
PHYSICAL REVIEW C 81, 034315 (2010)
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We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP)
energy density functionals for two sets of isotopes, those of radium and barium, in which it is believed that
octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean
field framework (Hartree-Fock-Bogoliubov approximation) by using the axially symmetric octupole moment as
a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest-
lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry
spontaneously broken by the mean field and also incorporate octupole fluctuations around the ground-state
solution. For each isotope the energy of the lowest lying 1− state and the B(E1) and B(E3) transition probabilities
have been computed and compared to both the experimental data and the results obtained in the same framework
with the Gogny D1S interaction, which are used here as a well-established benchmark. Finally, the octupolarity
of the configurations involved in the way down to fission of 240Pu, which is strongly connected to the asymmetric
fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals
to describe octupole-related phenomena.
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I. INTRODUCTION

The ground state and low-lying excited states of many
atomic nuclei all over the nuclide chart show quadrupole
deformation in their intrinsic states [1]. This property has
profound consequences in the low-lying spectrum of those
nuclei, as well as in their decay patterns [2,3]. Octupole
deformation is not as common as quadrupole deformation
as a characteristic of the ground state of atomic nuclei, but
its consequences are important for understanding nuclear
properties of several actinide nuclei around radium and several
rare earth elements around barium [4]. The octupole operator
has negative parity; therefore, a nonzero octupole deformation
means that the intrinsic state has lost reflection symmetry
and acquired a pear like shape. The quantum interference
between the two degenerate intrinsic states with pear-shaped
matter distributions pointing upward and downward (i.e.,
with the same absolute value of the octupole moment but
opposite sign) restores the parity quantum number and leads
to the presence in the spectrum of a doublet with opposite
parities [1,4]. The energy splitting between the two members
of the doublet strongly depends upon the properties of the
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barrier separating the two degenerate intrinsic states with
opposite octupole moment. In deformed even-even nuclei it
is possible that the negative-parity member of the ground-state
multiplet, the lowest lying 1− state, can be located below
the lowest 2+ state leading to the appearance of alternating-
parity rotational bands, which are clear signatures of octupole
deformation. Also, the two members of the doublet will be
connected by strong B(E1, 1− → 0+) transition probabilities
from the 1− to the ground state. The next member of the
negative-parity rotational band is a 3− that rapidly decays
to the 0+ ground state by means of strong B(E3, 3− → 0+)
transition probabilities. Although there are several known
examples of alternating-parity rotational bands at low spins,
the alternating behavior usually appears at high spins as a
consequence of the stabilizing effect of angular momentum
on the octupolarity of the system: Moments of inertia increase
with the octupole moment and therefore configurations with
higher octupole moments are the more lowered by increasing
angular momentum.

The appearance of octupole effects is strongly linked
to the position of the Fermi energy in the single-particle
spectrum of the underlying mean field [1,4]. The reason is
that octupolarity is enhanced when, in a given major shell,
the intruder orbital interacts (via a particle-hole excitation)
with a nearby normal-parity orbital with three units less of
angular momentum (3h̄ is the amount of angular momentum
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carried out by the octupole operator). This happens between
the j15/2 and g9/2 spherical orbitals, the i13/2 and f7/2 and the
h11/2 and d5/2. Those regions where both protons and neutrons
feel a strong octupole interaction is where octupole related
effects are expected to be more pronounced. For example, in
the region around 224

88 Ra, the Fermi level of protons is located
around the f7/2 orbital that can then interact strongly with the
empty i13/2. Besides, Fermi level of neutrons is around the g9/2

orbital, which strongly interacts through the octupole interac-
tion with the j15/2 one. Similar arguments apply to the region
around 144Ba with the orbitals d5/2 and h11/2 for protons and
the f7/2 and i13/2 for neutrons responsible for octupolar effects.

Last but not least, octupolarity also plays a relevant role
in the asymmetric fission decay mode because an octupole-
deformed pathway to fission naturally explains the observed
asymmetric mass fragment distribution of several actinide
parent nuclei [5].

In this article we want to check the ability of the recently
proposed Barcelona-Catania-Paris (BCP) energy density func-
tionals [6] in dealing with the octupole degree of freedom in
finite nuclei. We will compare the results provided by the
BCP functionals in some test cases with experimental values,
when available, and with the results obtained using the Gogny
D1S interaction that we take here as a benchmark. The BCP
energy density functionals consist of a bulk part, which is
fully microscopic and comes from the nuclear and neutron
equations of state [7], which are parametrized in a polynomial
form complemented by additional terms accounting for finite
size effects (see [8,9] for functionals inspired in the same
principles). In addition to the Coulomb term and the spin-orbit
contribution, which is taken exactly as in the Skyrme or Gogny
forces, we add a purely phenomenological finite range term
for describing properly the nuclear surface. To deal with
open-shell nuclei we still include in the BCP functionals
a zero-range density-dependent pairing interaction fitted to
reproduce the nuclear-matter gaps obtained with the Gogny
force [10]. The only free parameters of these functionals are
the isospin like (L) and unlike (U) strengths of the surface
term, the range of the Gaussian form factor used to give a
finite range to the surface term, and the strength of the
spin-orbit interaction [6]. These free parameters are adjusted
in the usual way to reproduce the ground-state energy and
charge radii of some selected spherical nuclei. With these
ingredients, the BCP functionals give an excellent description
of 161 even-even spherical nuclei with rms values for the
ground-state energies (1.77 and 2.06 MeV for BCP1 and
BCP2, respectively) and charge radii that are are comparable
to the ones obtained with well-reputed interactions/functionals
like Skyrme SLy4 (1.71 MeV) and Gogny D1S (2.41 MeV) or
the relativistic NL3 parametrization (3.58 MeV). Apart from
the advantages already mentioned in [6], the BCP functionals
are advantageous in its application to finite nuclei because of
its reduced computational cost as compared to Gogny (BCP is
a factor between 6 to 10 faster) or even Skyrme (comparable
computational cost). Also, the appearance of integer powers
of the density in the bulk part of the functional, which is a
consequence of the specific fit to the nuclear-matter results,
makes it much easier to deal with the self-energy problem that
plagues beyond-mean-field calculation [11]. Using these BCP

