nuclear systems and devices
aiming for the transmutation of radioactive nuclear waste.
A similar impact is expected on calculations for cosmic
nucleosynthesis, especially for high-temperature scenarios
where photonuclear processes are likely to play an important
role. The so-called p-process may be the origin of more than 30
neutron-deficient nuclides not resulting from neutron-capture
reactions. They may eventually be produced in the intense
photon flux leading to the photodisintegration of previously
formed heavier nuclides [1,2].

Nuclear photoeffect calculations are usually based on
the statistical Hauser-Feshbach theory [2] and these need
information on the photon strength functions fλ. As the electric
dipole mode E1 contributes the most, photodisintegration
cross sections such as (γ,n) are often used as a measure for the
electric dipole strength above the neutron threshold Sn. Above
the particle-separation energies and also in the isovector giant
resonance (GDR) region the contribution of (γ,γ ) is usually
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small but below it is dominant. At low energies three features
have been discussed for decades [3–5] to be of importance for
the physics related to the electric dipole strength function:

(i) the fall-off [4,5] of the E1 strength on the low-energy
slope of the GDR, and near the particle emission
thresholds, where it dominates the nuclear photoeffect;

(ii) the E1 strength between the states populated by neutron
capture and low-energy levels, in comparison to nuclear
resonance fluorescence (nrf) connecting the ground
state to dipole (and quadrupole) excitations; its relation
to regime (i) has attracted special interest [5]; and

(iii) the occurrence of additional “pygmy” structures [5–8],
which show up close to Sn; in spite of their relatively low
strength as compared to the GDR they may well lead to
an enhancement of photodisintegration processes when
Sn gets smaller with increasing distance to the valley of
stability.

This possible enhancement has induced the experimental
investigation of exotic nuclei with small Sn where the pygmy
structures directly enhance the photodisintegration [7]. These
data show a structure not as broad as the GDR but wide as
compared to the average level distance D. Many other recent
experiments on “pygmy” resonances concentrated on regions
near the magic neutron numbers 82 and 126; the respective data
[6,8] show a number of well-separated peaks. This structure
was assumed to possibly be of similar nature to the one seen in
exotic nuclei and the investigation of its dependence on the nu-
clear charge Z showed an increase of its strength with the N/Z

ratio. The experimental techniques applied in that work did not
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yield information on eventually missing strength distributed
over many weak levels hidden in the continuum below the
isolated peaks. At variance with that earlier investigations with
tagged photons [4,5,9] indicated the presence of considerable
total photon strength for the range below Sn. On the basis of
these data an extrapolation of the GDR Lorentzian (i.e., its tail)
was proposed to allow a quantitative prediction of the strength
at the particle thresholds. Here the width of the Lorentzian
enters as an important parameter as the height of the tail is
nearly proportional to it. As long as the total resonance integral
is not kept fixed, a fit of the peak region [10] is rather insensitive
to the width, as a given cross-section maximum can belong
to a wide Lorentzian with a large integral or a narrow one
with a small total integral. However, the deformation-induced
splitting of the GDR is well distinguished from its width only
for well-deformed nuclei, which show a clear double humped
GDR. For less-deformed nuclei this deformation-induced
splitting may be misinterpreted as a large spreading width
with the consequence of a cross-section enhancement at the
particle thresholds. It is thus important for the determination
of Lorentzian parameters to have information on the complete
strength also in the tail region. As for most nuclei the excitation
region below Sn and Sp is still rather badly known experimen-
tally, so a dedicated study of that strength is indicated.

The work described in this paper presents measurements
of the electric dipole strength in stable even Mo isotopes and
it covers the low-energy tail as well as its continuation up to
the GDR maximum. It shows the impact of such a strength
determination on statistical Hauser-Feshbach calculations of
importance for the understanding of photonuclear processes.
It aims to completely derive the dipole strength from the
data by regarding not only its part seen as discrete lines in
nrf data but by also including the yield showing up as a
quasicontinuum below the discrete peaks to directly determine
experimentally the full dipole strength in a wide excitation
energy range. In that respect the present study is at variance
with the previously mentioned [6–8] investigations of pygmy
structures, which concentrate on discrete spectral lines. The
deformation dependence can be well addressed in the Mo
isotopes reaching from the semimagic 92Mo to 100Mo with
its triaxially deformed ground state. It will be shown that in
these nuclei previous attempts of fitting a Lorentz curve to the
peak region of the GDR [10] yield ambiguous extrapolations
to lower excitation energies and thus do not allow satisfactory
predictions for the strength close to the thresholds.

Previous procedures proposed to derive the E1 strength
down to energies near and below Sn have suffered from the
following deficiencies:

(i) The measurements of (γ,n) cross sections by detecting
the neutrons suffer from uncertainties in the absolute
scale [10–12] and, when approaching Sn, isotopic target
impurities and other background, compete especially
strongly with the decreasing cross section.

(ii) If other photodisintegration channels are open, the
photon strength function cannot be deduced from the
(γ,n) cross section alone.

(iii) For even nuclei, the study of E1 strength via γ decay
following neutron capture is ambiguous, as only in the

rare cases of j = 1/2− or 3/2− target ground states
does s-wave neutron capture populate 1− levels.

(iv) Experiments performed with He ions [13] populate
a diffuse distribution in excitation energy, spin, and
nuclear orientation quite different from the excitation
caused by photons; additionally, one can extract their
absolute strength values only by using level density
information from other sources and a calibration based
on other data, for example, from (iii).

(v) Previous photon-scattering experiments [14–17] using
low-energy bremsstrahlung delivered strength informa-
tion only for a limited excitation energy range. At
higher photon energies multistep γ decays have to be
considered explicitly as well as the quasicontinuous part
of the spectra mainly resulting from numerous weak
resonances.

In earlier publications [18,19] this last point was worked
out for 98Mo and 100Mo, where the same experimental method
as presented here was used. As demonstrated in that work a
hitherto unexplored method was found for the data analysis
that allows one to derive a strength function covering a wide
range of excitation. It reaches from just above the energy where
the photoabsorption cross section is exhausted by scattering
via isolated levels to regions of resonances overlapping within
the experimental resolution. For 98Mo and 100Mo the strength
resulting from this analysis is an obvious continuation of the
electromagnetic strength observed as photoneutron emission
[20] above Sn. The combined strength function as derived from
the two experiments is reasonably well described [19] by using
Lorentzians of 4 MeV width; to account for the presumably
nonaxial deformation up to three components were used. This
approach of one width for all GDR components was quite
satisfactory in all even Mo isotopes [21]. But—as shown
recently [22] for well-deformed nuclei with A > 80—two-
component Lorentzians describe the relative heights of the two
GDR peaks only if the width of each component depends on
its pole energy. Here the ground-state deformation enters into
the calculation of these energies. For surprisingly many nuclei
for which respective data have been found in the literature—
originating from different experimental methods—the tails
extrapolated from the Lorentzians also account well for the
E1 strength observed below threshold [22]. There is no need
of a width varying with photon energy—at variance with
previously given formulas and tabulations [2,23,24], most of
which use an energy-dependent width. In this paper we present
data for the photon strength covering a wide energy range in
the even Mo isotopes as obtained from photon-scattering and
nuclear photoeffect experiments, and the results are compared
to the parametrization presented in [22], the main ingredients
of which will be discussed in the following. The selection of
the stable even Mo isotopes allows us to combine information
on GDRs and their tails for a rather long isotopic chain. In
all the even Mo isotopes, (γ,xn) reactions have been studied
[20] by neutron detection. (In view of the large quantities
of enriched isotopes needed this is not the case for many
other Z).

Mo isotopes have attracted much attention because of their
cosmic synthesis [25] and they are of interest in nuclear
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FIG. 1. (Color online) Schematic side view of the bremsstrahlung setup at the radiation source ELBE. At the left high-intensity photons
coming from the electron beam dump behind a 45◦ deflection magnet (not shown) to produce photoactivated nuclides to be studied at the right.
In the middle part a well-collimated photon beam from a thin Nb radiator (not shown) is used to investigate photon-scattering processes.

technology as part of the fuel matrix, as a high-melting-point
material, and as steel additive. Of further interest here is the
66-h radionuclide 99Mo, which—if not transmuted before—
decays to 99Tc, whose 2 × 105 year half-life makes it one of
the long-living components of nuclear waste. A special interest
in the nuclear structure of the stable Mo isotopes arises from
the increase of deformation as observed in the spectroscopy of
their low-lying states; recently, a clear experimental signature
for triaxiality was found in 98Mo [26]. To properly assess
observations [5–8,18,27] of additional pygmy structures in
photoabsorption data, proper knowledge of the underlying
smooth strength function is of obvious value. It allows us to
specify how much of the strength found exceeds an underlying
“background strength” (e.g., the one from a smooth extrapo-
lation of the GDR). The work presented here concentrates
on energies above 4 MeV, where photoabsorption reaches
predominantly electromagnetic dipole modes. Dipole strength
below 4 MeV was studied in detail previously [14–17,28].

II. EXPERIMENTAL PROCEDURE

The experiments were performed at the superconduct-
ing electron linac of the radiation source ELBE [29]
at Forschungszentrum Dresden-Rossendorf (FZD) using a
bremsstrahlung continuum. This continuum was either pro-
duced by the electron beam hitting a thin Nb foil or in a solid
graphite beam dump. As will be shown in the following, this
parallel use of the electron beam at two sites was very useful
for the determination of absolute yields. The setup has been

described (and shown in a top view) previously [12,30]; a
side view is presented in Fig. 1. The area directly behind the
electron beam dump was used as a site for high flux [∼106 (s
keV cm2)−1 at ∼7 MeV] irradiations. In the bremsstrahlung
cave, targets could be activated simultaneously at two orders
of magnitude lower flux, which was well determined by em-
ploying scattering measurements. Four high-purity germanium
(HPGe) detectors are mounted to observe photons scattered by
the Mo targets and by 11B added for the flux determination.
The Nb radiator thickness of 3.4 mg/cm2 (corresponding
to 3.4 × 10−4 radiation lengths) is limited by small-angle
scattering of the electrons to ensure that nearly all of them pass
the dump entrance after being magnetically deflected by 45◦.

