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We report on an implementation of a new method to calculate random phase approximation (RPA) strength
functions with iterative non-Hermitian Arnoldi diagonalization method, which does not explicitly calculate and
store the RPA matrix. We discuss the treatment of spurious modes, numerical stability, and how the method
scales as the used model space is enlarged. We perform the particle-hole RPA benchmark calculations for double
magic nucleus 132Sn and compare the resulting electromagnetic strength functions against those obtained within
the standard RPA.
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I. INTRODUCTION

The linear response theory (LRT) obtained from the lin-
earized time-dependent mean-field method is an important tool
for calculating properties of excited states of many-fermion
systems, such as nuclear giant resonances. In its charge-
changing version, it can also give access to the beta-decay
strengths. This method is especially important in heavy nuclei,
where the shell-model or configuration-interaction approaches
are intractable. An advantage is also that LRT does not require
the knowledge of an interaction and can therefore be used both
within density functional theory (DFT) and phenomenological
energy density functional (EDF) approaches, giving rise to a
set of equations of RPA type. Below, for simplicity we refer to
this method and associated equations simply as RPA method or
equations. Strength functions obtained in this way probe new
aspects of the EDFs and thus have a potential of constraining
parameters in phenomenological nuclear EDFs.

The purpose of the present study is to present an im-
plementation of an efficient RPA algorithm that is based
on the local nuclear EDF. For electronic systems, similar
methods have been used since many years (see, e.g., the
recent Ref. [1] for a review), and they also constitute parts
of standardized computer packages such as GAMESS [2,3].
There are two essential elements of these methods, which
are at the heart of their efficiency and scalability, namely,
(i) the RPA equations are solved iteratively and (ii) the RPA
matrix does not have to be explicitly calculated. The second
of these elements is particularly important; it is based on the
observation that the action of the RPA matrix on the vector
of RPA amplitudes can proceed through the calculation of the
mean fields corresponding to these amplitudes.

In nuclear physics context, probably the first study that used
the concept of mean fields in the RPA method was that by
P.-G. Reinhard [4]. Iterative solutions of the RPA equations
were introduced by Johnson et al. [5], and applied to the
case of separable interactions, but in fact these methods can
also be applied in more complicated situations, as we show
here. Strangely enough, these very efficient methods have not
yet been used in practical applications. Only very recently,
Nakatsukasa et al. [6,7] have implemented the analogous
approach within the so-called finite amplitude method (FAM).

Our present implementation pertains to the spherical sym-
metry with neglected pairing correlations—thus it constitutes
only a proof-of-principle study. The real challenge is in solving
the quasiparticle RPA (QRPA) problem in deformed nuclei.
Although at present, a few implementations that are based
on solving the standard QRPA equations already exist [8,9] or
begin to emerge [10,11], such a route is bound to be blocked by
the shear dimensionality of the problem. On the other hand, as
we show here, methods based on the iterative solutions using
mean fields have much better scalability properties and are
potentially very promising.

The article is organized as follows. In Secs. II and III we
lay down the essential features of the method by presenting the
use of mean fields and iterative solution of the RPA method,
respectively. Then, in Sec. IV we present the method to remove
the spurious RPA states, which is tailored to be used within
the iterative approach. Secs. V and VI present the convergence
and scalability properties of our method, respectively, and
summary and conclusions are given in Sec. VII.

II. RPA FROM LINEARIZED TDHF

To be concise, in the following we present a less general
derivation than the standard method [12,13] to derive the
RPA equations from linearized time-dependent Hartree-Fock
(TDHF) equations. For density-independent forces or func-
tionals with terms quadratic in density, the density matrix and
mean field of a time-dependent nuclear state are expressed as

ρ(t) = ρ0 + ρ̃ωeiωt + ρ̃†
ωe−iωt , (1)

h(t) = h0 + h̃ωeiωt + h̃†
ωe−iωt , (2)

where ρ0 and h0 are the Hartree-Fock (HF) ground-state
density matrix and mean field, respectively. Inserting ρ(t) and
h(t) of Eqs. (1) and (2) into the TDHF equation, and keeping
only terms linear in the fluctuating quantities ρ̃ and h̃, we get
a linearized TDHF equation, or the RPA equations:

h̄ωρ̃ω,mi = (εm − εi) ρ̃ω,mi + h̃ω,mi, (3)

h̄ωρ̃ω,im = (εi − εm) ρ̃ω,im − h̃ω,im, (4)

where we use the letter m for particle states and i for hole states,
and where εm,i are the HF single-particle energies. The fields
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h̃ are the first functional derivatives of the used EDF, evaluated
using the density amplitudes ρ̃ of Eq. (1). Density dependence
of the used EDF beyond quadratic gives rise to rearrangement
fields in h̃. These rearrangement parts of h̃ must be linearized
around ρ0 to make our RPA equations explicitly first order in ρ̃.

