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Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the
nuclear-matter incompressibility
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We have investigated the isoscalar giant resonances in the Sn isotopes using inelastic scattering of 386-MeV
α particles at extremely forward angles, including 0◦. We have obtained completely “background-free” inelastic-
scattering spectra for the Sn isotopes over the angular range 0◦–9◦ and up to an excitation energy of 31.5 MeV.
The strength distributions for various multipoles were extracted by a multipole decomposition analysis based on
the expected angular distributions of the respective multipoles. We find that the centroid energies of the isoscalar
giant monopole resonance (ISGMR) in the Sn isotopes are significantly lower than the theoretical predictions.
In addition, based on the ISGMR results, a value of Kτ = −550 ± 100 MeV is obtained for the asymmetry
term in the nuclear incompressibility. Constraints on interactions employed in nuclear structure calculations are
discussed on the basis of the experimentally obtained values for K∞ and Kτ .
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I. INTRODUCTION

Isoscalar giant resonances have been extensively studied
since the discovery of the isoscalar giant quadrupole resonance
(ISGQR) in the early 1970s [1–3]. The isoscalar giant
monopole resonance (ISGMR) was identified in 1977 [4,5]
and was the subject of a number of studies through the
1980s [6–8]. The isoscalar giant dipole resonance (ISGDR)
was first reported by Morsch et al. [9] in 208Pb but was
conclusively identified by Davis et al. [10]. Both ISGMR
and ISGDR are classified as compression modes and provide
information about nuclear incompressibility, KA, from which
the incompressibility of infinite nuclear matter, K∞, may be
obtained [11].

Most of the earlier investigations of the isoscalar giant
resonances used inelastic α scattering at 100–200 MeV and
the strength of a particular giant resonance was assumed

to be concentrated in a single peak with a Gaussian or
Lorentzian shape. The resonance parameters were obtained
by multiple-peak fits to the inelastic scattering spectra, after
subtraction of a suitable “background” [12,13]. In the past
decade, the Texas A&M (TAMU) group has carried out (α, α′)
studies of many nuclei at a bombarding energy of 240 MeV and
extracted the strength distributions of various isoscalar giant
resonances in a number of nuclei [14–24] using a multipole
decomposition analysis (MDA) [25]. Contemporaneously, we
have carried out giant resonance measurements using inelastic
scattering of 386-MeV α particles at extremely small angles,
including 0◦ [26–35]. An especially useful feature of our
measurements has been the elimination of all instrumental
background events from the inelastic scattering spectra, which
was rendered possible by the optical properties of the Grand
Raiden spectrometer [36].
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Here we report on measurements of the isoscalar giant
resonances in the even-A Sn isotopes (A = 112–124) over
the excitation-energy range 8.5–31.5 MeV. Previously, giant
resonance measurements on the Sn isotopes have been reported
by the TAMU group [7,37] and KVI group [8], using inelastic
α scattering at 120–130 MeV and peak-fitting analyses of
spectra. More recently, the strength distributions of various
isoscalar resonances have been obtained in some Sn isotopes
(A = 112, 116, 124) by the TAMU group [19,21].

High-quality measurements of the ISGMR over the full
range of isotopes provide the opportunity to investigate the
asymmetry term, Kτ , of the nuclear incompressibility. This
term, associated with the neutron excess (N − Z), is crucial in
obtaining the radii of neutron stars in equation-of-state (EOS)
calculations [38–41]; the asymmetry ratio, [(N − Z)/A],
changes by more than 80% over the range of the investigated
Sn isotopes.

II. EXPERIMENTAL TECHNIQUES

The experiment was performed at the ring cyclotron facility
of the Research Center for Nuclear Physics (RCNP), Osaka
University, using inelastic scattering of 386-MeV α particles
at extremely forward angles, including 0◦. A 4He2+ beam was
accelerated by the azimuthally varying field (AVF) cyclotron
up to 86 MeV, injected into the K = 400 ring cyclotron for
acceleration up to 386 MeV, and achromatically transported to
the WS experimental hall without any defining slits. To reduce
the background at and near 0◦, the beam halo has to be tuned out
carefully in the experiment. This was accomplished by tuning
the beam profile of the injection beam for the ring cyclotron,
and typically less than 1 in 10 000 events had contamination
from the other bunches. The beam current was 1–20 nA, which
was limited by the data acquisition rate and by the maximum
available current of the accelerator. The energy resolution
obtained was ∼150 keV full width at half maximum (FWHM).

Self-supporting target foils of enriched even-A 112–124Sn
isotopes of thickness 5.0–9.25 mg/cm2 were employed; we
used special target frames with a large aperture to reduce the
background caused by the beam halo hitting the frames. Data
were also taken with a natC target at the actual field settings used
in the experiments and the energy calibration was obtained
from the peak positions of the 7.652- and 9.641-MeV states in
the 12C(α, α′) spectra.