The bremsstrahlung spectrum was calculated by different
procedures as demonstrated in Fig. 2. The obvious shortcom-
ing of GEANT3 [32] could be traced back to an erroneous
implementation of the bremsstrahlung tables [34]. The GEANT

calculations used in our studies were performed with a code
modified to correct for that error. The calculations with the
MCNP code [33] are derived from a widely used compilation
[34]. A recently performed calculation [35] based on a
quantum-mechanical treatment [36] and an atomic screening
calculation [37] agrees well with the tables [34]. As shown
in the insert, only very close to the endpoint is a small excess
of the tabulated values versus the full calculation found. Within
the uncertainty of our near-threshold data this difference is of
minor importance.

Knowledge of the bremsstrahlung endpoint energy is
important—especially for photonuclear data taken directly

034319-3



M. ERHARD et al. PHYSICAL REVIEW C 81, 034319 (2010)

FIG. 2. (Color online) Monte Carlo simulations [31] of the
bremsstrahlung spectrum produced in a Nb (Z = 41) radiator of
3.4 mg/cm2 thickness and an electron kinetic energy of 10 MeV;
k is the photon energy and β is the electron velocity in units of
c. The dotted and dashed histograms are calculated with GEANT3
and GEANT4 [32], respectively. The full green histogram corresponds
to a calculation using MCNP-4C2 [33], which is based on tabulated
values [34] (red dots), and the full magenta line depicts the recent
bremsstrahlung calculations from Ref. [35]. The bremsstrahlung cross
sections corresponding to the latter three results are shown in the insert
to give an expanded view of the endpoint region.

above threshold. The electron momentum is not known well
enough from the magnetic rigidity in our nearly achromatic
beam transport system. This is why we developed an indepen-
dent method to determine the photon spectrum by measuring
the energy of protons from the breakup of deuterium. A
[C2H2·C2H2]n foil of 4 mg/cm2 thickness stayed in the photon
beam near the exit of the collimator during all measurements.
Silicon detectors were used to determine the energy of the
protons, and proper account was made for energy loss and
kinematic broadening [12,30]. The uncertainty in the endpoint
energy was reduced to 50 keV and its effect on the activation
yields is included in the error bars in Figs. 8 and 10. In
the photon-scattering experiment an inaccuracy in the energy
determination of 0.1 MeV would lead to an error of only
1% in the cross section at 9 MeV. As described in previous
publications [12,17,27,30] the absolute flux normalization
was determined by analyzing the photon scattering from
11B and using ground-state transition strengths determined
previously by resonant self-absorption [38,39]. This use of
the high-energy transitions in 11B for the flux determination
caused the final uncertainty to be determined by these data; for
7.29 MeV an accuracy of 7% was reported [39].

By comparing the γ radiation from Au samples simultane-
ously activated at both positions, a flux normalization for the
activation site was determined relative to the scattering site.
Different absorption in the two photon paths was determined
by MCNP simulations [33] and correction was made for the
non-negligible resonant self-absorption in the 11B component
of the target [39]. The use of 197Au as a standard for the photon
flux determination in the activation experiments was described
earlier [12]. The different targets (11B, Mo, and 197Au, with

masses determined by weighing) are hit by the same photon
fluence when exposed simultaneously to the photon beam. In
all cases the samples were positioned such that they were only
exposed to the homogeneous middle section of the photon
flux. When we also analyzed the activity induced in the en-
riched Mo targets during scattering experiments, we obtained
consistent results. For the photoactivation measurements many
independent samples of natural Mo were used. The samples
were irradiated for 8–36 h for the study of long-lived activities
off-line. HPGe detectors in low-activity lead shields were used
in a close γ -detection geometry and summing effects caused
by the small distance from the activated sample have been
properly handled. To have access to the 65-s isomer of 91Mo
a pneumatic delivery system and multiple short irradiations
were used [12,31]. This allowed an efficient study of the (γ,n)
reaction to 91mMo, which decays to 91Nb. This path competes
with the direct production of 91Nb via (γ,p) at energies above
Sn in 92Mo, but below Sn our setup allows an unperturbed
study of 92Mo (γ,p). The importance of this information for
the normalization of the dipole strength function will be shown
in the following. The main effect of our activation data is
that they allow a test of the (γ,n) data obtained by directly
observing the neutrons. Discrepancies for such measurements
have caused intensive dispute [11] and for the isotopes 92Mo
and 98Mo [20,40] disagreeing data have been reported.

The photon-scattering experiments were performed in the
cave area shown in the middle part of Fig. 1. An electron
kinetic energy of 13.2 MeV (13.9 MeV in the case of 92Mo)
was used to produce bremsstrahlung in a Nb foil of 3.4 mg/cm2

thicknesss and an Al cylinder of 27 g/cm2 thickness reduced
its strong low-energy component. At that electron energy the
photon flux passing through the collimator made of pure Al
was in the range of several 104 (s keV cm2)−1 for Eγ ∼ 7 MeV.
The HPGe detectors of ∼100% efficiency relative to a 3′′ × 3′′
NaI scintillator were surrounded by bismuth germanate (BGO)
escape-suppression shields to veto signals not depositing the
full photon energy in the detector. The photons traveling to
them from the target were collimated by 100-mm-long Pb
collimators fully covering the front of the BGO. The data
discussed here were taken at 127◦ with respect to the beam and
low-energy photons were reduced in intensity before entering
the Ge by 9 g/cm2 of Pb and 2.6 g/cm2 of Cu. Two detectors
placed at 90◦ had an additional absorber of Pb with 5.6 g/cm2.
As described previously [19,27,30] the spectral background
was also reduced by a proper selection of all material
eventually hit by scattered photons. An important ingredient
of the experiment is the massive beam dump, heavily reducing
the background radiation caused by the beam passing the
target. The data were accumulated in Compton-suppressed
spectra by using analog to digital converters with a range of
16384 channels. Using a gain of ∼1 keV/channel allowed
data storage with an rms resolution of <5 keV, which was
reached up to 13 MeV. As described for photon scattering at
lower energy [14,15], a comparison of the peak integrals for the
target nucleus under study to the ones belonging to a calibration
nucleus (e.g., 11B) allows us to directly determine an absolute
ground-state transition width—if feeding and branching can
be neglected. This is not the case here, and in Fig. 2 of a
recently published Rapid Communication [41] on part of the
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FIG. 3. (Color online) Energy-calibrated spectra of
bremsstrahlung photons scattered from 94Mo and 96Mo as
produced with an endpoint energy of 13.2 MeV, and 13.9 MeV in
case of 92Mo. The strong peaks at 4.44, 5.02, 7.29, and 8.92 MeV
result from the 11B added for the photon flux calibration; the γ line
at 10.2 MeV is probably due to summing of a γ cascade following
neutron capture by 73Ge. The measured spectra are shown in black;
the data resulting from the correction for detector efficiency and
deconvolution of the detector response function are shown in red
(arbitrarily normalized at 12 MeV to the original spectra). The
histogram depicts (for the scale of 96Mo) the atomic and nonresonant
nuclear scattering obtained in a simulation with a modified version
of GEANT3 [19,32]; it can be used for all three targets, which had
nearly the same mass.

data also presented here, the effect of correcting for feeding
and branching is shown to be important.

As reported previously (see Fig. 2 in Ref. [19] and Ref. [27])
the efficiency of the photon detectors was determined by
a detailed Monte Carlo simulation on the basis of exact
knowledge of the detector geometry including the Pb col-
limation in front and the BGO shield around the detectors.
For low photon energies the absolute efficiency as well as its
energy dependence was found to be in agreement with γ -ray
intensities from radioactive sources of strength known within
3%. The detector response at Eγ = 6.17, 10.76, and 12.14 MeV
was connected to the low-energy region by using well-known
cascade decays of strong resonances. For that purpose the
HPGe detectors of this study (with escape suppression) were
included in (p,γ ) experiments [42] on 14N, 27Al, and 11B at
the beam of the FZD-Tandetron. The simulations were found
to be reproduced on an absolute scale within 13%.

The energy spectra of photons scattered from 94Mo and
96Mo targets are displayed in Fig. 3 for bremsstrahlung
with 13.2-MeV endpoint energy; for 92Mo 13.9-MeV energy
photons were used. The spectra are shown before and after
the correction for the detector response. Numerous lines are
seen above 4 MeV and are especially pronounced for 92Mo.
The steep decrease of the photon yield for 94Mo and 96Mo is
due to the (γ,n) thresholds; for 92Mo Sn = 12.67 MeV is just
inside the plot, but a less pronounced fall-off is already seen

above Sp = 7.46 MeV. The enhancement seen above the line
depicting the nonresonant scattering reaches from ∼4 MeV to
the particle threshold; it contains most of the information of
importance for the present study.

III. DATA ANALYSIS

A. Photon scattering

In nrf experiments at low beam energies [14,15,17,28],
levels with sufficient transition strength to the ground state
are observed as resonances in elastic scattering, and the signal
from a scattered photon identifies their excitation energy. At
variance with this situation are two facts strongly influencing
photon-scattering studies for Ex > 4 MeV in heavy nuclei:

(i) Porter-Thomas fluctuations [43] cause a large number
of weak transitions with an average level distance
similar to the experimental resolution. This leads to a
quasicontinuum underlying the stronger peaks, whose
heights are also influenced by fluctuation effects.