One way to achieve this is by calculating functional deriva-
tives of the rearrangement parts of h̃ with respect to density,
which technically makes our mean-field routine differ from the
standard HF routines. Since in our implementation we use the
standard Skyrme forces that have simple density dependencies
of the coupling constants, the explicit functional differentiation
does not cause any mathematical or performance problems.
Had an EDF with more complex density dependence been
used it would have been an advantage to instead use the FAM
method [6] for linearization.

If the matrix elements of h̃ in Eqs. (3) and (4) are expanded
in terms of the particle-hole (p-h) and hole-particle (h-p) matrix
elements of ρ̃, we obtain the traditional RPA equations. In
this work, we do not construct the RPA matrix, but directly
solve Eqs. (3) and (4) by calculating the matrix elements of
fields h̃ using an HF mean-field routine that uses the time-
reversal-invariance breaking density matrix ρ̃. Since the same
routine is used to evaluate the HF and RPA mean fields, the
method is always fully self-consistent [14,15]. In the following
equations, we use the standard abbreviations Xmi = ρ̃ω,mi and
Ymi = ρ̃ω,im. The density vector that contains the p-h matrix el-
ements of ρ̃ω is defined as X ω = (Xm1,i1 , Xm2,i2 , . . . , XmD,iD ),
and similarly for the vector Y of h-p elements, where D is
the number of allowed p-h configurations. Overlaps of RPA
vectors are defined as

〈X, Y |X′, Y ′〉 = (X ∗,Y∗)

(
X ′T

−Y ′T

)
, (5)

and the minus sign results from the RPA norm matrix.

III. ITERATIVE SOLUTION OF THE RPA EQUATIONS

The RPA equations [Eqs. (3) and (4)] constitute a non-
Hermitian eigenproblem with non-positive-definite norm. We
solve this problem by using an iterative method that during
each iteration only needs to know the product of the RPA
matrix and a density vector, that is, the right-hand sides of
Eqs. (3) and (4):

Wk
mi = (εm − εi) Xk

mi + h̃mi(X k,Yk), (6)

W ′k
mi = (εi − εm) Y k

mi − h̃im(X k,Yk), (7)

where index k labels iterations and the mean fields h̃(X k,Yk)
depend linearly on the density vectors X k and Yk . Expressed
through the standard RPA matrices A and B [12], Eqs. (6) and
(7) for a positive norm basis vector and for its opposite norm
partner vector read:(

Wk
+

W ′
+

k

)
=

(
A B

−B ′∗ −A′∗

) (
X k

Yk

)
, (8)

(
Wk

−
W ′

−
k

)
=

(
A B

−B ′∗ −A′∗

) (
Yk∗

X k∗

)
. (9)

In exact arithmetic A = A′ and B = B ′ and therefore either
Eqs. (8) or (9) could be used in the iteration procedure with
equivalent results. Nevertheless, below we use them both to
stabilize the iteration process.

Various iterative methods, which only need to know the
products of the diagonalized matrix and vectors, exist for non-
Hermitian matrix eigenvalue equations, and good examples
with pseudocode are shown in Ref. [1]. For our RPA solver we
modified the non-Hermitian Lanczos method of Ref. [5]. It has
the advantage of conserving all odd-power energy weighed
sum rules (EWSR) if the starting vector (pivot) of iteration
is chosen correctly. To satisfy odd-power EWSRs, our RPA
solver in this work always starts from a pivot vector that has
its elements set to the matrix elements of electromagnetic
multipole operator,

X1
mi = e√

N1
〈φm|rpYJM |φi〉, Y 1

mi = 0, (10)

where p = 2 and J = 0 for the 0+ mode, p = 1 and J = 1
for the 1− mode, and p = 2 and J = 2 for the 2+ mode. The
constant N1 is used to normalize the pivot vector to unity.
For the IS 1− mode we only present results obtained with the
operator, (

r3 − 5
3 〈r2〉r)Y1M, (11)

to stay consistent with Refs. [16] and [17]. For the choice of
pivot in Eq. (10) one can prove [5] that odd-power EWSRs
are satisfied throughout a Lanczos iteration procedure. The
proof is also valid with our modified Arnoldi iteration method,
because it does not assume anything about the details of used
iterative diagonalization method.