Inelastically scattered α particles were momentum ana-
lyzed with the high-resolution magnetic spectrometer “Grand
Raiden” [36], and the vertical and horizontal positions of
the α particles were measured with the focal-plane detector
system composed of two position-sensitive multiwire drift
chambers (MWDCs) and two scintillators [29]. The MWDCs
and scintillators enabled us to make particle identification and
to reconstruct the trajectories of the scattered particles. The
scattering angle at the target and the momentum of the scattered
particles were determined by the ray-tracing method. The
vertical-position spectrum obtained in the double-focusing
mode of the spectrometer was exploited to eliminate the
instrumental background [28,29].

Giant-resonance data were taken with the spectrometer
central angle (θspec) set at 0◦, 2.5◦, 3.5◦, 5.0◦, 6.5◦, and
8.0◦, covering the angular range from 0◦ to 9.0◦ in the

laboratory system. The actual angular resolution of the
MWDCs, including the nominal broadening of scattering
angle due to the emittance of the 4He2+ beam and the
multiple Coulomb-scattering effects, was about 0.15◦ [42].
The vertical acceptance was limited to ±20 mrad by a 2-mm-
thick tantalum collimator. The energy bite of the Grand Raiden
spectrometer and the special MWDC arrangements for the
0◦ measurements limited the excitation energy range observed
to Ex = 8.5–31.5 MeV.

The incident 4He2+ beam was stopped at three independent
Faraday cups (FCs) according to the different settings of the
Grand Raiden spectrometer [29]. In the measurements at large
angles (θ � 6.5◦), the beam was stopped on the FC mounted
inside the scattering chamber (SC-FC). For measurements at
0◦, the FC was located downstream of the MWDCs [29]; the
incident 4He2+ particles were guided to a vacuum pipe situated
at the high-momentum side of the MWDCs and finally stopped
at the 0◦ FC. A third FC was used for measurements in the
scattering-angle region 2◦ � θ � 5◦. This FC was installed
behind the Q1 magnet of the Grand Raiden (Q1-FC) [43]. The
use of these three FCs allowed us to obtain reliable values of
accumulated charges for the incident 4He2+ beam at different
scattering angles. Normalization of the FCs was obtained with
a beamline polarimeter located upstream from the target. The
polarimeter target was inserted in the beam, and the scattered
4He2+ particles counted, before and after each change of the
FC. The overall accuracy of this normalization is estimated to
be ∼2%, including systematic errors from slight changes in
the direction of the beam during the measurement [42].

The ion optics of the Grand Raiden spectrometer is such
that the particles scattered from the target position are focused
vertically and horizontally at the focal plane. Using this prop-
erty, the instrumental background was completely eliminated.
While inelastically scattered α particles are focused at the
focal plane, background events due to the rescattering of
α particles from the wall and pole surfaces of the spectrometer
show a flat distribution in the vertical-position spectra at
the focal plane, as shown in Fig. 1. The peak region in the

FIG. 1. Vertical-position spectrum at the focal plane of the
Grand Raiden spectrometer, taken at 2.5◦. The central densely
hatched region represents true + background events. The off-center
sparsely hatched regions represent only background events. The real
events were obtained by subtracting background events from the
true + background events.
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FIG. 2. (a) Horizontal-position spectrum of the 112Sn(α,α′) reac-
tion at 0◦. The hatched region is background events. (b) Background-
free spectrum.

vertical position spectrum was treated as true + background
events. The off-center regions were treated as background
only. Figure 2(a) shows the horizontal position spectrum for
the 112Sn(α,α′) reaction at 0◦. The background spectrum has
no distinct structure in the giant resonance region. Finally,
we have obtained clean spectra by subtracting the background
spectrum from the true + background spectrum, as shown in
Fig. 2(b).

The background-free “0◦” inelastic spectra for the Sn iso-
topes are presented in Fig. 3. In all cases, the spectrum is
dominated by the ISGMR + ISGQR peak near Ex ∼ 15 MeV.
There is an underlying continuum in the high excitation-energy
region in the spectrum; it is reasonable to assume that this
continuum, remaining after elimination of the instrumental
background, is primarily due to contributions from excitation
of the higher multipoles and quasifree knockout processes
[44].

FIG. 3. Excitation-energy spectra obtained from inelastic
α scattering at θlab = 0.69◦ for all even-A Sn isotopes.

III. DATA ANALYSIS

We have employed the MDA procedure [25] to extract the
strengths of the ISGMR, the ISGDR, the ISGQR, and the high-
energy octupole resonance (HEOR) in the Sn isotopes. The
cross-section data were binned into 1-MeV energy intervals to
reduce the statistical fluctuations. For each excitation energy
bin from 8.5 to 31.5 MeV, the experimental 17-point angular
distribution dσ exp

d�
(θc.m., Ex) has been fitted by means of the

least-square method with the linear combination of calculated

distributions dσ cal
L

d�
(θc.m., Ex), so that

dσ exp

d�
(θc.m., Ex) =

7∑
L=0

aL(Ex) × dσ cal
L

d�
(θc.m., Ex), (1)

where dσ cal
L

d�
(θc.m., Ex) is the calculated distorted-wave Born

approximation (DWBA) cross section corresponding to 100%
energy-weighted sum rule (EWSR) for the Lth multipole.
The fractions of the EWSR, aL(Ex), for various multi-
pole components were determined by minimizing χ2. This
procedure is justified because the angular distributions are
well characterized by the transferred angular momentum L,
according to the DWBA calculations for α scattering. It was
confirmed that the MDA fits were not affected by including
L > 7.