functionals we have also explored quadrupole deformation
properties [12]. We find a behavior similar to that obtained
using the Gogny D1S force widely used to this end. This
fact give us confidence in using the BCP functionals to
study nuclear properties related to deformation. As the BCP
functionals are aimed at describing not only masses and radii
but also the low-lying spectrum over all the nuclide chart,
it is necessary to check whether the very reasonable results
regarding quadrupole collectivity can also be extended to the
octupole deformation case. To check that this is the case, we
have carried out mean-field Hartree-Fock-Bogoliubov (HFB)
calculations with the BCP energy density functional, as well
as the Gogny [13] D1S [14] interaction, to test the response
of the system to the octupole degree of freedom. To be more
precise, we have used a constraint in the axially symmetric
octupole moment to generate potential energy curves (PECs)
to search for octupole deformed minima as well as to study
the stiffness of those (and other) minima against changes in
the octupole degree of freedom. These PECs are computed
for several isotopes of radium from 216Ra to 232Ra and of
barium from 140Ba until 150Ba. In addition to the PEC, the
calculation of the corresponding collective inertias allows
the evaluation of the 1− excitation energy as well as B(E1)
and B(E3) transition probabilities in the framework of the
collective Schrödinger equation (CSE) method. The results
will be compared with experimental data, when available, as
well as with the results obtained with the Gogny D1S force. It
should be mentioned that the Gogny D1S results have already
been reported in Refs. [15–17] and similar calculations with
the Skyrme interactions exist in the literature [18]. Finally, the
octupole properties of the fission valley of 240Pu will also be
discussed briefly and compared to those of Gogny D1S.

II. THEORETICAL TOOLS

To solve the HFB equation [2], the quasiparticle operators
of the Bogoliubov transformation have been expanded in
a harmonic oscillator (HO) basis big enough to warrant
convergence of the results with the basis size. The expansion
coefficients have been determined by means of the gradient
method, which relies on the parametrization of the mean-field
(HFB) energy in terms of the parameters of the Thouless
expansion of the most general HFB wave functions. Within
the gradient method, the HFB problem is recast in terms of
a minimization (variational) process of the mean-field energy
and the search of the minimum is performed by following
the direction of the gradient in the multidimensional space
of parameters. The advantage of this method over the more
traditional one of successive diagonalizations is in the way the
constraints are implemented, which allows a larger number of
them to be treated at once. Axial symmetry has been preserved
in the calculation implying the use of an axially symmetric HO
basis made up of the tensor product of two-dimensional HO
wave functions times one-dimensional HO ones. Along with
the octupole moment constraint associated to the multipole
operator Q̂3 = r3Y30 and used to generate the PECs, we have
included a constraint on the center of mass of the nucleus
(i.e., the mean value of r1Y10 has been set to zero) to prevent
spuriousness associated with the center-of-mass motion, to
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slip into the results. As a consequence of the axial symmetry
imposed in the HFB wave functions, the mean values of the
Qλµ multipole operators with µ �= 0 are zero by construction.

The information given by mean-field theories is restricted
to the energy and shape of the—generally—deformed ground
state. To restore the parity symmetry broken by the mean-
field approximation and to describe the dynamics of the
collective excited states, it is mandatory to go beyond the
mean-field approximation. With this in mind, the octupole
degree of freedom Q3 = 〈ψ |Q̂3|ψ〉 (where |ψ〉 is the HFB
intrinsic wave function) has been used to build up a collective
Hamiltonian based on the generator coordinate method (GCM)
and the Gaussian overlap approximation (GOA) [19–21]. In
this method, the GOA is used to reduce the Hill-Wheeler
equation of the GCM to a Schrödinger equation for the
collective wave function, the so-called CSE,

Ĥcollφα(Q3) = εαφα(Q3), (1)

where the collective Hamiltonian Ĥcoll is given by

Ĥcoll = − 1√
G(Q3)

∂

∂Q3

√
G(Q3)

1

2B(Q3)

∂

∂Q3
(2)

+V (Q3) − ε0(Q3). (3)

In this expression G(Q3) is the metric, B(Q3) is the mass
parameter associated with the collective motion along Q3,
V (Q3) is the collective potential given by the HFB energy
V (Q3) = 〈ψ(Q3)|Ĥ |ψ(Q3)〉, and ε0(Q3) is the zero-point
energy (ZPE) correction. The eigenfunctions φα(Q3) of Eq. (1)
have to be normalized to one with the metric G(Q3),∫

dQ3

√
G(Q3) φ∗

α(Q3)φβ(Q3) = δα,β, (4)

to preserve the Hermiticity of Ĥcoll.
It should be mentioned that a CSE can also be obtained from

the adiabatic time-dependent Hartree-Fock (ATDHF) theory
[22–24] after quantization of the semiclassical Hamiltonian for
the slow-moving collective degrees of freedom. The collective
Hamiltonian obtained in this way has the same functional form
as that of GCM+GOA, but the expression of the collective
parameters is different. Later we will discuss how to choose
these collective parameters.

An interesting characteristic of the collective Hamiltonian
for the octupole degree of freedom is that Ĥcoll is invariant
under the exchange Q3 → −Q3 and, therefore, it is possible
to classify its eigenfunctions, φα(Q3), according to their parity
under the Q3 → −Q3 exchange. It is easy to see that the
parity of the collective wave function under the Q3 → −Q3

exchange corresponds to the spatial parity operation in the
correlated wave function built up from φα . The inclusion of
octupole correlations immediately restores the parity symme-
try lost at the mean field level. Therefore, the solution of the
CSE Eq. (1) allows the calculation of the 0+ − 1−(3−) energy
splitting and the B(E1) and B(E3) transition probabilities
connecting them. At this point it has to be pointed out that
in the present framework, where only time-reversal invariant
wave functions are considered, it is possible to describe only
excited states with an average angular momentum of zero.
To deal with genuine 1− or 3− states, cranking-model wave

functions should be considered, which is out of the scope of the
present work. Here we will assume that the cranking rotational
energy of the 1− state is much smaller than the excitation
energy of the negative-parity bandhead and therefore can be
safely neglected. Also, the impact of the cranking term in
the transition probabilities to be discussed next is neglected.
With these approximations in mind, the reduced transition
probabilities from the lowest 1− and 3− states to the 0+
ground state can be computed within the rotational model
approximation as