Since our RPA treatment is fully self-consistent in the sense
that the HF ground state is a true energy minimum and not a
saddle point, and our RPA calculation uses the same EDF as
in the HF calculation, we expect to obtain only real nonzero
physical RPA frequencies. Therefore, all complex RPA eigen-
values in our method result from inaccurate numerics (note that
spurious solutions have zero real eigenvalues). Occurrence of
complex eigenvalues we call numerical instability, and in the
following we explain why the numerical instabilities happen
and what methods we use to remove the instabilities from our
RPA solver.

We stabilize our iterative RPA solution method by modi-
fying the method of Ref. [5] in two ways. First, we use the
non-Hermitian Arnoldi method instead of the non-Hermitian
Lanczos method. The advantage of Arnoldi method is that it
orthogonalizes each new basis vector against all previous basis
vectors and their opposite norm partners, that is,(

X̃ k+1

Ỹk+1

)
=

(
Wk

+
W ′

+
k

)
−

k∑
i=1

(
X i

Y i

)
aik+

k∑
i=1

(
Y i∗

X i∗

)
bik,

(12)(
Ỹk+1∗

X̃ k+1∗

)
= −

(
Wk

−
W ′

−
k

)
+

k∑
i=1

(
X i

Y i

)
b′∗

ik−
k∑

i=1

(
Y i∗

X i∗

)
a′∗

ik,

(13)

where the overlap matrices aik , bik , a′∗
ik , and b′∗

ik are calculated
as in Eq. (5). Again, in exact arithmetic, Eqs. (12) and (13)

034312-2



LINEAR RESPONSE STRENGTH FUNCTIONS WITH . . . PHYSICAL REVIEW C 81, 034312 (2010)

are equivalent and the lower matrix elements a′∗
ik and b′∗

ik in
Eq. (13) are exact complex conjugates of the elements of the
upper Krylov-space [18] RPA matrices. We assume this to
keep the Krylov-space RPA matrix in the standard form.

In the Lanczos method, only the tridiagonal parts of
Krylov-space RPA matrices are calculated, and matrix el-
ements outside the tridiagonal part are set exactly to zero.
In exact arithmetic the Lanczos iteration procedure produces
an orthonormal basis. However, due to finite numerical
precision and the fact that each new vector is only explicitly
orthogonalized against the two previous vectors, the Lanczos
basis vectors lose their orthogonality after a few tens of
iterations and complex RPA eigenvalues can appear. Therefore
the orthogonality of the generated basis must be continuously
monitored and when orthogonality is lost the vectors must
be re-orthogonalized. The standard way to do this is to
use Gram-Schmidt orthogonalization, which is done after
each Lanczos orthogonalization step. This correction therefore
affects the basis vectors but does not affect the elements of
the tridiagonal Krylov-space RPA matrices, which creates an
inconsistency between basis vectors and matrix elements.

In contrast, the Arnoldi method explicitly orthogonalizes
each new obtained basis vector against all previous vectors.
The Krylov-space RPA matrix elements outside the tridiagonal
parts have very small magnitudes, but they ensure accurate
orthogonality and therefore improve the stability as compared
to the Lanczos method.

Standard RPA method that constructs and diagonalizes
the full RPA matrix can ensure that the lower matrices in
the RPA supermatrix are exact complex conjugates of the
upper matrices. Because we calculate the RPA matrix-vector
products by using the mean-field method, and not with a
precalculated RPA matrix, we introduce small, but significant
numerical noise to the resulting vectors. Small differences
in the implicitly used upper and lower RPA matrices appear
due to finite numerical precision. The consequence of this is
that we will in general have a′

ij �= aij and b′
ij �= bij for the

Krylov-space RPA matrices. This spoils the consistency of
Eqs. (12) and (13). If corrective measures are not used to
remove or reduce this noise, the iteration method produces
complex RPA eigenvalues early on in the iteration.