(ii) The depopulation of excited states may lead to multistep
γ cascades such that branching ratios have to be
regarded as well as possible feeding from above the
level.

As will be obvious in the following, point (i) is accounted for
in our data analysis by mainly regarding data averaged over
200 keV for photon energy E = Eγ ; for point (ii) additional
measures have been taken as described in [27] and discussed
in the following.

For spin 0 nuclei the dipole strength functionf1 is related
to the average photon absorption cross section by [4,5]

f1(E) ≡ 1

3(πh̄c)2�

∫
�

σγ

E
dE

=
N∑

R=1

2IR

3π (πh̄c)2

E�γR(
E2

R − E2
)2 + E2�2

R

, (1)

where the averaging interval � has to be sufficiently narrow to
neglect the variation in E. The interval � contains N absorbing
levels R, which are resonances of ∼1 eV width, and �R (�γR)
are their total (partial) ground-state transition widths. This
formula for the nuclear resonance absorption cross section is
derived in analogy to a classical dipole oscillator with a pole
energy ER . The widths are taken to be constant in the region of
the resonance as Eq. (1) already accounts for the dependence
of �γR upon E3. As resonant absorption also occurs at energies
above threshold the total width �R may also have contributions
from particle emission channels; in general one has

�R = �γR + �nR + �pR + · · · . (2)

For the Lorentzians appearing in (1), the photoabsorption
width and resonance integral IR of the absorption cross section
σγ are related [14]; in even nuclei one has

IR =
∫

res R

σγ dE = 3(πh̄c)2 �γR

E2
R

. (3)
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FIG. 4. (Color online) Intensity ratios
I (90◦)/I (127◦) for transitions in 92Mo
observed as discrete lines [19,21]. In
the detector geometry used a value of
0.7 corresponds to a dipole transition
whereas 2.3 characterizes λ = 2. Open
symbols indicate transitions for which
the multipolarity was already assigned
previously [16]. The transitions marked
in red are considered to be E2.

Then f1 can thus be related directly to the partial widths �γR

and their averages �γ :

f1(E) ≡ 1

3(πh̄c)2 �

∫
�

σγ

E
dE ≈ 1

3(πh̄c)2

1

ER �

∫
�

σγ dE

≈
∑N

R �γR

�E3
= �γ

E3

N

�
= �γ

E3
ρ. (4)

The level density ρ is to be taken for the upper state of
the transition (i.e., the excited levels reached by photon
absorption). When the strength function is later used to
describe cascade decay, ρ is meant to describe the region at
the upper level in a decay step [5].

In general, radiation absorbed with multipolarity λ > 1
contributes only weakly, such that one can assume

f (E) = f1(E) + f2(E) + . . . ≈ f1(E). (5)

This is seen for 92Mo from the intensities of the resolved
peaks as observed at the scattering angles 127◦ and 90◦ shown
as ratios in Fig. 4. In the heavier isotopes the distance between
photoexcited levels is so small that a clear distinction between
spectral lines and the quasicontinuum is difficult to make. This
is why the spectra taken for 100Mo at the two angles are directly
presented in Fig. 5. The higher intensity at 127◦ indicates the
dipole character for the peaks and the quasicontinuum in the
energy range from 5.5 to 8.5 MeV. At lower energy the spectra
are increasingly governed by multistep γ transitions, causing
a loss of directional correlation.

We will primarily discuss electric dipole strength, since,
as we showed previously [27,30], the number and strength

of M1 transitions is considerably smaller than that of E1
transitions. In a first step of the analysis the response function
of the HPGe-BGO combinations is used for a deconvolution
of the spectra. Starting at the highest energy all processes not
contributing to the full energy peak are subtracted step by step.
The procedure was tested by using the HPGe detectors of this
study in a 14N(p,γ ) experiment [42] to produce spectra with
only one high-energy line at 10.76 MeV. Its application to
data obtained for photon scattering by the low level density
nucleus 208Pb [30] led to results in full agreement with
previous experiments [6]. The effect of this deconvolution
is seen in Fig. 3 for 92–96Mo and in Fig. 3 of Ref. [19]
for 100Mo.

In a next step the contribution to photon scattering not due
to nuclear resonance fluorescence is investigated. Here the
background due to multiple Thomson (or Compton) scattering
is important and a calculation with the code GEANT3 [32]—
modified as discussed before for Fig. 2, with no nuclear
resonances included—was used to determine it. As shown
in Fig. 3 these processes contribute strongly at low photon
energy and as they may exceed 10% at some energies their
contribution had to be subtracted. The energy-dependent
photon yield Y (Eγ ) observed for 100Mo at 90◦ and 127◦
is shown in Fig. 5; it results from the subtraction of the
simulated nonresonant contribution and the correction for the
energy dependence of photon flux and detector efficiency and
response. After subtracting the peaks coming from ambient
background and from the 11B target the data for all five isotopes
are integrated in 200-keV-wide bins to get the yields Yn. This
binning determines the resolution of the final result, the dipole

FIG. 5. (Color online) Photon yield
observed with 100Mo at 90◦ (magenta)
and 127◦ (blue). The data are normalized
to photon flux and detection efficiency
(for the plot both are set to 1 at 7 MeV)
and they were corrected for the detector
response. In a wide energy range an en-
hancement at 127◦ is seen. Because of the
spins involved the 7.29-MeV transition in
11B is expected to show an intensity ratio
of 0.93.
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strength function f1(E) as a function of the excitation energy
E. The next step in the analysis, the correction for feeding
and branching, starts from a first guess for f1(E), from which
the (hypothetic) primary populations In of the energy bins
n—selected to increase in Ex with n—can be calculated by

In = σnεn
n

M

A
NA = 3(πh̄c)2εn
n

M

A
NAEnf1(En), (6)

where NA is Avogadro’s number and M/A (in mol) is the
target mass. For each bin n, σn is the average cross section, εn

is the absolute full energy detection efficiency, and 
n stands
for the primary photon fluence in that bin, and it is assumed
that the photon intensity is constant over the target volume.
From the In corrected populations Cn are derived by account-
ing for feeding and branching—starting at such a high energy
where no feeding yield from above contributes:

Cn = In +
∑
m>n

�mn ρnIm –
∑
m<n

�nm ρmIn =
∑
m

AnmIm. (7)

Here �mn is the average width of transitions from bin m to bin
n and ρn is the level density in bin n. Actually this approach
would only allow for single-step decays but multistep patterns
of order k are easily included without disturbing the linearity
of the correction process by applying the matrix A k times:
C = AkI. The ratio Yn/Cn is a measure to generate the next
iteration for f1(En) in an iterative procedure that continues
until the changes become insignificant. Starting with a realistic
choice forf1(E) reduces the need for many iterations.

For λ = 1 the average width �mn is proportional to (�E)3

such that one gets by the use of Eq. (4)

�mnρm = f1(|Em − En|)(|Em − En|)3. (8)

Here use was made of the Axel-Brink hypothesis [3,4], which
states that the strength function f1 only depends on the
transition energy |Em − En| and is independent of the energy
of the lower level and of the transition direction. Obviously,
the average decay from one bin to the other is determined by
Eγ and f1(En) alone. As in Eq. (6) the primary population is
calculated without any other target parameters except M/A,

En = Eγ , and f1(En). No explicit level density dependence
appears; it is completely absorbed in the average quantity
f1(E). Thus our method of obtaining the electric dipole
strength does not need any a priori information about the
level density ρ.

The schematic description of the correction for feeding and
branching as outlined here does not account for two details,
which are nevertheless important:

(i) A level excited strongly by photon absorption from the
ground state has a strong decay branch back to it. When
only bins with average quantities are considered this
information on the enhancement of elastic scattering [9]
is lost.

(ii) The yields Yn are observed in an angle-limited direction
with respect to the photon beam. Thus the spins in the
decay cascade and the resulting directional correlations
have to be considered as outlined previously [19]. Again
this is not done in a binwise approach.

If at all, both points disrupt only weakly the statement about
the level density independence as just made. But they have
influence on the strength function f1(E) resulting from the
data analysis. This is why the binwise procedure was not used
in the final analysis but instead replaced by a Monte Carlo
description of feeding and branching. In Eq. (7) �mnρn is
replaced by �mn/En and the sum now runs over randomly
generated individual levels (about 103 in total). The multistep
decay between them observes points i and ii; it is completed by
a final aggregation of f1(E) in bins. In this procedure the qua-
sicontinuum resulting from the overshoot of the experimental
resolution over the average level distance D is represented by
Monte Carlo–generated levels with density ρ = D−1. To be
independent of the actual choice 103 different realizations of
the spectra were used and later the results were averaged. A
respective Monte Carlo simulation has been the basis for the
analysis of an equivalent experiment on 88Sr [27], where it
is described in detail. Also the application of this method to
98Mo and 100Mo was already presented in Ref. [19], where
many more details of it are given. It was demonstrated there
that the selection of a specific level density for the Monte Carlo
calculation has only a weak effect on the final results. Results
for the five even Mo isotopes are also shown in Ref. [41] and
the effect of the correction for multistep decays on the final
strength function is demonstrated in Fig. 2 of that paper.