B(Eλ, If → Ii) = e2〈IiKλ0|If K〉2|〈ϕi |rλYλ,0|ϕf 〉|2, (5)

where |ϕi〉 and |ϕf 〉 are correlated wave functions obtained
in the spirit of the GCM from the collective wave functions
φα(Q3). The preceding formula can be reduced to an ex-
pression involving those collective wave functions φα(Q3) by
means of the GOA [25]. The final result for K = 0 bands reads

B(E1, 1− → 0+) = e2

4π
|〈φ0−|D0|φ0+〉coll|2 (6)

for the E1 electric transition and

B(E3, 3− → 0+) = e2

4π
|〈φ0−|Q30(PROT)|φ0+〉coll|2 , (7)

for the E3 electric transition. In the preceding formulas we
have introduced the collective matrix element of an operator
Ô as

〈φ0−|Ô|φ0+〉coll =
∫

dQ3 G1/2 φ∗
0− (Q3)O(Q3)φ0+(Q3),

where O(Q3) = 〈ψ(Q3)|Ô|ψ(Q3)〉. In Eq. (6) D0 is the dipole
moment operator whose mean value is defined as the difference
between the center of mass of protons and neutrons:

D0(Q3) = N

A
〈ψ(Q3)|ẑprot|ψ(Q3)〉− Z

A
〈ψ(Q3)|ẑneut|ψ(Q3)〉.

(8)

Finally, Q30(PROT) is the part of the octupole operator acting
on proton’s space.

To carry out the collective calculations, it is necessary to
specify the collective parameters G(Q3), B(Q3), and ε0(Q3)
appearing in the definition of Ĥcoll Eq. (2). As it was said
before, there are two sets of parameters coming from the
GCM+GOA and the ATDHF derivation of the collective
Hamiltonian. The set of parameters used in this calculation is
an admixture of the two and it is known as the ATDHF+ZPE
set. It includes the mass parameter B(Q3) coming out from the
semiclassical Hamiltonian of the ATDHF theory, the metric of
the GCM+GOA and the ZPE correction computed with the
GCM+GOA formula but using the ATDHF mass instead; that
is,

ε0(Q3) = 1
2G(Q3)B(Q3)−1

ATDHF. (9)

This set of parameters was devised to put together the
advantages of the ATDHF set (time-odd components included
in the mass term) and the ones of the GCM+GOA (ZPE
correction). This method can be somewhat justified in the
context of the extended GCM [21,26] and has been extensively
used [14,16].
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The calculation of the collective parameters involves the in-
version of the HFB stability matrix, which is closely related to
the matrix of the RPA equation. At present, this is a formidable
task and approximations are needed. The approximation used
in this article—called the “cranking approximation” [27,28]—
neglects the off-diagonal terms of the stability matrix, making
it possible to invert it analytically but at the cost of including the
two-body interaction only through the mean field. Although
this approximation has been extensively used in the literature
for the calculation of collective masses and moments of inertia
(see, for instance, Refs. [14,29,30]), its validity has not been
properly established. Using the cranking approximation, the
ATDHF+ZPE parameters are given by

G(Q3) = M−2(Q3)

2M2
−1(Q3)

, B(Q3) = M−3(Q3)

M2
−1(Q3)

, (10)

where the quantities M−n(Q3) (n = 1, 2, 3) are defined as

M−n(Q3) =
∑
k,l

∣∣(Q30)20
kl

∣∣2

(Ek + El)n
. (11)

In the preceding expression, Ek are the quasiparticle energies
and (Q30)20

kl are the matrix elements of the 20 part [2] of the
octupole operator Q̂30 in the quasiparticle basis of the HFB
wave function |ψ(Q3)〉. This form of the collective mass is
usually referred to in the literature as Belyaev-Inglis mass [2].

III. RESULTS

In the subsequent sections the results obtained with the
BCP1 [6] functional and regarding octupole properties of
some radium and barium isotopes will be discussed. The
other functional defined in [6] and referred to as BCP2 will
not be explicitly considered here, although the calculations
were carried out for that case, too. The reason is the strong
similarities between BCP1 and BCP2 results that produced
most of the curves one on top of another, making it impossible
to differentiate in the plots presented.

A. Low-excitation-energy properties in the radium isotopes

Octupole deformation properties of the radium isotopes
were the first to be addressed from a microscopic point
of view with the Gogny force, first at the mean-field level
[16] and next including the exact restoration of the parity
symmetry [31]. At the mean-field level, the first quantity to
analyze is the PEC as a function of the octupole moment that
determines both the ground-state minimum and its stiffness.
Let us point out that for every point in the PEC the other
multipole moments (quadrupole, hexadecapole, etc.) are self-
consistently determined as to produce the lowest energy. The
PECs computed with the BCP1 [6] energy density functional
and the Gogny D1S [13,14] force are depicted in Fig. 1. As can
be seen in the plot, the results for the two types of interactions
look very similar in all the nuclei considered. It is observed
how, whenever a minimum appears (in the nuclei from 218Ra
to 228Ra) in the Gogny D1S calculation at value of the octupole
deformation different from zero, the same happens and at the
same Q3 value in the BCP1 calculation. For the nuclei with the
minimum at Q3 = 0, the Gogny D1S force shows a tendency
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FIG. 1. The HFB mean-field energy as a function of the octupole
moment Q3 (in units of b3/2 = 103 fm3) for the isotopes of radium
(Z = 88) from A = 216 up to A = 232. Results for both the BCP1
energy density functional (solid curves) and the Gogny D1S force
(dotted curves) are shown.

to produce a stiffer parabolic behavior in the PEC than in
BCP1. The depth of the octupole-deformed minima is also very
similar for both kinds of calculations and reaches its maximum
value of 1.5 MeV for the nucleus 222Ra, which therefore can
be considered as the strongest octupole-deformed nuclei of the
considered chain.