The numerical errors in the matrix-vector products can
be reduced by symmetrization. In our second stabilization
method, we calculate the RPA fields twice, first using the
densities of a positive norm basis vector (X k,Yk), and second
using the densities of negative norm vector (Yk∗,X k∗). The
two resulting vectors are subtracted from each other to get the
final stabilized RPA matrix-vector product,(

Wk

W ′k

)
= 1

2

(
Wk

+ − W ′
−

k∗

W ′
+

k − Wk∗
−

)
, (14)

to be used in Eq. (12). To conclude, we note that using Arnoldi
method alone without symmetrized matrix products was not
enough for us to produce numerically stable RPA modes.
Furthermore, the re-orthogonalizing Lanczos method used
with symmetrized matrix products was not a stable method. We
found that when used together the Arnoldi iteration method and
symmetrization of matrix-vector products stabilized our mean-

field-based iterative RPA diagonalization in the sense that
hundreds of iteration steps can be made without the appearance
of complex RPA frequencies or loss of orthogonality.

The norm of the obtained new residual vector in
Eq. (12) can be either positive or negative. We do not in practice
use Eq. (13), which in exact arithmetic would duplicate the
results of Eq. (12). Instead, we store only the positive-norm
basis states and use a similar method as in Ref. [5] to change
sign of the norm in case the norm of the residual vector in
Eq. (12) is negative. Thus, explicitly, for the positive norm
of the residual vector Ñk+1 = 〈X̃k+1, Ỹ k+1|X̃k+1, Ỹ k+1〉, we
define the new normalized positive-norm basis vector as

Xk+1
mi = 1√

Ñk+1
X̃k+1

mi , Y k+1
mi = 1√

Ñk+1
Ỹ k+1

mi . (15)

If Ñk+1 < 0, the new normalized positive norm basis vector is
defined as

Xk+1
mi = 1√

−Ñk+1
Ỹ k+1∗

mi , Y k+1
mi = 1√

−Ñk+1
X̃k+1∗

mi . (16)

When the maximum number of iterations has been made or
the iteration has been stopped, the generated Krylov-space
RPA matrix, with dimension d � D, is diagonalized with
standard methods, that is, we solve(

a b

−b∗ −a∗

)(
xk

yk

)
= h̄ωk

(
xk

yk

)
, (17)

where the definition of Krylov-space RPA matrix elements
follows from Eq. (12) and the fact that all basis vectors are
mutually orthogonal:

aik = (X i∗,Y i∗ )

(
WkT

+
−W ′kT

+

)
, (18)

bik = (Y i ,X i )

(
WkT

+
−W ′kT

+

)
, (19)

and in similar fashion for a′
ik and b′

ik using Eq. (13). The
approximate RPA solutions are then obtained by transforming
the Krylov-space basis vectors,

Xk
mi =

d∑
l=1

(
Xl

mix
k
l + Y l∗

miy
k∗
l

)
, (20)

Y k
mi =

d∑
l=1

(
Y l

mix
k∗
l + Xl∗

miy
k
l

)
, (21)

for all k = 1, . . . , d, and these vectors are used to evaluate the
strength functions.

IV. TREATMENT OF SPURIOUS RPA MODES

For the discussion of various spurious modes in the RPA
method we refer the reader to, for example, Ref. [13]. In
the present study, we only consider spherical ground states
neglecting pairing correlations, so the only spurious excitation
is generated by the total linear momentum. Therefore, the only
affected RPA mode is the isoscalar 1− mode. In traditional RPA
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calculations that construct and diagonalize the full RPA matrix,
the spurious 1− mode is typically removed after the RPA
diagonalization. Often a modified transition operator [Eq. (11)]
is used, which has the property of 〈HF |[F̂ , P̂cm]|HF 〉 = 0,
as long as the commutator is evaluated within a complete
set of basis states. In a finite model space built of localized
orbitals this relation is no more exactly valid, and the
corrected operator does not remove spurious components
exactly.

To remove the spurious isoscalar 1− mode from our physical
RPA excitations we use the same method as in Ref. [6],
where the basis vectors are orthogonalized against the spurious
translational mode P and its conjugate “boost” operator R,
which have the form,

P̂µ = 1√
3

∑
mi

(i(φm||∇1||φi)[c
†
mc̃i]1µ + h.c.), (22)

R̂µ = 1√
3

∑
mi

((φm||r1||φi)[c
†
mc̃i]1µ + h.c.). (23)

The spurious RPA vectors (P,P∗) and (R,R∗) contain the p-h
and h-p matrix elements of Eqs. (22) and (23), respectively.
Our method differs from that of Ref. [6] in the fact that we
orthogonalize our basis during the Arnoldi iteration, which
fits naturally with the iterative solution method and guarantees
that the obtained approximate RPA excitations have exact
zero overlaps with spurious modes. This is equivalent to
diagonalizing the full RPA matrix in the subspace orthogonal
to the spurious states. In our implementation, each generated
new Arnoldi basis vector is orthogonalized as(

Xk

Yk

)
phys.