In the decay simulation the levels were randomly generated
from a Wigner distribution for the level distances and from a
Porter-Thomas distribution for their widths. To demonstrate
that this approach based on random matrix theory (RMT) is
justified, we have shown respective plots for three of the Mo
isotopes before (see Figs. 3 and 4 in Ref. [18]). To investigate
in detail whether the Porter-Thomas assumption [43] can be
made, we selected 92Mo, which has the lowest level density as
compared to the other isotopes. We repeated the RMT-based
investigation by now making proper account for unobserved
levels, which influences the width averaging. Figure 6 shows
the result of that analysis; by using a logarithmic x axis the
presentation is especially sensitive to weak transitions. The
276 discrete transitions observed as peaks in the nrf spectra
above 5 MeV are compared to a χ2 distribution with one
degree of freedom, typical for a Porter-Thomas distribution.
The level widths divided by their average are presented for
the two photon energy bins of 5–9 and 9–12.4 MeV. The
averages have been corrected for unobserved lines as well as
for the strength hidden in the quasicontinuum: In the lower
bin 11% of the strength is absorbed in the 30% unobserved
transitions and in the higher bin 28% of the strength and 59% of
the transitions disappeared in the quasicontinuum. No strong
singular transitions are observed and an agreement with the
Porter-Thomas conjecture can be stated—by considering the
apparent loss of strength in weak transitions not appearing as
discrete lines.

Various additional tests were performed within the series
of experiments at ELBE to check the reliability of the applied
analysis method: In the case of 88Sr and 90Zr data were
collected not only at 13.2 MeV but also at two lower energies
and consistent results were obtained [27]. For 88Sr a separate
treatment of the statistical decay paths and of individual strong
transitions has resulted in a strength function f1 that agrees
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FIG. 6. (Color online) The number of discrete transitions in 92Mo
[19] versus the logarithm of their strength g = �2

0/�, normalized to
the average 〈g〉 for two photon energy ranges. The numbers with their
statistical uncertainty are shown in red; they are connected by straight
lines to guide the eye. The total number of levels and the full strength
in each energy bin are needed to calculate 〈g〉. The relative strength
in the continuum is known [18,19,41] and the number of unobserved
levels is varied to bring the data at large g/〈g〉 into agreement with
the smooth curve (blue) depicting the Porter-Thomas distribution.
The difference at low g/〈g〉, which is more significant at large Eγ

(bottom), indicates the loss of strength to the quasicontinuum from
weak lines.

within the uncertainties. The procedure used has also been
successfully applied to 90Zr [27], and the final results for the
absorption cross section for 8–12 MeV compare well to the
ones obtained at another electron linac. In contrast to our study,
tagged photons were used in the same energy range [4] and
Fig. 13 later shows the good agreement between the two data
sets. In that experiment no correction for feeding is needed and
the branching to excited states is explicitly corrected for: In the
approximation used for the branching correction it is assumed
that the width �c is well approximated by a single number
typical for the investigated mass region [4,9]. For the Mo data
this alternative analysis method was also used by us [18] in
addition to the procedure presented here. By using the same
level density and the same �c = 0.2 eV proposed for the Zr
region [4,9], the strength functions obtained for 92Mo, 98Mo,
and 100Mo agree with the results of the present ansatz within
the uncertainties. Figure 7 shows them together with the results

FIG. 7. (Color online) Experimental photon strength functions
for 92,94,96,98,100Mo (from bottom to top). The data at low Ex are from
the present experiment (�). They are combined with f1 derived from
(γ,n) data (♦) [20,44] by making the approximation that photon
absorption only leads to neutron emission and by renormalizing
them by 0.87 (see text). The black solid lines depict the E1 strength
parametrization [22] based on the deformations given in Table I. The
thin lines (cyan) show the results of a calculation with the RPA [45]
taken from RIPL-2 [23] and discussed under (i) in Sec. IV A.

for 94Mo and 96Mo in comparison to photoneutron data and to
calculations; both will be discussed in subsequent paragraphs.

The method applied for the analysis of the scattering data
is innovative because of its deconvolution of the spectra to
also derive information from their quasicontinuous part, in
the procedure of deriving information about the nonresonant
processes, as well as in its way of accounting for multistep
γ decays by Monte Carlo simulation. Quasiparticle-random-
phase approximation (QRPA) calculations for M1 [17] results
in corrections <20% in the range of 7 MeV and E2
contributions to the yield were shown in Figs. 4 and 5 to be of
minor significance. As shown before (cf. Fig. 2 of Ref. [19]),
the Monte Carlo calculations used to simulate the non-nuclear
processes are in agreement with the properly normalized data
for 98Mo and 100Mo in the energy region between the Sn of
the two nuclei. A similar conclusion can be drawn from the
spectra for 94Mo and 96Mo in Fig. 3.

B. Activation data

Following the simultaneous irradiation of natural Mo and
Au with bremsstrahlung of different endpoint energies at
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the photoactivation site (cf. Fig. 1), the γ decay induced
in the samples was measured in a low-background envi-
ronment. The procedure to obtain absolute activation data
was discussed already here and published previously [12].
The experimental results for 197Au(γ,n)196Au presented there
establish the photoactivation of Au as a reliable standard.
After a determination of γ -transition intensities, and their time
dependence, the instantaneous production rates for 99Mo and
91Mo were obtained by the comparison to the respective rates
for the production of 196Au. To allow for the comparison of
the data obtained for the different endpoint energies, they were
normalized to the photon fluence at 7.29 MeV as deduced
from a ground-state transition in 11B observed at all electron
energies. A direct comparison of our activation results to
cross-section data obtained previously with monochromatic
photons by observing the neutrons [20] would require the
determination of yield differences from our data. To avoid
the resulting large uncertainties we used another approach
instead: The numerically available [44] cross-section data [20]
were folded with normalized bremsstrahlung distributions for
the respective electron energy, given by the MCNP code [33],
which is based on published tables [34]—as was discussed
earlier. The activation yields for 100Mo(γ,n)99Mo as obtained
here agree with the old (γ,n) data [20] from Saclay only after
these are multiplied by 0.89 ± 0.04, a factor determined from a
χ2 fit by using the data displayed in Fig. 8. To demonstrate the
constancy of this factor, it is shown in the bottom part of Fig. 8
as a function of the endpoint energy. Because of the reference

FIG. 8. (Color online) Activation yields observed for
100Mo(γ,n)99Mo (�, blue) as a function of the bremsstrahlung
endpoint energy; they were normalized to the flux observed at
7.29 MeV. Previous cross-section data (+, green) [20,44] and, in the
bottom of the figure, yield ratios from this experiment compared to
them are also shown (	, red) with their uncertainties; a line at 0.89
depicts the average ratio. For the comparison the previous data were
integrated and interpolated accordingly.

to 11B at 7.29 MeV [39] the absolute normalization accuracy is
7%. A factor of 0.85 ± 0.03 had previously been shown [11] to
be necessary for an optimum agreement between Saclay data
for Zr(γ,n) and several neighboring nuclei by a high-accuracy
experiment performed by an international collaboration at the
Lawrence Livermore Laboratory. Consequently, we applied
the average (i.e., a factor of 0.87 ± 0.05) to the Saclay data [20]
for the five Mo isotopes.

The corresponding data for the 92Mo component in the
irradiated samples are especially interesting for the present
strength function study, because for that nucleus the neutron
separation threshold is more than 5 MeV higher than the proton
threshold. In the interesting energy range the photon absorption
is thus connected to four exit channels: (γ,n), (γ,p), (γ,α),
and (γ,γ ′). The first three are accessible by our activation
technique, when the decay of the short-lived 91Mo to 91Nb is
accounted for. This has to be separated properly from the yield
of 91Nb directly produced via 92Mo(γ,p). With our pneumatic
delivery system such a separation was possible and it allowed
us to collect results for the population of the 65-s spin isomer
in 91Mo. These data (cf. Fig. 10) will be discussed together
with statistical model calculations of Hauser-Feshbach type
in the following. Recent publications [2,25,31,45] address
the relevance of results like the ones given here to cosmic
nucleosynthesis calculations for the region of Mo.

IV. DIPOLE STRENGTH AND THE GDR

A. Microscopic description

The isovector GDR was the first established prominent
collective nuclear excitation, and therefore it has attracted wide
interest. There have been numerous theoretical descriptions,
many of which can be extended to the low-energy tail, which
is of main interest here. Starting from a microscopic approach
(as an alternative to earlier macroscopic descriptions) Brown
and Bolsterli have worked out in their seminal paper [46]
of 1959 that already in a harmonic oscillator basis, and then
also in the nuclear shell model, a strong dipole excitation is
expected at 10–15 MeV. By adding various residual nucleon-
nucleon-interactions to the mean field a large variety of
calculation schemes has been developed—mainly for spherical
nuclei. Practically all of them are limited to first order; that
is, they produce one-particle–one-hole states only and treat
two-particle–two-hole configurations (if at all) by including
collective quadrupole degrees of freedom. The resulting mean
level distance exceeds the experimental value by more than
a factor of 10 and thus an arbitrary smearing parameter has
to be introduced to conceal that deficit. A smearing width of
∼2 MeV is often used to obtain a smooth energy dependence
of the cross section. Three calculations dedicated explicitly
to the dipole strength function in the Mo isotopes have been
presented:

(i) By a random-phase approximation (RPA) with a
density-dependent interaction, a very large number of
heavy nuclei have been studied [45], and respective
predictions have been presented together with the
RIPL-2-compilation [23] of photon strength function
data. There it is stated that “The E1 strength functions
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are determined within the QRPA model based on the
SLy4 Skyrme force. The ground state is consistently
calculated within the Hartree-Fock + BCS model based
on the same SLy4 force. . . . [The] QRPA calcula-
tions are performed in the spherical approximation.
A folding procedure is applied to the QRPA strength
distribution to take the damping of the collective
motion into account. In the case of deformed nuclei,
a phenomenological splitting of the QRPA resonance
strength is performed in the folding procedure.” Here
the deformation corresponds to the ground-state mass
minimum in QRPA and the inclusion of deformation
effects appears to be somewhat arbitrary. Results from
this calculation are displayed in Fig. 7; they differ
significantly from the combined experimental data.