In Fig. 2 we show the particle-particle correlation energy
defined as Epp = 1

2 Tr�κ and given in terms of the usual pairing
field � and pairing tensor κ of the HFB method. This quantity
gives a rough idea of the amount of pairing correlations in
the system. It can also be used as an indicator of the size of
the single-particle level density around the Fermi surface as
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FIG. 2. The particle-particle (pp) correlation energy defined as
Epp = 1

2 Tr�κ is plotted as a function of the octupole moment Q3

(in units of b3/2 = 103 fm3) for the radium isotopes considered.
Dotted lines correspond to the pp correlation energies, whereas solid
lines represent the same quantity for protons. Thick lines are used
to depict the results of the calculations with the BCP1 functional,
whereas thin lines represent the results with the Gogny D1S force.
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FIG. 3. (Color online) Single-particle energies of the nucleus 224Ra for both protons (left panels) and neutrons (right panels) and the two
interactions or functionals used in the calculations (Gogny D1S in the top panels, BCP1 in the bottom ones). In each panel, the single-particle
energies are plotted first as a function of the mass quadrupole moment Q2 starting at sphericity (Q2 = 0 b) up to the value corresponding
to the self-consistent minimum in the quadrupole variable at Q3 = 0 b3/2 (Q2 = 8.12 b for the Gogny calculation and 7.88 b for the BCP1
calculation). In this plot the spherical quantum numbers obtained at Q2 = 0 b are given. On the right-hand side of each panel, the SPEs as a
function of the octupole moment starting at Q3 = 0 b3/2 are plotted. The octupole-deformed self-consistent minimum is located in this nucleus
at around Q3 = 4 b3/2. Thick dotted lines indicate the Fermi level. As a consequence of axial symmetry, the K quantum number of each level
remains fixed along the plot. Each K value has an associated color (black, K = 1/2; red, K = 3/2; green, K = 5/2; blue, K = 7/2; dark
green, K = 9/2, etc.). The parity of each state when Q3 = 0 (i.e., in the Q2 plot) is determined by the kind of line: solid for positive parity and
dashed for negative parity. Finally, the K quantum numbers of specific levels around the Fermi level are given.

strong pairing correlations are a direct consequence of high-
level densities. This energy is also correlated with the pairing
gap that represents the energy of the lowest two quasiparticle
excitations and therefore it is closely related to the collective
inertias to be discussed below. The overall tendency of Epp is
to decrease with increasing octupole moment up to values of
Q3 = 10 b3/2, which correspond to typical excitation energies
of 5–6 MeV above the ground state in the PECs. From there
on, we observe, depending on the nucleus, stationary behaviors
or mild increases. We also notice that the Epp computed with

BCP1 are greater than the ones computed with D1S for the light
isotopes 216Ra and 218Ra and for the two species of nucleons.
For the nucleus 220Ra, the particle-particle correlation energies
for protons and neutrons are similar in both calculations and
from there on and up to the 230Ra isotope the D1S correlation
energies are larger than those of BCP1. For the heaviest isotope
considered, 232Ra, the Epp energy for neutrons is larger for
BCP1 than for D1S and the opposite is true for protons.

In Fig. 3 the single-particle energies (SPEs) are plotted as
a function of the octupole moment Q3 for both protons and
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neutrons. Results of both calculations are shown in different
panels (top, Gogny D1S; bottom, BCP1). In all the cases,
the Fermi level is represented by a thick dotted line. Once
the stretching effect of the bigger effective mass of BCP1
(1, versus 0.7 in Gogny D1S) is accounted for, the similitude
between the single-particle energies obtained with Gogny D1S
and BCP1 around the Fermi level and the Q3 values in the
neighborhood of the mean-field minimum is remarkable. It is
also possible to say that the behavior of most of the levels as
a function of both Q2 and Q3 is quite similar in both kinds of
calculations. This is so in spite of the different ordering of the
spherical orbitals: for protons, the f7/2 and h9/2 are reversed
in the spectrum of Gogny D1S as compared to the spectrum of
BCP1. For neutrons there is also such an inversion between the
j15/2 orbital and the i11/2 orbital, and the separation between
the i11/2 and the g9/2 orbitals is much larger in BCP1 than in
Gogny D1S. That the single-particle spectrum looks similar
in the region of well-developed quadrupole deformation and
also as a function of octupole deformation is probably a
consequence of the collective character of those collective
degrees of freedom where the geometry of the shape of the
nucleus is more important than quantum mechanical effects.
To make the argument more quantitative, we have analyzed
the structure of the single-particle wave functions in terms of
Nilsson quantum numbers and found that the levels around
the Fermi surface have similar structures. A typical example
for protons is the K = 5/2− level that for Q3 = 0 lies at
−4.5 MeV in the D1S case and at −4.2 MeV in the BCP
case. This level originates in the h9/2 spherical orbital in the
D1S case, whereas it comes from a f7/2 in the BCP case.
The Nilsson quantum numbers for the D1S orbital are [523]
(66%), [532] (11%), [503] (7%), [743] (6%), and other small
components, whereas for BCP1 they are [523] (46%), [532]
(15%), [503] (9%), [312] (7%), and smaller components.
We can also consider another example in the neutron side
where, at Q3 = 0, there is a K = 3/2+ orbital at around
−5 MeV that originates from an i13/2 spherical level in the
D1S calculations and from a d5/2 in the BCP one. The Nilsson
quantum numbers obtained are [631] (31%), [642] (25%),
[611] (15%), [862] (8%), and small components for D1S and
[642] (47%), [631] (16%), [862] (13%), [422] (7%), and small
components for BCP. From the preceding examples and other
orbitals considered (but not displayed here), we conclude that
the quantitative structure of the levels is quite similar in the
two calculations irrespective of their spherical origin. This
reinforces our suggestion about the fundamental role played
by the collective degrees of freedom in the determination of
single-particle wave functions.