=
(
Xk

Yk

)
− λ

(
P
P∗

)
− µ

(
R
R∗

)
, (24)

where the overlaps λ and µ are defined as

λ = 〈R,R∗|Xk, Y k〉
〈R,R∗|P,P ∗〉 , (25)

µ = −〈P,P ∗|Xk, Y k〉
〈R,R∗|P,P ∗〉 . (26)

When more symmetries are broken, formulas equivalent to
Eqs. (24)–(26) can be used to remove spurious components
coming from each broken symmetry of the mean field.

V. CONVERGENCE OF STRENGTH FUNCTIONS

The iterative Arnoldi method is meaningful for the calcu-
lation of strength functions only if the number of iterations
needed for accurate results is significantly less than the
full RPA dimension. To study how many Arnoldi iterations
we need for good accuracy, we calculated electromagnetic
isoscalar (IS) and isovector (IV) strength functions [16] for
doubly magic nuclei. All calculations were performed by
implementing the RPA iterative solutions within the com-
puter program HOSPHE [19], which solves the self-consistent
equations in the spherical harmonic-oscillator (HO) basis. We
studied both the convergence of smoothed strength functions

as a function of number of Arnoldi iterations and as a function
of the number of HO shells.

We used the same definitions of the 0+, 1−, and 2+ transition
operators as in Ref. [17] and the Skyrme functional SkM*. The
weight function γ (E,Rbox, λn) we used to smooth the strength
functions was also the same as in Ref. [16], with Rbox = 20 fm
and λn the neutron Fermi energy, which in our calculations was
−8.142 MeV. The smoothed strength function has the form,

SJ (E) = 1

π

d∑
k=1

γ (Ek)|(J, k||F̂J ||0)|2
(Ek − E)2 − γ 2(Ek)

. (27)

Because the HF ground state of 132Sn is spherically
symmetric, our approximate RPA phonons have good angular
momentum. We tested the use of large basis sets up to 40 HO
shells. The HF ground-state energies were well converged for
all double magic nuclei when 25 HO shells were used. Below,
we present the results only for 132Sn.

A. Convergence as a function of the number
of Arnoldi iterations

1. The 0+ strength functions

Figure 1 shows the 0+ IS and IV smoothed strength
functions for 132Sn calculated with 100 Arnoldi iterations
compared with the standard RPA results from Ref. [17].
Agreement between the strength functions is excellent. The
four panels of Fig. 2 show the convergence of the smoothed
strength functions of Fig. 1 as the number of Arnoldi iterations
increases. The panels show differences of the strength func-
tions calculated at 20 iteration intervals. The convergence is
quite satisfactory after 100–120 iterations.

In Fig. 3 we show the 0+ IV strength function for three
different numbers of Arnoldi iterations. Initially at n = 10 the
IV strength is concentrated on two states. After 50 iterations the
strength has fragmented to five states, and the fragmentation
continues until after n = 100 so many RPA modes have

0 10 20 30 40 50
E [MeV]

0

100

200

300

400

S
 [

e2 fm
4 /M

eV
]

Standard RPA
Arnoldi n=100

IS

IV

FIG. 1. The 0+ strength functions in 132Sn calculated by using
25 HO shells and 100 Arnoldi iterations for the SkM* functional
(solid lines), compared with the standard RPA calculation of Ref. [17]
obtained for the SkM* functional (dashed lines).
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] (a)             ∆n=40-20 (b) ∆n=80-60
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0

20
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S
 [

e2 fm
4 /M
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] (c) ∆n=100-80

10 20 30 40 50
E [MeV]

(d) ∆n=120-100

FIG. 2. Convergence of the 132Sn 0+ strength functions of
Fig. 1. Solid lines are for the IS and dashed lines are for the IV
strength functions. Each panel shows the difference of two strength
functions, one with n iterations and the other calculated with n − 20
iterations.

appreciable transition strength that the shape of the smoothed
strength function has almost fully converged.

2. The 2+ strength functions

Figures 4 and 5 show similar results as Figs. 1 and 2, but for
the 2+ strength functions in 132Sn. As for the 0+ case, the IS
and IV strength functions from the Arnoldi iteration agree very
well with the strength functions of Ref. [17]. The convergence
of strength functions is as fast as for 0+; after 120 iterations
the smoothed strength functions change only by about 5%. We
thus have to make only 120 iterations to calculate reasonably
accurate 2+ strength functions for the RPA problem whose
dimension is D = 1020. The large double spikes observed in
Fig. 5 below 10 MeV are due to the lowest RPA phonons,
which by the smoothing procedure acquire 	100-keV widths
and move slightly down in excitation energy.