The DWBA calculations were performed following the
method of Satchler and Khoa [45], using the density-dependent
single-folding model for the real part, obtained with a Gaussian
α-nucleon potential, and a phenomenological Woods-Saxon
potential for the imaginary term. Therefore, the α-nucleus
interaction is given by

U (r) = VF (r) + iW/{1 + exp[(r − RI )/aI ]}, (2)

where VF (R) is the real single-folding potential obtained by
folding the ground-state density with the density-dependent
α-nucleon interaction

vDDG(r, r ′, ρ) = −v[1 − βρ(r ′)2/3] exp(−|r − r ′|2/t2), (3)

where vDDG(r, r ′, ρ) is the density-dependent α-nucleon inter-
action, |r − r ′| is the distance between the center of mass of
the α particle and a target nucleon, ρ(r ′) is the ground-state
density of the target nucleus at the position r ′ of the target
nucleon, β = 1.9 fm2, and t = 1.88 fm . W is the depth of the
Woods-Saxon type imaginary part of the potential, with the
reduced radius RI and diffuseness aI .

These calculations were performed with the computer
code PTOLEMY [46,47], with the input values modified [48]
to take into account the correct relativistic kinematics. The
shape of the real part of the potential and the form factor
for PTOLEMY were obtained using the codes SDOLFIN and

TABLE I. Fermi-distribution parameters from Ref. [52]. c is the
adjusted half-density radius for the charge distribution and a is the
diffuseness parameter.

Target 112Sn 114Sn 116Sn 118Sn 120Sn 122Sn 124Sn

c (fm) 5.3714 5.3943 5.4173 5.4391 5.4588 5.4761 5.4907
a (fm) 0.523 0.523 0.523 0.523 0.523 0.523 0.523
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TABLE II. OM parameters obtained by fitting elastic scattering
data. Also listed are the B(E2) values for the corresponding 2+

1 states
from Refs. [53,54].

Target V (MeV) W (MeV) aI (fm) RI (fm) B(E2) (e2b2)

112Sn 33.9 31.7 0.60 1.02 0.24
120Sn 33.4 33.0 0.63 1.01 0.20
124Sn 34.0 33.5 0.61 1.02 0.17

DOLFIN [49]. We use the transition densities and sum rules
for various multipolarities described in Refs. [13,50,51]. The
radial moments were obtained by numerical integration of
the Fermi mass distribution with the parameter values from
Ref. [52] (listed in Table I).

The optical-model (OM) parameters, viz., the real part of
the potential [VF (r)], the Woods-Saxon type imaginary part
of potential (W ), the reduced radius (RI ), and the diffuseness
(aI ) in Eq. (2) were determined by fitting the differential cross
sections of elastic α scattering measured for 112Sn, 120Sn,
and 124Sn in a companion experiment; the results are listed
in Table II. The OM fits to the elastic scattering data for
112Sn, 120Sn, and 124Sn, are shown in Figs. 4(a), 5(a), and
6(a), respectively. To test the efficacy of the OM parameters,
DWBA calculations were carried out for the first 2+ states
in these nuclei using a collective form factor and previously
established B(E2) values obtained from Refs. [53,54] (also
listed in Table II). Figures 4(b), 5(b), and 6(b) compare
the results of these calculations with the experimental data;
indeed, the DWBA calculations reproduce the experimental
differential cross sections for the 2+

1 states well without any
normalization.

The contribution of the IVGDR excitation to the measured
cross sections was subtracted prior to multipole decomposi-
tion. Cross sections for exciting the IVGDR were obtained with
DWBA calculations on the basis of the Goldhaber-Teller model

FIG. 4. (a) Ratio of the elastic α-scattering cross sections to the
Rutherford cross sections for 112Sn at 386 MeV. (b) Differential cross
sections for excitation of the 2+

1 state in 112Sn. The solid lines are the
results of the folding-model calculations.

FIG. 5. Same as Fig. 4, except for 120Sn.

FIG. 6. Same as Fig. 4, except for 124Sn.

FIG. 7. Angular distribution of 1-MeV bins centered at Ex =
16.5 MeV for 112Sn(α,α′) and 124Sn(α,α′). The solid squares are the
experimental data and the solid lines are the MDA fits to the data. Also
shown are the contributions to the fits from L = 0 (dashed line), L =
1 (dotted line), L = 2 (dash-dotted line), and L = 3 (small-dashed
line) multipoles, as well as from the IVGDR (dash-dot-dotted line).

034309-4



ISOSCALAR GIANT RESONANCES IN THE Sn NUCLEI . . . PHYSICAL REVIEW C 81, 034309 (2010)

FIG. 8. Same as Fig. 7 except for the 25.5-MeV energy bin
(see text).

and using the strength distribution obtained from photonuclear
work [55].