The conditions for the development of octupolarity are
clearly satisfied in this nucleus, as can be seen in the single-
particle plot: For protons there are “f7/2” levels below the
Fermi level with K = 1/2 and 3/2 and at the same time i13/2

orbitals with K = 1/2 and 3/2 are just above the Fermi level.
The same happens in the neutron case with the g9/2 orbital well
below the Fermi level and the j15/2 with K = 1/2 and 3/2 at
the Fermi level (please remember the superfluid character of
neutrons that makes the Fermi level concept a diffuse one).
Another condition for the development of a minimum is the
presence of a region of low-level density in the SPE spectrum

(Jahn-Teller effect, see Ref. [1] for a general discussion in
the nuclear context). We observe in the two proton spectra in
Fig. 3 how the Fermi level of protons lies in the middle of a
low-level density region at Q3 = 4 b3/2 which corresponds to
the position of the minimum. For neutrons and around Q3 =
4 b3/2 we also observe a region of low-level density near the
Fermi level which is more pronounced for the BCP1 results.
As the number of neutrons is increased, the Fermi level moves
upward and enters a region of high-level density that is unable
to lead to a deformed minimum, as in the case for 230Ra and
heavier isotopes.

Finally, we mention that the differences observed in the
position of the single-particle levels in Fig. 3 has little impact
on the quantum numbers of neighboring odd-A nuclei as in
the present mean-field framework those quantum numbers
have to be obtained after a self-consistent blocking mean-field
procedure and it is not enough to block the single-particle
orbitals of Fig. 3 as would be the case with a description based
on a Nilsson diagram. Work to implement such a blocking
mechanism in the BCP case is under way and will be reported
in the near future.

In Fig. 4 we show the collective inertia B(Q3) associated
with the octupole degree of freedom [see Eqs. (10) and
(11)] and playing a central role in the collective Schrödinger
Hamiltonian of the previous section. As a consequence of
the presence in its definition of a denominator with powers
of the two quasiparticle energies Eµ + Eν , the collective
inertia is roughly speaking inversely proportional to the
amount of pairing correlations (the pairing gap to be more
quantitative) and directly proportional to the effective mass of
the interaction. The lower pairing correlations present in BCP1
are not able to compensate for the higher effective mass and
as a consequence the BCP1 inertias are higher than the Gogny
D1S ones. Thus the energies obtained as a solution of the
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FIG. 4. The octupole collective inertia parameter B(Q3) entering
the one-dimensional collective Schrödinger Hamiltonian (see text for
details) is shown as a function of the octupole moment Q3 (in units
of b3/2 = 103 fm3) for the radium isotopes considered. Solid lines
represent the calculations with the BCP1 functional and dashed lines
represent the results obtained with the Gogny D1S force.
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FIG. 5. The octupole ZPE correction ε(Q3) of Eq. (9) is plotted
as a function of the octupole moment Q3 (in units of b3/2 = 103 fm3)
for the isotopes of radium considered. Solid lines stand for the
calculations with the BCP1 functional and dashed lines stand for
the results obtained with the Gogny D1S force.

one-dimensional collective Hamiltonian, which are roughly
speaking proportional to the inverse of the square root of the
collective mass (remember the standard HO formula relating
the oscillator’s frequency ω with the spring constant and the
mass ω = √

k/m), are expected to reach lower values for
BCP1 than for D1S. It is also worth noting that the peaks
observed in the B(Q3) plots are related to regions of low
pairing correlations, as is easily deduced by comparing Fig. 4
with Fig. 2.

In Fig. 5 the ZPE correction ε(Q3) of Eq. (9) is given for
the isotopes of radium considered and the BCP1 functional
and the Gogny D1S force. The values of ε(Q3) are correlated
with the inverse of the collective inertia B(Q3), as can easily
be noticed by comparing Figs. 4 and 5. The range of variation
is typically around half an MeV in the interval of interest
between Q3 = 0 b3/2 and Q3 ≈ 5 b3/2 and most of the nuclei
considered, although there are exceptions, like the nucleus
216Ra. The effect of the ZPE is to increase the depth of the
octupole well for the lighter nuclei 216–220Ra, whereas it is the
opposite in all of the heavier isotopes. The impact of this effect
on the properties of the solutions of the collective Schrödinger
equation is not as pronounced as it could be imagined because
of the effect of the collective masses (correlated to the behavior
of the ZPE) that tends to cancel out the one of the ZPE.

With the PEC, the collective mass, and the ZPE correction,
all the ingredients needed to solve the CSE are at our disposal.
In Fig. 6 we have shown all those ingredients together in two
plots corresponding to the results with the Gogny D1S force
and BCP1 functional. In each of the plots we have depicted
in the bottom panel the HFB energy curve (dashed line) as a
function of the octupole moment Q3 and shifted it to put the
minimum at zero energy. The solid curve closely following
the dotted one is the potential energy entering the CSE that
is obtained by subtracting the ZPE energy correction to the
HFB energy. As observed in the plot, the collective potential

0 5 10
Q3 (b3/2)

-2

0

2

4

6

8

10

12

E
 (

M
eV

)

224Ra

0.1
0.2
0.3
0.4

B
 (

Q
3)

0 5 10
Q3 (b3/2)

-2

0

2

4

6

8

10

12

BCP1

0 5 10
Q3 (b3/2)

0 5 10
Q3 (b3/2)

D1S

FIG. 6. The relevant quantities entering the collective
Schrödinger equation for the two cases considered, namely,
the calculation with the Gogny D1S force (right-hand panels) and
the calculation with the BCP1 energy density functional (left-hand
panels). In the top panels, the octupole collective mass B(Q3)
(shown in Fig. 4) is depicted as a function of the octupole moment
Q3 (in units of b3/2 = 103 fm3). In the bottom panels, the thick lines
represent the HFB energy (dashed line) and the CSE potential energy
(HFB energy minus ZPE, solid line). The thin lines correspond to
the square of the collective wave functions corresponding to the
lowest positive-parity state |φ0+ (Q3)|2 (solid line) and lowest-energy
negative-parity state |φ0− (Q3)|2 (dashed line).