0 10 20 30 40 50
E [MeV]

0

50

100

150

200

S
 [

e2 fm
4 /M

eV
]

0
+
 IV

FIG. 3. The 132Sn 0+ isovector strength function calculated with
n = 10, 50, 100 Arnoldi iterations. Dotted line shows the strength
after 10 iterations, dashed line after 50 iterations, and solid line after
100 iterations.
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0
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400

S
 [

e2 fm
4 /M
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]

Standard RPA
Arnoldi n=120

IV

IS

FIG. 4. Similar to Fig. 1 but for the 2+ strength functions. All
results were calculated for the SkM* functional.

3. The 1− strength functions

Figure 6 compares the 1− strength functions of our iterative
method (solid line) with the strength functions from Ref. [17]
(dashed line). The solid line shows the IS strength calculated
when the generated Arnoldi basis is orthogonalized against
spurious mode during iteration and dotted line corresponds
to similar iterative calculation without orthogonalization. The
low-lying state at 0.72 MeV, which has a large overlap with the
spurious IS 1− mode disappears when the orthogonalization
method of Eqs. (24)–(26) is used. Furthermore, for the
1− strength function, 100–120 Arnoldi iterations were needed
to produce reasonably accurate results, see Fig. 7.

When no orthogonalization is made against the spurious
1− IS state, the obtained excitations contain small components
of the spurious state. This mixing affects the physical part
of the IS strength distribution very little when the transition
operator of Eq. (11) is used. The standard RPA strength
function of Ref. [17] was not corrected for the spuriosity
but only the strength of the lowest-lying state that has a
large overlap with the spurious IS mode was omitted. The
resulting strength still agrees well with our corrected strength
and justifies the claim made in Ref. [16] that spurious mixing is
small. Without orthogonalization against the spurious mode we
need 140 iterations instead of 100 to get acceptably converged
strength function. The orthogonalization method improves the

-80
-40

0
40
80

S
 [

e2 fm
4 /M

eV
]

(a)  ∆n=80-60 (b)  ∆n=100-80

0 10 20 30 40
E [MeV]

-80
-40

0
40
80

S
 [

e2 fm
4 /M

eV
]

(c)  ∆n=120-100

10 20 30 40 50
E [MeV]

(d)  ∆n=140-120

FIG. 5. Similar to Fig. 2 but for the 2+ strength functions.
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2 /M
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IV

FIG. 6. (Main panel) The 1− strength functions in 132Sn, calcu-
lated using 100 Arnoldi iterations and with spurious IS mode removed
(solid line), and results of the standard RPA from Ref. [17] (dashed
line). Dotted line shows results of 140 Arnoldi iterations without
orthogonalization against the spurious IS mode. (Inset) Same as in
the main panel, but for the IV strength functions. All results were
calculated for the SkM* functional.

convergence of the strength function, because spurious mode
is not present and the higher lying 8.3-MeV 1− excitation
converges first.

The ground-state expectation value of the commutator of
transition operator of Eq. (11) and the total linear momentum
operator is exactly zero when the operators are expressed in
position representation. Therefore, in position representation
the spurious translational RPA mode is exactly orthogonal
against the operator of Eq. (11). In finite harmonic oscillator
basis this orthogonality is not exact, but approximate. Because
of that the dotted line in Fig. 6 shows a small peak of IS
strength at the spurious mode. We thus verify that despite
being incomplete, the HO basis is in practice sufficient to
approximately represent the orthogonality of Eq. (11) and
the spurious 1− IS mode. However, had the normal dipole
operator 
r been used instead of Eq. (11), we would have
obtained very large IS strength for the spurious state, and
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FIG. 7. Similar to Fig. 5 but for the 1− strength functions. The
IV strength-function differences were multiplied by the factor of
200 fm4.
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FIG. 8. Similar to Fig. 2 but the convergence of the 0+ strength
functions as a function of the number of HO shells N0.

without the orthogonalization method the spurious admixtures
in the physical RPA excitations would have produced larger
errors in the obtained strength function.