(ii) A second approach [47] uses a potential energy surface
calculation to obtain the deformation parameters (cf.
Table I) and a deformed basis obtained from the
Nilsson model to carry out a RPA. As residual nuclear
interaction a density-independent dipole-dipole force is
used. To get the resonance energies right, an additional
arbitrary adjustment is needed. In a first publication [47]
calculations for Kr, Mo, and Nd isotopes are presented
as cross-section integrals over 10 MeV. These numbers
agree with the experimental equivalents within up to
35%; for 148Nd—but not for 150Nd—this comparison
favors a deformed mean field over a spherical one.
For the Mo isotopes the integrals in the slope region
agree with the ELBE data within their experimental
uncertainties; for the integrals including the GDR peaks
the experimental values are exceeded by ∼30% in
98Mo and 100Mo. Calculated strength distributions in
the GDR region are given (Ref. [47], Figs. 3 and 7)
for Nd and Mo, respectively. They show two peaks:
The higher energy one is considerably narrower than
the experimental GDR peak and the smaller one at
∼4.5 MeV below the main peak has <30% of its
strength. As it considerably exceeds the data in this
energy range the cross section near Sn is likely to be
due to this side peak, the tail of which is determined
by the smearing width. For the even Mo isotopes more
results have been published recently [41]; here the tail
region and not the GDR peak is discussed.

(iii) A density functional RPA formalism, which had al-
ready been used for several regions of the nuclide
chart including permanently deformed nuclei [48], has
recently been applied to the Mo isotopes [49]. By using
interaction parameters of Skyrme type, some agreement
with data is obtained, but only axial deformations were
studied. Apparently the results differ from (b) and the
authors conclude that “The low-energy E1 strength
is shown to be mainly determined by the GDR tail.”
This statement is in agreement with the findings of the
present work, as will become obvious in the following.
As the predicted position of the GDR deviates from the
maximum in the (γ,n) data [49] a direct comparison
to our (γ, γ ) data appears to be premature. It is not
obvious whether a final selection between different
choices for the interaction will lead to a satisfactory
global description of many nuclei.

Very recently, a residual interaction, derived using the
newly developed unitary correlation operator method, has been
used [50] in second-order RPA calculations for the neighboring
90Zr nuclide. The explicit inclusion of two-particle–two-hole
configurations results in a rather weak low-energy side peak
with consequently less impact on the slope at Sn as compared
to other calculations. An interesting feature of this work is
the employed response function formalism, which allows a
smearing width in an early step of the calculation to be
introduced. An interesting new development in the field of
RPA calculations is the use of mean-field parameters derived
from covariant density functionals [51]. These calculations
describe many aspects of dipole strength functions in spherical
nuclei very well, but their expansion to nuclei without spherical
symmetry has not been published yet.

B. Macroscopic picture

From the time of its discovery, the large strength of the
GDR has triggered attempts to describe it as a collective
mode, and the out-of-phase oscillation of protons and neu-
trons around the center of mass has become the generally
accepted macroscopic description. A single peak observed at
10–15 MeV in nuclei with at least one magic nucleon number
indicates one oscillatory mode, as expected for a spherical

TABLE I. Deformation parameters for the Mo isotopes taken from B(E2) values assuming axial symmetry [61], a Coulomb
excitation experiment [26], the FRDM [55], a Nilsson-Strutinsky (NS) calculation [17], and the IBA [63]. The last two columns show
the values selected here; they are based on Refs. [26,40,61] (cf. Fig. 12).

Nucleus Axial Coulomb ex. FRDM NS IBA/ISS Used here

N A β β γ β γ β γ β γ β γ

50 92 0.10 0.03 0 0 0 0.10 24.9◦ 0.10 34◦

52 94 0.15 0.05 0 0.02 60◦ 0.14 19.7◦ 0.15 31◦

54 96 0.17 0.19 32.5◦ 0.11 60◦ 0.16 26.2◦ 0.17 29◦

56 98 0.17 0.18 32◦ 0.22 27.5◦ 0.19 37◦ 0.20 22.7◦ 0.18 25◦

58 100 0.23 0.24 25.0◦ 0.23 32◦ 0.25 22.4◦ 0.23 22◦

Note. The deformation parameters listed in the last 2 columns correspond to Eq. (9). If they are interpreted instead in accordance to
Ref. [26], the resulting resonance energies given in TABLE II vary by less than 0.1 MeV resulting in an insignificant change concerning
the agreement to the data.
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body. For a triaxial shape three components of equal strength
are to be seen, and in an axial nucleus two of the three
components coincide. Again this is confirmed by the observed
appearance in nuclei known to be axially deformed of two
peaks, which are separated by up to 4 MeV. A model derived
on this basis by Goldhaber and Teller [52] works well for
lighter nuclei, whereas the one of Steinwedel and Jensen [53]
gives a better description for very heavy nuclei. On the basis of
the droplet model [54,55] unified expressions were developed
to hold for both mass ranges. Thus a prediction for the A

and Z dependence of the centroid energy of the GDR can
be obtained by combining one new parameter—an effective
nucleon mass—to the nuclear symmetry energy and surface
stiffness already determined [55] by a fit to ground-state
masses. Concerning the energy dependence of the apparent
GDR width, a rather simple formula was derived [56] on
the basis of hydrodynamical considerations, which describe
it as a spreading width. Originally it was proven to hold
within one nucleus, but it was empirically shown [22] that
this expression can be generalized to be valid for all heavy
nuclei (A > 80) with only one free fit parameter. Likewise it
was found recently [22], from inspecting the isovector GDR
in many heavy nuclei, that its integrated strength exhausts the
Thomas-Reiche-Kuhn (TRK) sum rule without any addition to
its main component, which is proportional to ZN/A. This rule
was formulated by Kuhn as well as by Reiche and Thomas [57]
for electric dipole absorption by any charged microscopic
object. Later is was shown that the summed photon absorption
cross section in nuclei can be quantified already by using only
a very general concept based on causality and unitarity [58].
By applying the aforementioned considerations a Lorentzian
parametrization for the dipole strength was derived [22] and
for many nuclei with A > 80 it was shown to well describe
the peak area of the GDR up to ∼3 MeV above, when the T>

component starts to contribute to the cross section. A possible
extension of this ansatz to lower energies will play a major
role in the subsequent discussion.

For the lower energy regime well below the GDR it is
known that E1 transitions are strongly overpredicted by the
single-particle Weisskopf unit—in contrast to other multipo-
larities. Apparently, the electric dipole strength is concentrated
in the GDR, and already many years ago the assumption
was introduced [4,5] that the low-energy tail of the GDR
determines the strength of absorption and emission of photons
in this energy range. But although nuclear fluorescence data
were well described by such an extrapolation [4,5,9], the
experimentally determined γ decay strength following neutron
capture seemed to indicate a steeper energy dependence as
expected from a Lorentzian fitted to the GDR peak. It was
the concept of an excitation-energy-dependent width [56,59]
that the GDR width decreases with photon energy [2,23,24]
that caused disagreement between the nrf and the capture
communities and this induced a longstanding controversy
[23,24,60]. By a careful inspection of the (γ,n) data used for
the determination of the GDR parameters, and by taking a
consequent account of the nuclear deformation and triaxiality,
a solution to this puzzle was found: A parametrization of the
electric dipole strength originally developed mainly to describe
nrf data as well as the GDR itself could be shown [22] to

be in good agreement with many capture data, namely those
obtained by average resonance capture (ARC) of neutrons.
In contrast to other prescriptions [23,24,60], it is based on a
spreading width only depending on the resonance energies [59]
and not on the photon energy directly. The potentially higher
strength at low energy is reduced owing to the use of a smaller
spreading width. This, in turn, is possible, as a considerable
portion of the apparent width is attributed to the nucleus’s
deformation. An especially sensitive test of this ansatz is
possible for nuclei for which reliable data at low and at high
energy exist. For a considerable number of heavy nuclei,
sufficient information was available and the electric dipole
strength was explained well [22] by this new parametrization.
As already indicated in Fig. 7(a) comparison to the low-energy
data obtained in this study in combination with the Mo(γ,n)
data [20] for the GDR region is of special interest. Special
insight into the photon energy dependence of the width is
expected from the stable, even Mo nuclei with their wide
variation in deformation. These data do not cover the regime
below 4 MeV and thus do not allow any conclusion on the
prediction made of an extra strength at such low energy, based,
for example, on the theory of Landau liquids [60]. One other
relation, the photon energy dependence of the width, is often
discussed [23,24] in parallel, but we argue that a distinction
should be made between these two predictions. Their origin is
not directly related and they mainly affect different excitation
energy regions.