energy is rather similar to the HFB energy. Also, the HFB
energies obtained with the D1S force and the BCP1 functional
calculations are rather similar. In the same panel, the square
of the collective amplitudes |φα(Q3)|2 for the lowest-lying
state of each parity are plotted. The negative-parity amplitudes
look rather similar in both calculations but this is not the
case for the positive-parity amplitude, which is higher around
Q3 = 0 for Gogny D1S than for BCP1. The different behavior
of the positive-parity amplitude is related to the different
collective masses obtained in both calculations and given
in the top panels. The Gogny D1S collective mass is much
lower around Q3 = 0 than the one obtained with BCP1 and,
as discussed in Refs. [16,17], this enhances the collective
amplitude around that value. As a consequence of the lower
mass obtained with the D1S force, the energy of the 1−
state computed after solving the CSE is higher (200 keV)
than the one obtained with the BCP1 functional (73 keV).
On the other hand, the effect on the B(E1, 1− → 0+) and
B(E3, 3− → 0+) transition probabilities is to yield smaller
values for D1S than for BCP1 as the overlap between the
positive and negative-parity amplitudes is smaller in the later
case. However, recalling the expression of the transition
probabilities of Eqs. (6) and (7), it is easy to realize the
reduced impact of the region around Q3 = 0 b3/2 on the final
quantities as each of the factors of the integrands, D0(Q3) and
(Q3)prot (Q3), are zero for Q3 = 0 b3/2.

The energies of the 1− states and transition probabilities
obtained by solving the CSE with the collective parameters
deduced from the Gogny D1S and BCP1 calculations are
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FIG. 7. In the left-hand panel, the energies of the 1− states, obtained by solving the one-dimensional collective Schrödinger Hamiltonian,
are displayed as a function of the mass number for the radium isotopes considered. Theoretical results (solid lines for the results obtained
with the BCP1 functional and dotted lines for the results obtained with the D1S force) are plotted along with the experimental data (squares).
In the middle panel the B(E1, 1− → 0+) transition probabilities in W.u. are given as a function of the mass number for the radium isotopes
considered. Finally, in the right-hand panel the B(E3, 3− → 0) in W.u. is given for the different radium isotopes considered.

depicted in Fig. 7 along with available experimental values.
For the energy of the 1− states we observe that both the BCP1
functional and the Gogny D1S interaction reproduce quite
nicely the experimental isotopic trend (see Refs. [4,32] and
references therein) with a minimum around A = 224. The very
good reproduction of the experimental data in the calculation
with Gogny D1S can be considered as accidental in the sense
that the absolute values of the 1− excitation energies depend
crucially on the amount of pairing correlations (through the
collective mass) which are not so well characterized at the
mean-field level. A more robust indicator of the quality of
the results is the reproduction of the isotopic trend, which is
very good in both D1S and BCP1 calculations. Concerning
the B(E1, 1− → 0+) transition probabilities, we observe a
pronounced minimum around A = 224 in the two calculations
that is a direct consequence of the behavior of the dipole
moment as a function of the octupole moment for different
isotopes. This dip in the B(E1, 1− → 0+) values is also
observed experimentally (see [4,32] and references therein)
and is well reproduced by the Gogny D1S force and reasonably
well by the BCP1 functional. On the other hand, BCP1 nicely
reproduces the B(E1) of 226Ra, whereas the Gogny D1S
force result yields a value that is too high. Concerning the
B(E3, 3− → 0+), we observe a maximum around A = 224
which is correlated to the minimum in the energies of the
1− states. Both calculations reproduce quite well the only
experimental value known [33,34].

To get a more detailed understanding of the isotopic
behavior of the B(E1, 1− → 0+), it is convenient to look at
the behavior of the dipole moment D0 as a function of Q3

for the different isotopes considered. According to Eq. (6), the
value of the B(E1) transition probability is proportional to the
square of the average of the dipole moment over the whole
Q3 interval and weighted with the product of the ground-
state positive-parity collective wave function times the lowest

negative-parity collective wave function. The dipole moment
entering Eq. (6) is represented as a function of Q3 in Fig. 8
for the Ra isotopes studied. Owing to the good parity of the
Q3 = 0 b3/2 solution the center of mass is located at the origin
of coordinates and therefore the dipole moment is always zero
in that case. We observe that at the beginning of the isotopic
chain the dipole moment increases monotonically as a function
of Q3 but its slope decreases with increasing neutron number.
For 224Ra and also 226Ra the slope is almost zero in the region
from Q3 = 0 b3/2 and up to Q3 = 5 b3/2, which is the region of
interest where the collective wave function weight is different

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

216Ra 218Ra 220Ra

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

222Ra 224Ra 226Ra

0 5 10
Q3 (b3/2)

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

0 5 10
Q3 (b3/2)

-0.5
0.0
0.5
1.0
1.5

D
0 

(e
 fm

)

228Ra

0 5 10
Q3 (b3/2)

0 5 10
Q3 (b3/2)

230Ra

0 5 10
Q3 (b3/2)

0 5 10
Q3 (b3/2)

232Ra

BCP1
D1S

FIG. 8. Dipole moments D0 (fm) are represented as a function
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isotopes of Ra considered. Dashed lines correspond to the results
obtained with the Gogny D1S force, whereas the solid line ones
represent the results obtained with the BCP1 functional.
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from zero. As a consequence, it is expected that the B(E1) has
to reach a minimum for one of these isotopes. For 228Ra and
heavier isotopes the dipole moment in the region of interest de-
creases monotonically with a somehow constant slope, which
explains the increase in B(E1) in those isotopes as compared
to 224Ra and 226Ra as well as their almost constant value as a
function of neutron number. The behavior of D0 with neutron
number can be easily understood by looking at Fig. 3 where the
SPEs are plotted. There we observe how increasing the number
of neutrons leads to the occupancy of more levels belonging
to the high-j orbitals i11/2 and j15/2. Owing to the high
total angular momentum value j of those orbitals, the spatial
distribution of probability must have regions of large curvature
that result in large values of 〈z〉 for those orbitals. Thus,
increasing the number of neutrons increases the number of
particles in those orbitals and the value of 〈z〉neut also increases,
producing a decrease of D0 that is clearly seen in Fig. 8.