B. Convergence in function of the number of HO shells

In Sec. V A, we showed our strength functions calculated
with 25 HO shells. This was found to be satisfactory, and using
more shells did not appreciably change the obtained strength
functions. The effect of using more oscillator shells was that
we need to use slightly more Arnoldi iterations to produce
well-converged results. In the case of 40 shells, about 20 more
iterations were needed, compared to calculations made with
25 shells. In Figs. 8, 9, and 10, we show the convergence of
strength functions for the 0+, 2+, and 1− modes, respectively.
Each panel shows the difference of two strength functions
obtained in the intervals of �N0 = 4 HO shells, between N0

of 22 and 38.
These plots overstress the variations of strength functions

in the sense that slight shifts of peaks create the oscillating
patterns in the difference plots. To illustrate this point, in
Fig. 11 we show the 1− strength functions calculated for
N0 = 22, 26, 30, 34, and 38 HO shells. Slow convergence
of the IS surface mode as a function of N0 creates some
uncertainty in the position and width of the high-energy
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FIG. 9. Similar to Fig. 5 but the convergence of the 2+ strength
functions as a function of the number of HO shells N0.
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bump. This lack of convergence is a result of the fact that
in Fig. 11 we for simplicity use a fixed number of Arnoldi
iterations. Because calculations in larger HO basis converge
more slowly, the IS strengths in Fig. 11 are at slightly
different stages of convergence, which enhances the oscillation
of strength functions. The oscillations could be minimized
by using an algorithm that uses more iterations with larger
bases, or monitors the convergence of lowest RPA modes, for
example.

As noted in Ref. [5], well before the maximum number
of iterations (equal to the RPA dimension D) is reached,
the iteratively generated RPA matrix in the Krylov space can
become singular. In that case, the stabilized iteration method
of Eqs. (12)–(14) protects us from obtaining complex RPA
eigenvalues, but the condition number (the ratio of largest
and smallest eigenvalue) of the Krylov-space RPA matrix
approaches infinity, because one or more of the RPA matrix
eigenvalues collapse nearly to zero.

In the standard RPA method the RPA matrix is calculated
by using the bare p-h basis states. In our method, we instead
start from the pivot vector of Eq. (10) and the Arnoldi iteration
then produces the rest of our basis vectors composing the
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FIG. 11. Similar to Fig. 6 but for the 1− strength functions
calculated for the numbers of HO shells N0 = 22, 26, 30, 34,
and 38.

TABLE I. Spherical RPA and QRPA dimensions D as functions
of the number of HO shells N0.

N0 RPA QRPA

0+ 1− 2+ 0+ 1− 2+

10 70 195 261 390 1040 1510
20 205 555 766 2880 8180 12720
25 273 734 1020 5538 15912 25088
30 340 915 1271 9470 27420 43630

Krylov subspace. This subspace is spanned by the eigenstates
of the RPA matrix which have nonzero overlap with the pivot
vector. Thus, in general, the Arnoldi iterations can only be
continued until this subspace is exhausted in which case
the condition number goes to infinity. However, with finite
numerical precision this maximum limit of Arnoldi iterations
is further reduced.

In a typical iteration, during the first few iterations the
condition number of the Krylov-space RPA matrix fluctuates,
then approaches a stable plateau, and finally suddenly goes
toward infinity. When that happens, the iteration must be
stopped and one must backtrack to the iteration where the
condition number was still acceptable. Therefore, the number
of Arnoldi iterations can depend on the size of the HO
basis.

VI. SCALING OF ITERATIVE SOLUTION METHOD

We illustrate the benefits of the iterative solution of the RPA
or QRPA equations over the traditional method by comparing
how the numerical work increases in the iterative method as
the HO basis is increased.

As can be seen in Table I, the RPA dimensions D for
doubly magic spherical nuclei increase almost linearly with
the number of oscillator shells N0. This is easy to understand,
because in this case, only the number of particle states
increases and the number of hole states always stays constant.
Therefore the time to solve the full RPA eigenproblem
in this case scales approximately as N3

0 . In the spherical QRPA,
the dimensions scale roughly between N2

0 and N3
0 , and the

full QRPA scales approximately as N6
0 or N9

0 . The physically
interesting and computationally challenging calculations are
for deformed nuclei with pairing, and we should therefore
compare the N0 scaling of iterative and standard QRPA
diagonalizations.