Figures 7 and 8 show the MDA fits to the experimental
angular distributions of the differential cross sections for the
16.5- and 25.5-MeV energy bins in the inelastic-scattering
spectra of 112Sn and 124Sn, respectively, along with the
contributions from the L = 0, 1, 2, and 3 multipoles. The
ISGMR contribution is dominant in comparison to the other
multipoles at Ex = 16.5 MeV. On the other hand, the ISGDR
is the dominant contributor at Ex = 25.5 MeV.

IV. RESULTS AND DISCUSSION

We have extracted strength distributions for L = 0, 1, 2, and
3 multipoles over the energy range 8.5–31.5 MeV in all the
Sn isotopes investigated in this work. These are displayed in
Figs. 9, 10, 11, and 12, respectively. The strengths are related
to the coefficients aL in Eq. (1) as (see Refs. [13,51]):

S0(Ex) = 2h̄2A〈r2〉
mEx

a0(Ex), (4)

S1(Ex) = 3h̄2A

32πmEx

(11〈r4〉 − 25

3
〈r2〉2 − 10ε〈r2〉)a1(Ex),

(5)

SL�2(Ex) = h̄2A

8πmEx

L(2L + 1)2〈r2L−2〉a2(Ex), (6)

where m, A, and 〈rN 〉 are the nucleon mass, the mass
number, and the N th moment of the ground-state density,
and ε = (4/E2 + 5/E0)h̄2/3 mA; E0 and E2 are the centroid
energies of the ISGMR and the ISGQR and have been taken
as 80 A−1/3 MeV and 64 A−1/3 MeV, respectively.

It should be noted that although we employed calculated
DWBA cross sections with up to L = 7 in the MDA fitting
procedure, it was not possible to reliably extract the strength
distributions for L � 4 because of the limited angular range
(0◦–9◦). Further, there is a small, near-constant ISGMR
and ISGQR strength up to the highest excitation energies
measured in this experiment. The raison d‘être of this extra

FIG. 9. (Color online) ISGMR strength distributions obtained
for the Sn isotopes in the present experiment. Error bars represent
the uncertainties from fitting the angular distributions in the MDA
procedure. The solid lines show Lorentzian fits to the data.

strength is not quite well understood. However, similarly
enhanced E1 strengths at high excitation energies were noted
previously [29,30] and have been attributed to contributions
to the continuum from three-body channels, such as knockout
reactions [44]. These processes are implicitly included in the
MDA as background and may lead to spurious contributions
to the extracted multipole strengths at higher energies where
the associated cross sections are very small. This conjecture is
supported by measurements of proton decay from the ISGDR
at backward angles wherein no such spurious strength is
observed in spectra in coincidence with the decay protons
[31,56–58]; quasifree knockout results in protons that are
forward peaked. A similar increase in the ISGMR strength

TABLE III. Lorentzian-fit parameters for the ISGMR strength
distributions in the Sn isotopes, as extracted from MDA. The quoted
EWSR values are from the fitted Lorentzians. The results from the
TAMU work (from Gaussian fits), where available, are provided for
comparison [19,21].

Target EISGMR (MeV) � (MeV) EWSRa Reference

112Sn 16.1 ± 0.1 4.0 ± 0.4 0.92 ± 0.04 This work
15.67+0.11

−0.11 5.18+0.40
−0.04 1.10+0.15

−0.12 TAMU
114Sn 15.9 ± 0.1 4.1 ± 0.4 1.04 ± 0.06 This work
116Sn 15.8 ± 0.1 4.1 ± 0.3 0.99 ± 0.05 This work
118Sn 15.6 ± 0.1 4.3 ± 0.4 0.95 ± 0.05 This work
120Sn 15.4 ± 0.2 4.9 ± 0.5 1.08 ± 0.07 This work
122Sn 15.0 ± 0.2 4.4 ± 0.4 1.06 ± 0.05 This work
124Sn 14.8 ± 0.2 4.5 ± 0.5 1.05 ± 0.06 This work

15.34+0.13
−0.13 5.00+0.13

−0.53 1.06+0.10
−0.20 TAMU

aOnly statistical uncertainties are included; systematic errors, mostly
from DWBA calculations, are ∼15%.
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TABLE IV. Various moment ratios for the ISGMR strength distributions in the Sn isotopes. All moments have been calculated over
Ex = 10.5–20.5 MeV. The quoted EWSR values are from the strength observed within this energy range. The results from the TAMU work,
where available, are provided for comparison [19,21].