For the deformation parameters, different sources are
available for the Mo isotopes (cf. Table I): Experimentally, the
low-energy spectrum of 92Mo does not show a sign of strong
static deformation, and for 98Mo a detailed Coulomb excitation
study [26] has delivered rms values for the deformation
parameters β = 0.18 and γ = 33◦ indicating a dynamically
nonaxial shape. The derivation of β values from B(E2)
values to the first excited 2+ state [61] results in a rather
good approximation (actually a lower limit) [26] for the
rms deformation β. We use these values in combination
with a systematic data analysis [62], in which results for
the triaxiality γ in correlation to the rms deformation β are
also published. A surprisingly clear dependence between the
two observables is shown, and the proportionality constant
relating them in the even Mo isotopes is similar for other
heavy nuclei. We applied this information to derive the values
shown in the last two columns of Table I, which we used in the
comparison of strength functions from Ref. [22] to our data.
The sensitivity to possible uncertainties in these values will be
demonstrated at the end of Sec. V B. Theoretical deformation
parameters included in the Table for comparison come from
the finite-range droplet model (FRDM) tabulated for more
than 900 nuclides, recently with inclusion of triaxiality [55],
and calculations of Nilsson-Strutinsky (NS) type [17,47]. The
column labeled ISS shows the weighted averages of deforma-
tion parameters obtained by assuming a slowly (as compared
to the dipole oscillation) changing deformation. They were
determined [63] from properties of low-lying levels using the
interacting boson model (IBA). In the following this informa-
tion is used to demonstrate the impact of a time-dependent
coupling of the low-energy quadrupole vibrations to the giant
dipole mode.
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From the deformations β and γ the GDR resonance
energies are calculated to be inversely proportional to the
respective diameter of the triaxial body by using the Hill-
Wheeler formula [22]

Ek = E0R0/Rk = E0/ exp
[√

5/4πβ cos
(
γ− 2

3kπ
)]

, (9)

with E0 calculated from the symmetry energy in the FRDM
[55], which is fitted to the ground-state masses of many
nuclei. Now Eq. (1) can be used here in a different sense
than before, when it described the integration over the narrow
(∼eV) resonances,

∫
�

σ dE = �〈σ 〉, to yield an average cross
section, which is proportional to Ef1 when forming the sum
in Eq. (1). For the description of the GDR, the sum is now
taken over (up to three) Lorentzians corresponding to the
different radii Rk for the (eventually triaxially) deformed
nucleus (cf. Eq. (4) in Ref. [22] and Eq. (9) here). Here
the widths (now in the MeV range) no longer account for
the level’s decay into a vacuum but rather for its spreading
into the underlying narrow levels of multiparticle multihole
structures. A description by Lorentzians has been proven to
be valid also for that case [59], and the resonance parameters
for the (up to three) components of the GDR are given by
[Ref. [22], Eqs. (3) and (5)]

�k(Ek) = 0.05 Eδ
k, δ = 1.6. (10)

The resonance energies and widths, derived from the shape
parameters in the last columns of Table I, are given in Table II.
The dependence [59] of the widths on the resonance energies

TABLE II. GDR parameters used for the description of the E1
strength in the Mo isotopes studied. Given are the energies and widths
(both in MeV) of up to three Lorentzians and their strength relative to
the TRK sum (in percent). Following Ref. [22] the GDR components
used here (columns 5–7) have equal strength, which adds up to the
TRK sum. For comparison the values proposed in RIPL-2 [23] are
shown. They are taken from Dietrich and Berman [10] and are not in
good agreement with the TRK sum rule [ [10], Eq. (3)].

A RIPL-2 [23] Ref. [22]

ER �R % ER �R %

92 16.82 4.14 77 15.72 4.11 33.3
16.54 4.45 33.3
17.65 4.94 33.3

94 16.36 5.50 115 15.27 3.92 33.3
16.53 4.45 33.3
17.99 5.09 33.3

96 16.20 6.01 123 15.01 3.81 33.3
16.53 4.45 33.3
18.11 5.15 33.3

98 15.80 5.94 122 14.87 3.75 33.3
16.61 4.48 33.3
18.03 5.11 33.3

100 15.74 7.81 144 14.43 3.54 33.3
16.74 4.54 33.3
18.40 5.28 33.3

Ek and the exponent appearing in Eq. (10) were derived from
hydrodynamical considerations [56], and the proportionality
constant stems from a global fit [22] to many nuclei with
A > 80.

V. RESULTS

A. Strength functions in the Mo isotopes
and their parametrization

The even Mo isotopes selected here constitute an interesting
chain of nuclei as they vary in deformation as well as in
triaxiality [17,26,55]. The (γ,n) cross sections are available
[20,44] for all of them, and our activation studies have
confirmed the earlier finding [11] that their absolute value has
to be reduced by approximately 13%. In the following all (γ,n)
data are corrected respectively. Especially for 92Mo with its
exceptionally large Sn = 12.7 MeV an additional correction to
the data is important: Near 13 MeV the—albeit small—target
admixtures of other Mo isotopes had to be subtracted as they
contribute considerably to the yield, which, for 92Mo, is very
small because of the close threshold. This was accomplished
on the basis of the procedure, described in the following,
used to calculate cross sections. As previously described, the
deformation parameters entering the parametrization [22] of
the dipole strength function are taken from published infor-
mation [26,61,62]. The parameters resulting for the different
isotopes are listed in Table II, together with the respective
values as documented in RIPL-2 [10,23] for a description by
a single Lorentzian. Whereas the deformation-induced split
is quite marginal for 92Mo, it increases considerably with
increasing neutron number.

The strength functions f1 as calculated using these res-
onance parameters are depicted in Fig. 7. The experimental
low-energy strength functions, as derived from our scattering
data following the procedure just described [Eqs. (1) and
(6)–(8)], are also shown. These experimental results were
already published earlier [19,41] and are shown again here.
To get an impression of the excitation energy dependence
of the dipole strength in a wider range, the (γ,n) data [20]
for Ex > Sn are included in the figure. The cross sections
were transformed into f1 after adjusting them by 0.87 (cf.
Fig. 8 and the corresponding text) and by using Eq. (4).
Only in the case of 92Mo, which has a very low proton
emission threshold Sp and thus a strong (γ,p) channel, is the
assumption that this channel may be neglected in Eq. (2) not a
good approximation. This can be clearly seen in Fig. 7 and a
proper treatment of this point using a statistical reaction model
will be discussed in the following. In the other isotopes, the
scattering data from close below Sn match reasonably well the
strength obtained from the (γ,n) data [20] directly above Sn

The ground-state deformations shift the lowest of the three
GDR resonance energies away from the centroid by up to
2 MeV and subsequently they also modify their widths by
up to 22%. As seen in Fig. 7 this results in a shape different
from, albeit quite similar to, a Lorentz curve, and it explains
why past attempts [10] to use a fit with a single Lorentzian
are apt to lead to unreasonably large width values. These were
eventually interpreted incorrectly as a spreading width and
this resulted in a false extrapolation to the low-energy tail.
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In our parametrization [22] the rather good description of
the data below the neutron threshold is the result of a shift
of one component of the GDR to lower excitation energy,
and thus an increase of the strength there. No explicit photon
energy dependence of the resonance width is needed and all
parameters entering (except the deformations) result from a
procedure in which globally all heavy nuclei are considered. It
may be stressed here, again, that we have not performed any fit
to the Mo data to obtain the quite appealing agreement with the
experiments. The deformation-independent global parameters
are valid for all A > 80; they are

(i) an effective nucleon mass of 874 MeV/c2 combined
with the symmetry energy J = 32.7 MeV and the
effective surface-stiffness constant Q = 29.2 MeV,
which are already fixed by a fit to ground-state masses
[55], and

(ii) the proportionality factor in Eq. (10), which is used
together with the exponent 1.6 already fixed by a
hydrodynamical calculation [56].

As outlined before [22], we use only these numbers to
obtain all relevant GDR energy parameters. We combine
them to the strength information derived from the dipole sum
rule [57,58], from which we get the three resonance integrals
I1 = I2 = I3 used in Eq. (11) in the next section. For the higher
energies above the thresholds the relative transmission coef-
ficients for neutrons and protons may have to be determined
additionally, as discussed in the next section.

The procedure used here to determine the GDR energies
and widths for the calculation of the photon strength functions
is valid for a static triaxial deformation. A fully adiabatic
coupling of the fast GDR motion to the low-frequency
collective excitations, responsible for the dynamics of the
ground-state deformation, may cause differences. Up to this
point these were assumed to be negligibly small, and the rms
values of the deformation parameters were treated as static.
To implement a less-simplified coupling of the GDR to the
quadrupole dynamics of the nuclear body, it is interesting to
study the effect of the variance of the deformation parameters
as, for example, observed recently [26] in Coulomb excitation.
A description of how such dynamics can be derived within the
IBA has been proposed recently [63]. This procedure allows
one to introduce an instantaneous shape sampling (ISS), and
it was worked out originally [63] for a coupling to a GDR
generated within a RPA. Obviously, the ISS can also be
combined with a Lorentzian description as proposed here:
This requires calculation of the three GDR components at
each sampling point and formation of the time-averaged cross
section. To quantify the change introduced by the ISS this
average has to be compared to the cross section obtained in
a “single shot” with the average deformations from the ISS
(cf. Table I). Such a comparison was performed using the
time-dependent shape parameters as taken from spectroscopic
information for the five Mo isotopes (cf. Fig. 1 of Ref. [63])
and the corresponding result is depicted in Fig. 9. ISS causes
some change near the GDR peak for the triaxial 100Mo but its
impact in the region of our nrf data is of minor importance.

Figure 9 also displays the experimental motivation for not
introducing a photon energy dependence of the GDR widths:

FIG. 9. (Color online) Calculated dipole strength functions for
92,96,100Mo (from bottom to top). The thick pink line is the weighted
sum of Lorentzians with deformation parameters as derived [63]
by ISS on the basis of the IBA. The thin black line shows the
deformation parameters that were first averaged and then used in
the Lorentzian description of the dipole strength; see Table I. The
lower thick green line shows the Lorentzian parametrization with an
explicitly introduced quadratic dependence on Eγ ; for the 94Mo and
98Mo respective comparisons are graphically presented in Ref. [22].
An agreement with f1 as determined from the present nrf data (blue
squares with error bars) is only found for the curves calculated without
photon energy dependence.

Curves calculated with � ∝ E2 clearly underpredict the data.
To come to a quantitative statement for a possible dependence
of the GDR widths on photon energy we made an ansatz
equivalent to the one used in Eq. (10) for the resonance energy
dependence. We find that any exponent > 0.3 can be clearly
excluded by our low-energy data. Noting that the spreading
width is dominating the GDR width, we conclude that our
analysis of the combined data from above and below threshold
indicates that the spreading width depends on the resonance
energy only, and not on the energy of the emitted photon. This
finding contradicts previous practice [2,23,24]: The effect of
the large GDR width (cf. column 3 of Table II) at low energies
was compensated by introducing a photon energy dependence
of that width.