In the case of all symmetries of the mean field being broken,
the QRPA dimension D is

D = 1
9 [(N0 + 1)(N0 + 2)(N0 + 3)]2. (28)

This dimension increases very steeply (N6
0 ) as the number of

HO shells is increased. For N0 = 14, the QRPA dimension
is D = 1.8496 × 106, for example. The corresponding stan-
dard QRPA solution scales as N18

0 and is thus untractable.
Therefore, for the QRPA calculations in deformed nuclei, we
must truncate the single-particle space. The best method is
to use the two-basis method [21], by which one solves the
HFB equations in the basis generated by the HF part of the
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FIG. 12. Times to calculate 100 Arnoldi iterations for the spher-
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HFB matrix, and truncate the basis using a cutoff on the
obtained pseudo-HF single-particle energies. But even then,
the QRPA calculations scale as the sixth power of the number
of useful single-particle states, and are thus prohibitively
difficult.

To illustrate the scaling properties of the iterative QRPA
method, we calculated the corresponding matrix-vector prod-
ucts with our developmental QRPA code, where the pairing
has been set to zero. The RPA fields h̃ only depend on the
normal RPA density matrix and the calculation of pairing
part of the QRPA matrix-vector product is very fast due to a
small number of the pairing coupling constants and the simple
density dependence of typical pairing EDF. Therefore the time
to calculate the pairing part is negligible. The only significant
increase of running time in spherical QRPA compared to
RPA comes from the need to handle higher-dimensional basis
vectors in the calculation of various overlaps and vector
additions during the Arnoldi iteration. Therefore, as we keep
all particle-particle and hole-hole RPA amplitudes in the
calculation, but set them to zero, our timing results accurately
reflect the timing of the spherical QRPA calculation.

In Fig. 12, we show the scaling properties of the spherical
QRPA calculation with the iterative Arnoldi method. It is clear
that the scaling of our iterative method is as N3

0 , that is, it
is linear with respect to the QRPA dimension D. Of course,
the prefactor itself is linearly proportional to the number of
Arnoldi iterations. However, as discussed in the previous
section, the Arnoldi iteration method cannot in practice go
full dimension before the generated Krylov-space matrices
become singular. As long as we are satisfied with a few hundred
iterations at most, the iterative method gives us a vast speed
improvement. In the full RPA or QRPA diagonalization, the
calculation and storage of a very large dense RPA or QRPA
matrices also take considerable additional time – steps that the
iterative method avoid completely.

In addition to the moment-method-based iteration, which
is ideal for strength functions, the iterative method can also be
modified to be suitable for different kinds of other calculations.
If we are interested in a number of very well-converged lowest

RPA eigenmodes, restarted Arnoldi methods [22] can be used.
These methods use more iterations than basis states, that is,
after a maximum number d of basis vectors is generated,
new approximations for the wanted d ′ < d eigenmodes are
calculated, and iteration is then continued to generate new
improved basis states from d ′ + 1 to d again. The restarting
can be made as many times as needed to produce the wanted
number of well-converged lowest excitations.

Methods such as Arnoldi or Lanczos produce convergence
at the extreme ends of the excitation energy spectrum. If
eigenmodes away from the extremes are looked for, shift
and invert methods [23,24] can be used. These methods allow
iterative methods to be used to find RPA eigenmodes anywhere
inside the RPA excitation spectrum.

VII. SUMMARY AND CONCLUSIONS

We have presented a method to calculate accurate RPA
response functions by using the iterative Arnoldi diagonaliza-
tion related to the sum-rule conserving Lanczos method of
Ref. [5]. We used strictly the same EDF for the ground-state
calculation and RPA excitations. We have showed how the
Arnoldi method must be stabilized in order to apply it reliably
to the RPA eigenvalue problem. The resulting electromagnetic
strength functions are in good agreement with the standard
RPA results and are obtained with numerical effort smaller by
orders of magnitude.

Our method closely resembles the FAM of Nakatsukasa
et al. [6,7], except that our iterative method is different and
that we use the HO basis instead of the mesh in coordinate
space. The FAM and our method both allow the existing EDF
mean-field codes to be used for the calculation of the RPA
or QRPA matrix-vector products. With minor modifications,
mostly pertaining to the full implementation of the time-odd
mean fields, these codes can easily be extended to RPA/QRPA.
In particular, our future implementation of the deformed QRPA
solution will be based on the code HFODD [25].

We also implemented the method to remove components of
the spurious RPA modes from the calculated strength functions
that keeps the physical excitations exactly orthogonal against
the spurious excitations in any finite model space.

The smaller numerical effort of the iterative Arnoldi
method, and the fact that in this method one does not have
to calculate and store the RPA or QRPA matrices, allows our
method to be applied to the calculation of electromagnetic and
beta decay strengths and strength functions for deformed heavy
nuclei. Work to extend our formalism and codes to deformed
superfluid nuclei is in progress.
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