Target m1
m0

(MeV)
√

m3
m1

(MeV)
√

m1
m−1

(MeV) EWSRa Reference

112Sn 16.2 ± 0.1 16.7 ± 0.2 16.1 ± 0.1 0.73 ± 0.04 This work
15.43+0.11

−0.10 16.05+0.26
−0.14 15.23+0.10

−0.10 1.16+0.13
−0.18 TAMU

114Sn 16.1 ± 0.1 16.5 ± 0.2 15.9 ± 0.1 0.86 ± 0.05 This work
116Sn 15.8 ± 0.1 16.3 ± 0.2 15.7 ± 0.1 0.86 ± 0.05 This work

15.85 ± 0.20 1.12 ± 0.15 TAMU
118Sn 15.8 ± 0.1 16.3 ± 0.1 15.6 ± 0.1 0.73 ± 0.04 This work
120Sn 15.7 ± 0.1 16.2 ± 0.2 15.5 ± 0.1 0.78 ± 0.05 This work
122Sn 15.4 ± 0.1 15.9 ± 0.2 15.2 ± 0.1 0.85 ± 0.05 This work
124Sn 15.3 ± 0.1 15.8 ± 0.1 15.1 ± 0.1 0.77 ± 0.05 This work

14.50+0.14
−0.14 14.96+0.10

−0.11 14.33+0.17
−0.14 1.04+0.11

−0.11 TAMU

aOnly statistical uncertainties are included; systematic errors, mostly from DWBA calculations, are ∼15%.

at high excitation energies was reported as well by the TAMU
group in 12C when they carried out MDA without subtracting
the continuum from the excitation-energy spectra [18].

The L = 0 strength distributions were fitted with a
Lorentzian function to determine the centroid energies and
widths of the ISGMR. These fits are shown superimposed in
Fig. 9; the corresponding fitting parameters are presented in
Table III and compared with results from TAMU [19,21]. In
this and subsequent comparisons and discussion, we refer only
to the recent TAMU results because those are from comparable
data and analysis—all other previous results on the Sn isotopes
were from peak-fitting analyses of data taken at significantly
lower energies.

FIG. 10. (Color online) ISGDR strength distributions obtained
for the Sn isotopes in the present experiment. Error bars represent
the uncertainties from fitting the angular distributions in the MDA
procedure. The solid lines show 2-Lorentzian fits to the data, with the
dashed and dot-dashed lines, respectively, showing the fitted LE and
HE components (see text).

To compare with the available theoretical results, various
moment ratios for the experimental ISGMR strength distribu-
tions have been calculated over the excitation-energy range,
Ex = 10.5–20.5 MeV, encompassing the ISGMR peak. The
results are listed in Table IV. The reasons for the difference
between the present results and those from TAMU for 112Sn
and 124Sn are not readily apparent but might be attributable
to the fact that in their analysis the multipole decomposition
is carried out after subtracting a “background” from the
excitation-energy spectrum, whereas, as pointed out earlier,
no such subtraction is required in the present analysis because
the Sn(α, α′) spectra obtained in our work have been rendered
free of all instrumental background events.

Figure 10 shows the strength distributions of ISGDR. We
observe a “bimodal” distribution between Ex = 8.5 MeV and
Ex = 31.5 MeV. This bimodal pattern for the ISGDR has been
observed in all nuclei investigated so far in both the RCNP
and the TAMU measurements. This “low-energy” isoscalar
L = 1 strength (LE) has engendered considerable interest and
argument over the past few years. It is present in nearly all of
the recent theoretical calculations in some form or another, and
at similar energies, although with varying strength. It has been

TABLE V. Lorentzian-fit parameters for the low-energy compo-
nent of ISGDR strength distributions in the Sn isotopes, as extracted
from MDA. The results from the TAMU work, where available, are
provided for comparison [19,21].

Target ELE−ISGDR (MeV) � (MeV) Reference

112Sn 15.4 ± 0.1 4.9 ± 0.5 This work
14.92+0.15

−0.14 8.82+0.26
−0.29 TAMU

114Sn 15.0 ± 0.1 5.6 ± 0.5 This work
116Sn 14.9 ± 0.1 5.9 ± 0.5 This work

14.38 ± 0.25 5.84 ± 0.30 TAMU
118Sn 14.8 ± 0.1 6.1 ± 0.3 This work
120Sn 14.7 ± 0.1 5.9 ± 0.3 This work
122Sn 14.4 ± 0.1 6.7 ± 0.3 This work
124Sn 14.3 ± 0.1 6.6 ± 0.3 This work

13.31+0.15
−0.15 6.60+0.15

−0.13 TAMU
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TABLE VI. Lorentzian-fit parameters for the HE component
of ISGDR strength distributions in the Sn isotopes, as extracted
from MDA. The results from the TAMU work, where available, are
provided for comparison [19,21].