B. Comparison to Hauser-Feshbach calculations

In Fig. 10 the nuclear photoeffect channels that con-
tribute strongly to the photoabsorption of 92Mo are shown.
The data are compared to calculated photoactivation yield
curves, which are produced from Hauser-Feshbach statistical
model calculations performed with the code TALYS [64].
Transmission coefficients obtained from the optical model
for nucleon-nucleus interactions and the photon strength f1

resulting from the parametrization [22] are used as input for
these calculations. The strength f1 and the average photoab-
sorption cross section 〈σγ (E)〉 are related [5] to the GDR
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FIG. 10. (Color online) Experimental activation yields for the
bremsstrahlung-induced photodisintegration of 92Mo into 91mNb,
91mMo, and 88Zr (from top to bottom). These channels correspond
to the photoeffect resulting in a free proton, neutron, or α particle.
The blue open circle indicates the detection limit of the setup used
for 91mMo. The lines depict results of Hauser-Feshbach calculations
performed with the code TALYS [64] and the present strength function
parametrization as input combined with different optical potentials
[65,66] to show the weak sensitivity on their choice. The dashed
vertical line indicates the (γ,n) threshold for the isomer 91mMo.

parameters via

〈σγ (E)〉 ≡ 3(πh̄c)2Ef1(E) =
3∑

R=1

2IR

π

E2�R(
E2

R−E2
)2+E2�2

R

,

(11)

which is equivalent to Eq. (1). The energies ER and widths �R

are given by Eqs. (9) and (10) and listed in Table II. As shown
before [12,22], our parametrization allows us to describe the
E1 strength for nuclei with A > 80 in accord to the TRK
sum rule [57]. Thus the three resonance integrals IR in Eq.
(1) add up to 6.0ZN/A; we set them to be equal and get
IR = 2.0ZN/A for R = 1, 2, 3 (cf. Table II). The green and
blue curves correspond to optical model parameter sets [65,66]
extracted in two different ways from particle scattering data.
By using an optical model, the dependence on the relative level
densities in the final nuclei 91Nb, 91Mo, and 88Zr is accounted
for. From inserting the different options [65,66] installed
in the TALYS code [64] (see also Ref. [23], RIPL-2) this
dependence was found to be weak, as demonstrated in Fig. 10.
However, an intermediate structure detected in a electron-
proton experiment on 92Mo [67] indicates a noncontinuous
level density or transmission coefficients to be present in 91Nb.
Such a structure may induce a reduced (γ,p) cross section.
Because of flux conservation, a 25% reduction of this cross
section in the γ -energy range between 11 and 13 MeV may
easily cause a much stronger increase in the weaker (γ,n)
and (γ, γ ) channels, such that the apparent differences to the
experimental data in Figs. 10 and 11 disappear.

A more detailed discussion of the influence of optical model
parameters and transmission coefficients on competing cross
sections has been presented earlier [31]. Also described there
is how strong Hauser-Feshbach calculations depend on the

FIG. 11. (Color online) Experimental cross sections for photon-
induced processes in 92,94,96,98,100Mo (from bottom). The data at
low Ex from the present scattering experiment (�, blue) are shown
together with (γ,n) data (♦, red) [20,44] rescaled as described in the
text. The thin lines depict the results of Hauser-Feshbach calculations
performed with the code TALYS [64] [blue: (γ, γ ); red: (γ,n); green:
(γ,p); only shown as long as their contribution exceeds 10%]. These
calculations use the parametrization [22] for the absorption cross
section σγ (E1), represented by the thick solid line, which is based on
the deformations given in Table I. A cross section overshooting this
line may indicate contributions from M1 or E2 as included in the
TALYS code [64].

photon strength function: Its size influences essentially linearly
the calculated cross sections and yields of photonuclear
processes. An approach proposed previously (using the code
NON-SMOKER; see Ref. [2]) to use β-deformation values
resulting from the droplet model [55] for the derivation of
a two-component Lorentzian does not describe the GDRs in
the Mo isotopes [31] as well as the three-component curves
[22] described here. In addition, the method used for the
calculation of the GDR widths and their dependence on the
photon energy is not in accordance with the procedure [22]
used here for the prediction of the photon absorption cross
section in the range between 4 MeV and Sn. Thus an agreement
with the photon-scattering data presented here is unlikely;
respective results from NON-SMOKER [2] are not available at
present.

Figures 11 and 13 show the cross sections for photon
scattering (nrf) as well as the ones for the photon-induced
processes of importance for the present discussion. The
experimental data agree reasonably well with the cross sections
for the different exit channels as calculated with the code
TALYS [64] by exchanging the “standard” electric dipole
strength functions of that code by the one taken from [22]
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and previously outlined here. In the spirit of the statistical
reaction model an average over all possible paths to the same
final nucleus has to be performed as well as a summation
over all the narrow (∼1 eV) resonances R; this is implicitly
done by the code TALYS. It uses transmission coefficients
calculated in an optical model and takes into account the
level densities in the participating nuclei. As long as only one
process contributes to the absorption at a given photon energy,
the data may directly be compared to the parametrization for
the dipole strength [22], as used here. As shown in Fig. 11 this
is not the case for 92Mo for most of the energy range, and the
apparent mismatch between (γ,n) data and TALYS results near
the GDR maximum of 92Mo may well originate from a too high
Hauser-Feshbach prediction for (γ,p) as already apparent in
Fig. 10. In the other isotopes the situation is much less complex
and no such uncertainties enter in the calculations. The (γ,n)
data for the low-energy slope of the GDR show very large
irregularities in the case of 98Mo; the fluctuations observed
in another experiment [40] on the same nucleus are much
weaker. Thus a verification of the irregularity in 96Mo(γ,n)
just above Sn would be interesting, but no alternate data were
found for 96Mo [44] and our activation method cannot be
applied. Apparently, the M1 strength included in the TALYS

code improves the agreement to the data, if it has a significant
effect at all. It has been predicted that spin-flip M1 strength
should be comparatively strong at ∼8 MeV [23], and orbital
M1 excitations have been reported near 3 MeV for many heavy
nuclei [15].

To demonstrate the dependence of the calculated cross
sections on the deformation parameters, it is advanta-
geous to select cases with only one strong exit channel,
which then is a direct measure of the photon absorption.
Figure 12 shows the GDR peak region for the Mo isotopes 94
and 98, where the absorption cross section is nearly completely
exhausted by neutron emission. For 94Mo, the (γ,n) cross
section is well described by our choice of the deformation
parameters, as listed in the last columns of Table I and
described in the associated discussion. The calculation based
on the values derived by the FRDM [55] shows a reduced
strength in the GDR wings and an excess in the peak, an
effect of the resonance integral being predefined by the TRK
sum rule. The 98Mo(γ,n) data near the GDR maximum clearly
allow us to exclude a fully prolate or oblate shape and show
preference for the two triaxial alternatives; the data do not
allow us to distinguish between these two. Concerning the
region near and below the neutron separation energy Sn, that
is, below 11 MeV, the value of γ , defining the triaxiality, has
a negligible direct effect on the cross section. The triaxiality
is of indirect, but nevertheless great, importance: For a long
time its disregard has had the consequence that only in the
case of a clearly double-humped GDR was the ground-state
deformation identified as the cause for its broadening. In nuclei
such as 94–100Mo the broadening was misinterpreted as being
due to an increased spreading (see Table II, column 3).

Finally, the good overall agreement between the cross
sections from different experiments with the ones calculated
by TALYS on the basis of the new E1 parametrization [22] and a
reasonable selection of deformation parameters is remarkable.
Although in 98Mo, and especially in 100Mo, the apparent

FIG. 12. (Color online) Experimental cross sections for (γ,n) in
comparison to the parametrization with different choices for the
deformation values. Bottom: 94Mo (γ,n) with curve corresponding
to β = 0.15 and γ = 31◦ (blue) as well as β = 0.05 and γ = 0◦

(cyan) as derived by FRDM [55]. Top: 98Mo(γ,n) with β = 0.18
combined with γ = 0◦ (green), γ = 60◦ (cyan), γ = 32◦ (pink, [26]),
and γ = 25◦ (blue, our values).

width of the GDR reaches or even exceeds 6 MeV, three
overlapping Lorentzians of smaller width, but shifted by the
proper amount (see Table II), lead to a very good description
of the resonance and to the tail region (cf. Fig. 13). The
latter is especially sensitive to the width � and its possible
energy dependence. The ansatz allows the use of a GDR
spreading width depending smoothly on the energy of the GDR
component, and thus only weakly on A and Z. Additionally,
it remains in agreement with the TRK sum rule, which is
based on very general considerations [57,58], and which we
find to be respected at the low excitation energies studied.
This does not exclude a possible violation at higher energies
where, for example, pionic degrees of freedom may come
into play. Nevertheless, our data also indicate some excess of
the pygmy type, which has attracted attention recently—albeit
constituting a few percent of the E1 strength only.