B. Neutron-rich barium isotopes

Neutron-rich Barium isotopes (Z = 56) with mass numbers
142, 144, and 146 show several of the characteristics of
octupole deformation in their ground states and yrast bands.
Experiments [35] using the fragment yield of the 252Cf
fission decay provided information on the yrast and negative-
parity rotational bands in these nuclei showing the typical
alternating-parity rotational band pattern representative of
octupole deformed nuclei. For this reason we have performed
calculations for the even-even barium isotopes with atomic
numbers from A = 140 up to A = 150 to check the predictions
of the BCP1 functional concerning octupolarity. Previous
calculations with the Gogny D1S force in this region either
at zero spin [17,36] or at high spins using the standard HFB
cranking model [37], and even including parity projection [38],
have been performed. In all the cases, the agreement with
experiment was satisfactory.

In Fig. 9 we show for the Gogny D1S force (dotted line)
and BCP1 functional (solid line) the PEC corresponding to the
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FIG. 9. The HFB mean-field energies of barium isotopes are
plotted as a function of the octupole moment Q3 (in units of
b3/2 = 103 fm3) for the six even-even isotopes of barium (Z = 56)
considered.

six barium isotopes considered. Whereas in the Gogny D1S
predictions it turns out that three isotopes have an octupole-
deformed minimum (namely, 144Ba, 146Ba, and 148Ba); this is
not the case for the BCP1 results. However, in those nuclei
the PEC calculated with the BCP1 functional are very flat
around the Q3 = 0 b3/2 minimum, which is a clear signature
of a strong instability in the octupole degree of freedom. In
addition, the depth of the octupole minima computed with the
Gogny D1S force never exceed the 0.7 MeV found in the case
of 144Ba, which is a quite small height as compared to the
typical energies of the vibrational octupole states. Therefore,
the existence of the octupole minima cannot be considered as
conclusive. For the nuclei 142Ba and 150Ba the results of both
kind of calculations show very flat curves around the Q3 =
0 b3/2 minimum, indicating some degree of instability against
the octupole degree of freedom. Finally, the nucleus 140Ba is
found to be rather stiff against octupole deformation in the two
cases.

In Fig. 10 the particle-particle correlation energies are
plotted as a function of the octupole moment. As in the case
of the radium isotopes, we observe that the general trend of
Epp for both protons and neutrons and the two interactions or
functionals considered is to decrease for increasing octupole
moments in the relevant interval between Q3 = 0 b3/2 and
Q3 ≈ 3.5 b3/2, a tendency that is also observed at higher values
of the octupole moment in most of the barium isotopes studied.
Based on the results of Fig. 10, as well as the ones of Fig. 2 for
the radium isotopes, it is possible to say, in a very broad sense,
that the onset of octupole deformation tends to quench pairing
correlations and this quenching is bigger for larger values of
the octupole moment. It is also noticed that in most of the
cases the pairing correlation energies obtained in the BCP1
calculation are smaller than the ones obtained with the Gogny
D1S force.
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FIG. 10. The particle-particle (pp) correlation energy defined as
Epp = 1

2 Tr�κ is plotted as a function of the octupole moment Q3 (in
units of b3/2 = 103 fm3) for the barium isotopes considered. Dotted
lines correspond to the pp correlation energies of neutrons whereas
solid lines are meant to represent the same quantity for protons. Thick
lines are used to depict the results of the calculations with the BCP1
functional, whereas thin lines represent the results with the Gogny
D1S force.
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FIG. 11. (Color online) Single-particle energies for the nucleus 144Ba and computed with the BCP1 energy density functional (bottom
panels) and the Gogny D1S (top panels) are plotted first as a function of the quadrupole moment Q2 (in b) up to the value corresponding to the
self-consistent minimum at Q3 = 0 (Q2 = 3.37 b for the results obtained with the BCP1 functional and 4.12 b for the results obtained with the
Gogny D1S force) and then as a function of the octupole moment Q3(in b3/2) (see the caption to Fig 3 for further details).

In Fig. 11 the SPE spectrum of 144Ba obtained with the two
kinds of interactions or functionals is shown. The meaning of
the different panels is the same as in Fig. 3 for 224Ra. Here,
the same comments made in the analysis and discussion of
Fig. 3 for 224Ra and regarding the Nilsson quantum number
contents of the single-particle wave functions are also in
order. Coming back to Fig. 11, we observe in the proton
spectra the presence near the Fermi level of an occupied
positive-parity d5/2 spherical orbital and a nearby empty
negative-parity h11/2 orbital. As discussed in the Introduction,
this is a characteristic property of the nuclear SPE for the
octupole deformation to take place. In the SPE for neutrons we
observe negative-parity orbitals coming from the f7/2 subshell
below the Fermi level and positive-parity orbitals coming from
the i13/2 above, which is again a characteristic signature of
octupole deformation. We also observe that the Fermi level for

both protons and neutrons is located in a region of low-level
density in the case of the Gogny force calculations, which is
a required condition for octupole deformation to take place
(the Jahn-Teller effect). In the case of the calculations with
BCP1, we observe that the Fermi level of neutrons is located
in a region of moderate density of levels that could explain the
lack of octupole-deformed minima in the BCP1 calculations.

As in the 224Ra case, the position of the single-particle levels
cannot be used to assign the quantum numbers of neighboring
odd-A nuclei in a fashion similar to the Nilsson diagram case.