Target EHE−ISGDR (MeV) � (MeV) EWSRa Reference

112Sn 26.2 ± 0.8 16.3 ± 4.0 1.02 ± 0.03 This work
26.28+0.32

−0.23 10.82+0.39
−0.36 0.70+0.10

−0.10 TAMU
114Sn 26.1 ± 0.8 13.9 ± 3.4 1.23 ± 0.03 This work
116Sn 25.9 ± 0.6 13.1 ± 4.2 1.02 ± 0.03 This work

25.50 ± 0.60 12.00 ± 0.60 0.88 ± 0.20 TAMU
118Sn 26.0 ± 0.3 13.1 ± 2.0 1.20 ± 0.03 This work
120Sn 26.0 ± 0.4 13.1 ± 1.9 1.50 ± 0.03 This work
122Sn 26.3 ± 0.2 12.4 ± 1.1 1.47 ± 0.03 This work
124Sn 25.7 ± 0.5 10.2 ± 1.6 1.29 ± 0.06 This work

25.06+0.22
−0.21 13.87+0.28

−0.22 0.93+0.12
−0.13 TAMU

aOnly statistical uncertainties are included; systematic errors, mostly
from DWBA calculations and the contributions at the highest energies
(see text), are ∼30%.

shown [59,60] that the centroid of this component of the L = 1
strength is independent of the nuclear incompressibility and
while the exact nature of this component is not fully understood
yet, suggestions have been extended to the effect that this
component might represent the “toroidal” [60,61] or the
“vortex” modes [62]. It is impossible to distinguish between
the competing possibilities based on currently available data
[31]. There is general agreement, however, that only the
high-energy (HE) component of this bimodal distribution
needs to be considered in obtaining a value of K∞ from the
energy of the ISGDR. The strength distributions of the ISGDR,
therefore, have been fitted with a two-Lorentzian function and

FIG. 11. (Color online) ISGQR strength distributions obtained
for the Sn isotopes in the present experiment. Error bars represent
the uncertainties from fitting the angular distributions in the MDA
procedure. The solid lines show Lorentzian fits to the data.

TABLE VII. Lorentzian-fit parameters of ISGQR strength dis-
tributions in the Sn isotopes, as extracted from MDA. The results
from the TAMU work, where available, are provided for comparison
[19,21].

Target EISGQR (MeV) � (MeV) EWSRa Reference

112Sn 13.4 ± 0.1 7.0 ± 0.5 1.08 ± 0.04 This work
13.48+0.15

−0.14 4.90+0.22
−0.27 0.88+0.14

−0.13 TAMU
114Sn 13.2 ± 0.1 6.8 ± 0.4 1.25 ± 0.05 This work
116Sn 13.1 ± 0.1 6.4 ± 0.4 1.12 ± 0.04 This work

13.50 ± 0.35 5.00 ± 0.30 1.08 ± 0.12 TAMU
118Sn 13.1 ± 0.1 6.6 ± 0.3 1.08 ± 0.03 This work
120Sn 12.9 ± 0.1 7.0 ± 0.7 1.04 ± 0.04 This work
122Sn 12.8 ± 0.1 7.8 ± 0.6 1.25 ± 0.04 This work
124Sn 12.6 ± 0.1 7.7 ± 0.9 1.13 ± 0.04 This work

12.72+0.11
−0.11 4.20+0.32

−0.03 0.89+0.15
−0.10 TAMU

aOnly statistical uncertainties are included; systematic errors, mostly
from DWBA calculations, are ∼20%.

the fitting parameters for the LE- and HE-components are
presented in Tables V and VI, respectively. It may be noted
that because of the “spurious” strength at the higher excitation
energies mentioned previously, the numbers for the extracted
EWSR are significantly larger than 100% in some cases.

The strength distributions of the ISGQR are shown in
Fig. 11. These too were fitted with a Lorentzian function
to determine the centroid energies and the widths. The fit
parameters are presented in Table VII.

The L = 3 strength distributions (Fig. 12) show an en-
hanced strength at Ex < 10 MeV. This part is, most likely,
from the low-energy octupole resonance (LEOR). The LEOR

FIG. 12. (Color online) HEOR strength distributions obtained
for the Sn isotopes in the present experiment. Error bars represent
the uncertainties from fitting the angular distributions in the MDA
procedure. The solid lines show 2-Lorentzian fits to the data.
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TABLE VIII. Lorentzian-fit parameters of HEOR strength distri-
butions in the Sn isotopes, as extracted from MDA. The results from
TAMU work, where available, are provided for comparison [19,21].

Target EHEOR (MeV) � (MeV) Reference

112Sn 22.7 ± 0.7 7.2 ± 1.9 This work
20.63+0.30

−0.28 3.21+0.30
−0.28 TAMUa

114Sn 22.7 ± 0.7 7.2 ± 2.1 This work
116Sn 22.3 ± 0.6 7.6 ± 1.7 This work

23.3 ± 0.8 10.9 ± 0.6 TAMU
118Sn 22.1 ± 0.6 5.9 ± 1.5 This work
120Sn 22.3 ± 0.6 7.5 ± 1.8 This work
122Sn 22.1 ± 0.6 5.6 ± 1.5 This work
124Sn 22.1 ± 0.5 8.1 ± 1.5 This work

19.12+0.26
−0.26 3.30+0.17

−0.05 TAMUa

a(m1/m0) ratios.

represents the 1h̄ω component of the L = 3 strength and
has been reported in a number of nuclei previously [63,64].
The strength distributions were, therefore, fitted with a two-
Lorentzian function to determine the centroid energy of HEOR
(the high-excitation-energy component). The extracted HEOR
peak-energies are presented in Table VIII.