C. Apparent excess over a smooth strength distribution

A comparison of the combined data for the Mo isotopes
with the smooth Lorentzian curve from the parametrization
used here shows some enhancements of the strength over
the extrapolated tail of the GDR. As seen in Fig. 13, the
approximations made for M1 strength in RIPL-2 [23]—which
are used in the code TALYS [64]—result in a cross section
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FIG. 13. (Color online) Experimental cross sections for photon-
induced processes in 100,98,96,94,92Mo (from top). The plot replicates in
linear scale the data already shown in Fig. 11 coming from the present
scattering experiment (�, blue). They are shown together with the tail
of the GDR Lorentzian (black) as parametrized in Ref. [22] and the
result of a calculation with the code TALYS [64] using it as input (blue).
This code includes M1 strength in addition to E1. For comparison
the respective data for targets of 88Sr (�, dark blue) and 90Zr (�,
green) have been included at the bottom of the figure; below 7.5 MeV
these data are shown in enlarged bins. Also included here (∇, gray)
is the absorption cross section from an experiment [4] on 90Zr, which
was performed previously with tagged photons, and thus could be
analyzed in a quite different manner; the agreement between the two
data sets on an absolute scale is satisfactory.

increase of several percent over the E1 contribution. But it is
also obvious from the figure that there is an additional surplus.

Two flat maxima at about 7.5 and 8.5 MeV may be stated
for 94Mo, whereas in 100Mo and 98Mo extra strength appears
closer to 7 MeV. As depicted in Fig. 11, the (γ,n) data show
irregularities just above Sn with large statistical uncertainties.
As a basis for a discussion of “pygmy” structures in Mo as
compared to neighboring nuclei Fig. 13 shows—in linear
scale—not only the results of the present study but also the
respective data [4,27] for other even N = 50 nuclei. Some
excess of the dipole strength above a Lorentzian can be
identified for 90Zr [27] near 6.5 and 9 MeV. Earlier, a cross-
section enhancement at 9.1 MeV was found in this nucleus and
most of that strength was shown not to be of M1 character [68].
For the spherical nucleus 88Sr [27] and at energies clearly
below Sn, that is, at 6–7 and 9–10 MeV, a significant overshoot
of the experimental data over the Lorentzian is observed. For
N = 50 it can thus be stated, that “pygmy” structures are losing
strength with increasing distance from the Z = 38 subshell,

similar to their increasing disappearance in the Mo isotopes
when going away from N = 50. So called pygmy resonances
have been studied extensively for N = 82, and they show
up as significant structure above the extension of the GDR.
This is also true for 208Pb, where one observes strong peaks
between 6 and 7 MeV, and possibly also at 11 MeV (as in
90Zr); this may be considered an indication for a sequence of
intermediate structures—not just one. A possible explanation
of the preferential observation near shell closure may address
single-particle configurations not completely “dissolved” in
the GDR.

In all the cases mentioned so far, a group of discrete spectral
lines, apparently standing out especially strong from the qua-
sicontinuum, has been identified as “pygmy” structure. These
results, as well as the current Mo data [18], have been related
to broad resonance-like pygmy structures recently observed
in 130Sn and 132Sn [7] at an energy just above 9 MeV, albeit
the neutron excess in these Sn isotopes is much higher, what
possibly favors collective modes hitherto unknown. In a very
recent study [69] on 117Sn(3He,3He) an enhancement at about
8 MeV is seemingly spread out in energy and thus resembles
a Lorentzian-shaped resonance. It is especially prominent in
comparison to RPA results [45], or to a strength function with
photon-energy-dependent width, both documented in RIPL2
[23]. As shown in Figs. 7 and 9 of the present paper, not only
do these two approaches fail to describe our new low-energy
Mo data, but the RPA calculation [45] also misses the exact
shape of the GDR. Using a tagged photon beam and a natSn
target, a remarkable enhancement in the photoabsorption cross
section near 8 MeV—of more than a factor of 2 as compared to
a Lorentzian extrapolation—was observed [4] many years ago.

More conclusive statements about the nature of the excess
strength at these sub-GDR energies require a more extensive
study of the A and Z dependence. A detailed study of their
statistical properties in the sense of RMT as well as information
coming from investigations of the same excitation region using
different incident channels [8] may give further insight. It
especially has to be determined whether the pygmy resonances
indicate extra absorption in the entrance channel or rather
a structure in the final nucleus’s level density. Here one
should consider how a noncontinuous level density, which
already seemed to be the cause of the structure seen [67]
in 92Mo(γ,p), would modify the cross-section calculations
of Hauser-Feshbach type. Often the level density is not
determined experimentally, as the experiments are performed
with low energy resolution, not allowing the observation of
sufficiently many discrete levels. In view of the fact that the
“pygmy” structures are best seen after an energy average, our
approach of defining a procedure to accurately predict the
GDR tail is helpful for a quantification of the eventual excess.

As the feeding corrections become too large to allow any
statement about strength below 4 MeV, the present study is
limited to energies above. In our previous paper on 98Mo and
100Mo it was shown (see Fig. 15 of Ref. [19]) that data taken
previously at low endpoint energy reveal an integrated E1
strength continuously decreasing, when Ex falls below 4 MeV.
This is at variance with a photon strength function f1(E)
obtained from 3He-induced reactions [13] showing a strong
peak near 1 MeV. A recent paper [70] on 95Mo(n,γ )96Mo
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also ruled out such a nonmonotonic f1(E), but the strength
applied in the analysis of these data is not in full accord
with our findings: At an energy of 6 MeV our f1(E) is
larger by nearly a factor of 4 as compared to the one used
in Ref. [70], but also the average level distance D used there
is at least by a factor of 3 larger than our estimate, obtained
from the considerations discussed in connection to Fig. 6.
Experiments only observing electromagnetic decay without a
direct measurement of the decay width [13,69,70] are usually
mainly sensitive to f1(E)/D, whereas our study involving
also electromagnetic excitation can deliver direct information
on f1(E) alone—as was outlined in Sec. III. A. The authors of
aforementioned paper [70] state that “It should be emphasized
that. . .we can easily test the acceptability of different models
of f1(E) and level density, but it is not possible to determine
a best fit.” Therefore, a correlated study of (γ, γ ), (γ,n), and
(n,γ ) for the same final nuclei is desirable.

VI. CONCLUSIONS

The response of nuclei to dipole radiation can well be
studied at a bremsstrahlung facility such as ELBE. Using
a sufficiently high endpoint energy and correcting photon-
scattering data for nonresonant and inelastic fractions allowed
us to combine the dipole strength functions f1 obtained
from nuclear resonance fluorescence with existing nuclear
photoeffect measurements. Using activation techniques we
reinvestigated some of the latter data and normalized them
accurately. The good match between the data for above and
below particle thresholds is remarkable, and together they
span an energy region from low excitation up to the GDR.
Our approach allows the extraction of the dipole strength for
a wide range, and our results do not depend on a priori
level density information. For the Mo data discussed here
the level distances D approach the experimental resolution,
and thus the spectra studied are dominated by Porter-Thomas
fluctuations in most of the energy range. Consequently,
the chaotic structure in the photon-scattering excitation
functions—with a bremsstrahlung beam they are observed
simultaneously over a wide range—has to be accounted for. A
proper extraction of strength information cannot ignore the
fluctuating quasicontinuous part of the experimental yield,
and thus an averaging procedure over an interval � � D was
introduced to extract the dipole strength function f1(E). The
contribution from the unavoidable nonresonant scattering was
simulated and subtracted. Complementing the nrf studies by
photoactivation experiments allowed us to assess the weak
influence of different optical model parameters on the results
of Hauser-Feshbach calculations. More important is that the
activation data verify a previous conjecture [11,12] about the
need for renormalizing existing photoneutron data [10,20].
This point gives further support to our finding that, in the Mo
isotopes studied here, the TRK sum rule is considerably better
satisfied than inferred from data before.

A comparison of f1(E) to a Lorentzian extrapolated
from the GDR with a deformation-induced splitting, properly
adjusted to the ground-state shape parameters, shows a
very good agreement with the data below and above the

particle separation energies. Two important ingredients of the
parametrization used are the direct account of deformation
and a photon-energy-independent width. The first point was
especially well studied in the even Mo isotopes because of
their wide variation in axial and triaxial deformation. For
the second finding, the wide energy range available for a
comparison to experimental data played an important role. The
proposed procedure of an explicit inclusion of the widening of
the GDR from deformation allows a clear-cut separation from
the width, caused by the spreading into the quasicontinuum
underlying it. Combined with the fixing of the absolute height
by the sum rule [57,58], and by allowing for triaxiality, we
achieved a very reliable extraction of the GDR parameters.
Especially the spreading width is defined more accurately than
was accomplished by just fitting the GDR near its maximum
[10,23,24]. The variation of the width with the GDR energy,
and thus also with the nuclear mass number A, turned out to
be surprisingly smooth.

The GDR shape is well described in size and energy
dependence by the new Lorentzian parametrization, which
already had been shown [22] to be valid globally for all nuclei
with A > 80, for which respective data exist. In nuclei with
“pygmy” structures on the low-energy slope of the GDR this
expression is valuable as a well-quantified reference. Such
structures, often reported for nuclei near magic shells, become
weaker in the Mo isotopes with the neutron number increasing
from N = 50. The “pygmy” structures also fade away when
going from 88Sr and 90Zr to 92Mo, that is, by leaving the proton
subshell closure. Going away from shells leads not only to an
increased level density but also to appreciable ground-state
deformation, which enters crucially in our parametrization for
the GDR shape. The dipole strength near Sn and Sp was shown
to be enhanced by the lowering of the energy of one of the GDR
components with deformation. The photon strength there is
of technical importance for transmutation processes based on
radiative neutron capture, as well as for the understanding [1,2]
of various processes participating in cosmic nucleosynthesis.
This is the reason for the importance of the proposed [22]
parametrization for predictions on the dipole strength at the
particle emission thresholds. The hope is that it is of use also
when no GDR data are available, which is the case for nearly
all nuclei outside the valley of stability. Finally, it should be
stated that many of the prescriptions contained in the RIPL-2
database [23], prepared at IAEA and widely used for the
evaluation of nuclear processes, are at variance with the data
presented here as well as with the Lorentzian parametrization
shown to describe them.
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