In Fig. 12 the energies of the 1− states and the transition
probabilities obtained after solving the CSE are shown as a
function of the mass number of the barium isotopes considered.
In the left-hand panel the excitation energy of the 1− state is
plotted along with the available experimental data [35,39–41].
We observe how the isotopic trend is reasonably well
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FIG. 12. Same as Fig. 7 but for the even-even barium isotopes with A in the range from 140 to 150.

reproduced although the absolute values of the energies
are typically a factor of two larger than the experimen-
tal values. The BCP1 excitation energies are closer to
the ones from Gogny D1S than in the radium isotope
calculations. As discussed previously, the values of the
energies strongly depend upon the values of the collec-
tive mass in the vicinity of the minimum, as well as
on the height and width of the barrier separating the two min-
ima with opposite octupole deformation. Consequently, those
excitation energies depend on the interactions or functionals
used, as well as the level of detail of the theoretical description
(inclusion of pairing correlations, restoration of symmetries),
and therefore the discrepancy with the experiment is not very
relevant. Concerning the B(E1) values, we observe a dip in
146Ba which is caused by the same effect as the dip in 224Ra,
namely, the peculiar behavior of the dipole moment D0(Q3)
with the octupole moment and mass number. The BCP1
values for the B(E1) transition probabilities are systematically
smaller than the Gogny D1S ones by almost one order of mag-
nitude. As in the case of the excitation energies of the 1− states,
it has to be stressed that the isotopic trend is consistent in the
two sets of calculations and both nicely reproduced the scarce
experimental data [32,35]. Finally, in the right-hand panel of
Fig. 12 the B(E3) transition probabilities are plotted. In this
case and to our knowledge, no experimental data is available.
However, the B(E3) values show a not very smooth behavior
that is inversely correlated with the excitation energies of the
1− states. Therefore, the bigger B(E3) values are obtained for
the nuclei with the lower 1− excitation energies.

C. Fission valley properties of 240Pu

In this section the fission properties of 240Pu, regarding the
octupole contents of the mean-field configuration in its way
out to scission, are analyzed for the two BCP functionals [6]
and the Gogny D1S force. This isotope has been chosen as
a paradigmatic example of fissioning nucleus that has been
thoroughly studied with the Gogny force [14]. As is customary,
the theoretical description of fission is based on the analysis

of the PEC obtained by performing constrained mean-field
calculations with the quadrupole moment Q2 = 〈Q20〉 as a
constraining quantity. Details on the procedures involved can
be found in the literature [14,42,43]. The PECs obtained in this
case for the nucleus 240Pu are shown in the bottom panel of
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FIG. 13. (Color online) In the bottom panel the axially symmetric
fission path (mean-field energy versus axial quadrupole moment in
barns) for the nucleus 240Pu and the three interactions or functionals
considered (BCP1, solid line; BCP2, dashed line; Gogny D1S, dotted
line). The BCP energies have been shifted to make their ground states
coincide with the one of the Gogny D1S calculation. The shapes
depicted correspond to the half-density contour line of the actual
matter density distribution and are plotted such that their symmetry
axis is located at the corresponding Q20 value. In the top panel are the
octupole and hexadecapole moments of the corresponding mean-field
states. Apparently, there are only two curves, but this is because the re-
sults for the three functionals or interactions lie on top of one another.
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Fig. 13. The range of quadrupole moments considered starts
at sphericity (Q2 = 0) and goes up to values corresponding to
very elongated configurations closed to fission (Q2 = 150 b).
At Q2 ≈ 70 b the matter distribution starts to resemble the
form of two fission fragments connected by a neck, as can
be observed in the shapes given in the figure corresponding
to the contour lines of the matter distribution at half density
(see caption for further details). As the quadrupole moment
increases, the distance between the fragments also increases
and the width of the neck decreases. As a consequence,
the energy roughly corresponds to the dominant Coulomb
repulsion between the two incipient fragments. We observe
how the results obtained with BCP and Gogny D1S are fairly
similar with the position of the ground-state minimum and
the fission isomer lying at roughly the same Q2 values. The
PECs obtained with the BCP1 and BCP2 functionals are
very similar and are hardly distinguishable in Fig. 13. The
fission isomer obtained with Gogny D1S lies at an excitation
energy almost 2 MeV higher than the one obtained with the
BCP functionals. It is also observed that the first and second
fission barrier heights obtained with the Gogny D1S force
are higher than the ones obtained from the BCP functionals.
This is very likely a consequence of the surface coefficient
in semi-infinite nuclear matter that is higher in Gogny D1S
than in the BCP functionals (see the values quoted in [12]). At
this point and taking into account the differences in the PECs
it can be concluded that the predictions for the spontaneous
fission half-lives obtained with the BCP functionals and Gogny
D1S force are going to be higher for Gogny D1S than for
BCP. However, a definitive answer to this question cannot be
given until the effect of triaxiality has been incorporated into
the calculations because it is well known that triaxiality can
have a strong impact in the first barrier height. Also, it has to
be kept in mind that the collective mass along the Q2 collective
degree of freedom, and entering the WKB formula used to
estimate fission half-lives, can be substantially different when
computed with the BCP functionals or the Gogny D1S force.
Therefore, the detailed discussion of the fission half-lives
obtained with the BCP functionals is deferred to a more
detailed study of fission properties obtained with this class of
functionals. In this article, devoted to octupole deformation,

it is enough to confirm that the shapes of the nucleus in its
way down to fission are essentially the same irrespective of
the functional or interaction used, as can be seen in the top
panel of Fig. 13. In this graph, the octupole and hexadecapole
moments are depicted as a function of Q2 and, as can be
observed, the curves for different interactions or functionals
are indistinguishable from each other. This fact implies that
the mass distribution close to scission (as depicted in Fig. 13
through the half-density contours) is the same irrespective
of the interaction or functional used in the calculation; there-
fore, the predictions of the fission fragment mass distributions
obtained at the mean field level with Gogny D1S force and
BCP functionals should coincide.

IV. CONCLUSIONS

We have explored the octupole degree of freedom in two
sets of isotopes with the newly postulated BCP functionals.

The agreement found with both experiment and the benchmark
results obtained in the same framework with the Gogny D1S
interaction gives us confidence in the good properties of the
BCP functionals concerning odd-parity multipole moments.
In addition, the matter distribution of the fissioning nucleus
240Pu, which strongly depends upon the response of the system
to octupole perturbations, is found to be essentially the same
in the three calculations performed, implying thereby that the
BCP functionals and the Gogny D1S force are equally well
suited in that respect. Taking into account the microscopic
origin of the BCP functionals, it is comforting and encouraging
to observe its good performance in properties like octupolarity
that belong to the realm of finite nuclei.
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