The primary focus of this work has been on the ISGMR
because of its direct connection with the nuclear incompress-
ibility. The excitation energy of the ISGMR is expressed in the
scaling model [70] as

EISGMR = h̄

√
KA

m〈r2〉 (7)

where m is the nucleon mass, 〈r2〉 the ground-state mean-
square radius, and KA the incompressibility of the nucleus.

The moment ratios, m1/m0, for the ISGMR strengths in the
Sn isotopes are shown in Fig. 13 and compared with recent
theoretical results from Colò et al. (nonrelativistic) [65,66] and
Piekarewicz (relativistic) [67]. The calculations overestimate
the experimental ISGMR energies significantly (by almost
1 MeV in case of the higher-A isotopes). This difference is
very surprising since because the interactions used in these
calculations are those that very closely reproduce the ISGMR
energies in 208Pb and 90Zr. Indeed, this disagreement leaves
open a puzzling question: Why are the tin isotopes so soft [67]?
Are there any nuclear structure effects that need to be taken into
account to describe the ISGMR energies in the Sn isotopes?
Or, more provocatively, do the ISGMR energies depend on
something more than the nuclear incompressibility, requiring
a modification of the scaling relationship given in Eq. (7)?

There have been several attempts to explain this anomaly.
One of the earliest was by Civitarese et al. [71] to estimate
the effect of pairing correlations on the energy of the ISGMR.
The shifts obtained for the ISGMR energies of 100–150 keV
across the Sn isotopic chain were insufficient to explain
the experimental data. Piekarewicz and Centelles [72] have
constructed a hybrid model having the same incompressibility
coefficient (K∞ = 230 MeV) as the FSUGold [73] while
preserving the stiff symmetry energy of NL3 [74]. This
results in a considerably softer incompressibility coefficient for

112 114 116 118 120 122 124
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m
1 

/m
0 

 (
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)
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Texas A & M
Vretenar
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FIG. 13. (Color online) Systematics of the moment ratios m1/m0

for the ISGMR strength distributions in the Sn isotopes. The
experimental results (filled squares) are compared with results from
nonrelativistic RPA calculations (without pairing) by Colò et al.
[65,66] (filled circles), relativistic calculations of Piekarewicz [67]
(triangles), RMF calculations from Vretenar et al. [68] (diamonds),
and QTBA calculations from the Jülich group [69] (sideways
triangles). Results for 112Sn, 116Sn, and 124Sn reported by the TAMU
group [19,21] are also shown (inverted triangles).

neutron-rich matter and produces a significant improvement
in agreement with the experimental data on the ISGMRs in
the Sn isotopes. However, as the authors point out, while the
improvement in case of the Sn isotopes is unquestionable, an
important problem remains: The hybrid model underestimates
the ISGMR centroid energy in 208Pb by almost 1 MeV, sug-
gesting that the rapid softening with neutron excess predicted
by this hybrid model might be unrealistic. They also suggest
that the failure of the FSUGold to reproduce the ISGMR
energies might be attributable to missing physics unrelated
to the incompressibility of neutron-rich nuclear matter; as an
example of such missing physics, they mention the superfluid
character of the Sn isotopes resulting from their open-shell
structure.

Calculations have also become available recently from the
RMF approach with the DD-ME2 interaction [75], and these
reproduce the centroids of the ISGMR in the Sn isotopes rather
well [68]. It is also seen that the DD-ME2 interaction falls
within the constraints imposed by the experimental K∞ and Kτ

values (see discussion later in this article). Some concern has
been expressed, however, that this agreement of the centroid
energies might be just a coincidence because the ISGMR
strength distributions for the Sn isotopes from this work appear
to be not significantly different from those obtained from, for
example, the FSUGold [76].

In calculations using the T5 Skyrme interaction within the
quasiparticle time blocking approximation (QTBA) approach,
Tselyaev et al. [69] have obtained the ISGMR strength
distributions in all the Sn isotopes in good agreement with the
experimental data, including the resonance widths. However,
T5 has the associated K∞ value of only 202 MeV, which
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is significantly lower than that extracted earlier from the
ISGMRs in 208Pb and 90Zr. While the agreement with the
experimental data is impressive (and, indeed, reproduces
the A dependence rather well), it does leave the question
of “softness” of the Sn nuclei unanswered. As the authors
themselves state, the goal of their work has not been to solve
the problem of the nuclear-matter incompressibility but to find
under which conditions one can obtain reasonable description
of the experimental data for the considered tin isotopes.

The “superfluid” character of the Sn isotopes, resulting from
pairing correlations in open-shell nuclei, has been investigated
by Li et al. [77]. In a self-consistent QRPA model that employs
the canonical HFB basis and an energy-density functional
with a Skyrme mean-field part and density-dependent pairing,
they calculated the energy of the ISGMR for the Sn isotopes
and looked at the effects of different kinds of pairing forces
(volume, surface, and mixed). They find that, compared
with the HF + RPA and HF-BCS-QRPA formalisms, the
HFB + QRPA calculations lead to energies for the ISGMR
in Sn isotopes that are significantly closer to the experimental
values, in particular with the surface pairing forces and the
SKM* interaction (K∞ ∼ 215 MeV) [78]. Thus, while pairing
effects lower the ISGMR excitation energies, one still needs
to reduce the K∞ value by ∼10% for achieving a reasonable
agreement with the experimental data.

A very intriguing possibility in explaining the “softness” of
the Sn isotopes has been offered very recently by Khan [79,80].
The author asserts that, in analogy with the mutually enhanced
magicity (MEM) effect observed in predictions of masses
with different energy-density functionals [81,82], the ISGMR
energy in the doubly magic nuclei might be anomalously
higher. The obvious implication is that the calculations using
interactions that are successful in describing the ISGMR in the
doubly magic nucleus 208Pb would necessarily overestimate
the ISGMR energies in the open-shell nuclei. If this effect
is manifested in any significant way, the energy of the
ISGMR in the non-doubly magic Pb isotopes, 204Pb and
206Pb, would be measurably lower than that in 208Pb [80].
In the only measurement of the ISGMR in 206Pb reported
so far [83], this conjecture does not appear to hold. Still,
precise measurements of the ISGMR in the Pb isotopes, using
background-free inelastic spectra with high-energy α beams,
would be worthwhile to fully examine this possibility.

The incompressibility of a nucleus, KA, may be expressed
as

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 +KCoulZ
2A−4/3.

(8)

Here, c ≈ −1 [84], and KCoul is essentially model indepen-
dent (in the sense that the deviations from one theoretical
model to another are quite small), so that the associated
term can be calculated for a given isotope. Thus, for a
series of isotopes, the difference KA − KCoulZ

2A−4/3 may
be approximated to have a quadratic relationship with the
asymmetry parameter, of the type y = A + Bx2, with Kτ

being the coefficient, B, of the quadratic term. It has been
established previously [85,86] that direct fits to the Eq. (8)
do not provide good constraints on the value of K∞. How-

ever, this expression is being used here not to obtain a
value for K∞, but rather only to demonstrate the approxi-
mately quadratic relationship between KA and the asymmetry
parameter.

From such an analysis of the ISGMR data in the Sn isotopes,
we have obtained a value of Kτ = −550 ± 100 MeV (see
Fig. 4 in Ref. [34]). This number is consistent with the value
of Kτ = −370 ± 120 MeV obtained from an analysis of the
isotopic transport ratios in medium-energy heavy-ion reactions
[87]. Incidentally, this value has been modified from the value
of −500 ± 50 MeV that was quoted previously by this group
[88,89] and referred to in Ref. [34]. It transpires that they had
identified the quantity that they had obtained, Kasy, as being
identical to Kτ , the quantity that has been obtained from the
ISGMR measurements; the two differ by a higher-order term
[87,90]. More recently, a value of Kτ = −500+125

−100 MeV has
been obtained by Centelles et al. [91] from constraints placed
by neutron-skin data from anti-protonic atoms across the mass
table; here again, it would appear that what the authors have
termed Kτ is actually the aforementioned Kasy. Further, a value
of Kτ = −500 ± 50 MeV has been obtained also by Sagawa
et al. by comparing our Sn ISGMR data with calculations using
different Skyrme Hamiltonians and RMF Lagrangians [92].
The Kτ value obtained from our ISGMR measurements has,
thus, been verified by a number of different procedures
involving quite different data. A more precise determination of
Kτ will likely result from extending the ISGMR measurements
to longer isotopic chains. This provides strong motivation for
measuring the ISGMR strength in unstable nuclei, a focus of
current investigations at the new rare isotope beam facilities at
RIKEN, GANIL, GSI, and NSCL [93–96].

Combined with the value of K∞ = 240 ± 10 MeV obtained
from the ISGMR and ISGDR data [31,65,73,97], we now
have “experimental” values of both K∞ and Kτ , which,
together, can provide a means of selecting the most appropriate
of the interactions used in EOS calculations. For example,
this combination of “experimental” values for K∞ and Kτ

essentially rules out a vast majority of the Skyrme-type
interactions currently in use in nuclear structure calculations
[90,98]. Similar conclusions were reached for EOS equations
in Refs. [99,100].

V. SUMMARY

We have measured the strength distributions of the isoscalar
giant resonances (ISGMR, ISGDR, ISGQR, and HEOR) in the
even-A 112−124Sn isotopes via inelastic scattering of 386-MeV
α particles at extremely forward angles, including 0◦. The ex-
tracted parameters for these resonances are in good agreement
with previously obtained values where available. The ISGMR
centroid energies are significantly lower than those predicted
for these isotopes by recent calculations and point to the
need for further theoretical exploration of applicable nuclear
structure effects, especially the role of pairing in ISGMR
strength calculations in the open-shell nuclei. The asymmetry
term, Kτ , in the expression for the nuclear incompressibility
has been determined to be −550 ± 100 MeV from the ISGMR
data in Sn isotopes and is found to be consistent with a number
of indirectly extracted values for this parameter.
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