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Maison des Magistères, Boı̂te Postale 166, F-38042 Grenoble Cedex, France

(Received 1 October 2009; revised manuscript received 13 January 2010; published 19 March 2010)

We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations
are described by the pairing tensor in coordinate space calculated in the HFB approach. Calculations are done using
the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate,
a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length
corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei;
that is, it is maximal in the interior of the nucleus and then it decreases rather rapidly in the surface region, where
it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially
determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has
little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence
length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation
in infinite matter.
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I. INTRODUCTION

According to pairing models, in open-shell nuclei nucleons
with energies close to the Fermi level form correlated Cooper
pairs. One of the most obvious manifestations of correlated
pairs in nuclei is the large cross section for two-particle
transfer. In the HFB approach, commonly employed to treat
pairing in nuclei, the pair transfer amplitude is approximated
by the pairing tensor. In coordinate space the pairing tensor
for like nucleons is defined by.

κ( �r1s1, �r2s2) = 〈HFB|�( �r1s1)�( �r2s2)|HFB〉, (1)

where |HFB〉 is the HFB ground-state wave function, while
�(�rs) is the nucleon field operator. By definition, the pairing
tensor κ( �r1s1, �r2s2) is the probability amplitude to find, in
the ground state of the system, two correlated nucleons with
positions �r1 and �r2 and with spins s1 and s2. This is the
nontrivial part of the two-body correlations, which is not
contained in the Hartree-Fock approximation.

Despite the many HFB calculations done in the last half-
century, only a few studies have been dedicated to nonlocal
spatial properties of the pairing tensor in atomic nuclei
[1–4]. One of the most interesting properties of the pairing
tensor revealed recently is its small extension in the relative
coordinate �r = �r1 − �r2. Thus in Ref. [3] it was shown that the
averaged relative distance, commonly called the coherence
length (CL), has an unexpectedly small value in the surface of
spherical nuclei, about 2–3 fm. This value is about two times
lower than the shortest CL in infinite matter. Similar small
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values of CL were obtained later for some spherical nuclei [4]
and for a slab of nonuniform neutron matter [5].

The scope of this paper is to extend the study done in
Ref. [3] and to investigate axially deformed nuclei. It will be
shown that in axially deformed nuclei the pairing tensor has
spatial features similar to those in spherical nuclei, including
a short CL in the nuclear surface. The paper is organized as
follows. In Sec. II, a general expression of the pairing tensor
is derived in an axially deformed harmonic oscillator (HO)
basis. Expressions of the pairing tensor coupled to a total spin
S = 0 or 1 and associated projection are also presented in three
particular geometrical configurations. In Sec. III, the local as
well as the nonlocal part of the pairing tensor is discussed
for a few axially deformed nuclei, namely, 152Sm, 102Sr,
and 238U. Results concerning CL are also presented and
interpreted in a less exclusive way compared to Ref. [3].
Summary and conclusions are given in Sec. IV.

II. PAIRING TENSOR FOR AXIALLY DEFORMED NUCLEI

As in Ref. [3], we calculate the pairing tensor in the HFB
approach using the D1S Gogny force [6]. To describe axially
deformed nuclei we take a single-particle basis formed by
axially deformed HO wave functions. In this basis the nucleon
field operators can be written as

�(�r, s) =
∑
mν

c+
msνφmν(�r), (2)

where the HO wave function is

φmν(�r) = eimθ�|m|ν (̃r) (3)
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The quantum numbers m and s are the projection of the
orbital and spin momenta on the symmetry (z) axis; ν

are the radial quantum numbers ν = (n⊥, nz). The function
�|m|ν (̃r) ≡ �|m|ν(r⊥, z) is given by

�|m|ν(r⊥, z) = ϕnz
(z, αz) × ϕn⊥m(r⊥, α⊥), (4)

where

ϕnz
(z, αz) =

(αz

π

) 1
4

[
1

2nznZ!

]1/2

e
1
2 αzz

2
Hnz

(z
√

αz) (5)

and

ϕn⊥|m|(r⊥, α⊥) =
(α⊥

π

)1/2
[

n⊥!

(n⊥ + |m|)!
]1/2

× e
1
2 α⊥r2

⊥ (r⊥
√

α⊥)|m|L|m|
n⊥ (α⊥r2

⊥). (6)

In these equations, αz and α⊥ are the HO parameters in the
z and perpendicular directions, which are related to the HO
frequencies by αz = Mωz/h̄ and α⊥ = Mω⊥/h̄, respectively,
where M is the nucleon mass, and Hnz

and Ln⊥ are the Hermite
and Laguerre polynomials, respectively.

Using expansion (2) it can be shown that the pairing tensor
in coordinate representation can be written in the following
form (the spin up is denoted by +, and the spin down by −):

κ( �r1+, �r2−)

=
∑

m1�0ν1ν2

�|m1|ν1 (r̃1)�|m1|ν2 (r̃2)
[
eim1(θ1−θ2) κ̃m1+1/2

m1ν1,m1ν2

+ (1 − δm1,0)e−im1(θ1−θ2) κ̃m1−1/2
m1ν1,m1ν2

]
, (7)

κ( �r1+, �r2+)

= −
∑

m1�0ν1ν2

[eim1θ1−i(m1+1)θ2�|m1|ν1 (r̃1)�|m1+1|ν2 (r̃2)

− e−i(m1+1)θ1+im1θ2�|m1|ν1 (r̃2)�|m1+1|ν2 (r̃1)]

× κ̃
m1+1/2
m1ν1,m1+1ν2

. (8)

In these expressions we have introduced the pairing tensor
in the HO basis,

κ̃α1α2 ≡ κ̃�
m1ν1,m2ν2

= 2s2〈̃0|cm1s1ν1c−m2−s2ν2 |̃0〉 = κ̃α2α1 , (9)

where � = m1 + s1 = m2 + s2.
In the present study we calculate the pairing tensor

corresponding to three geometrical configurations, shown in
Figs. 1–3; they have the advantage of a simple separation
between the center of mass (c.o.m.) �R = ( �r1 + �r2)/2 and the
relative �r = �r1 − �r2 coordinates.

For a finite-range force, such as the D1S Gogny force used
here, the pairing tensor has nonzero values for the total spin

z
−r/2

r/2R

x

FIG. 1. Geometrical configuration (a), corresponding to two
neutrons in the xz plane. R and r indicate the c.o.m. position and
the relative distance of the two neutrons.

y

x
R

−r/2 r/2 z=0

FIG. 2. Geometrical configuration (b), corresponding to two
neutrons in the xy plane. R and r indicate the c.o.m. position and
the relative distance of the two neutrons.

S = 0 and S = 1. How these two channels are related to the
pairing tensors, Eqs. (7) and (8), depends on the geometrical
configuration. Thus it can be shown that for the configuration
displayed in Fig. 1, the following relations are satisfied:

[κ( �r1s1, �r2s2)]00 =
√

2κ( �r1+, �r2−), (10)

[κ( �r1s1, �r2s2)]10 = 0, (11)

[κ( �r1s1, �r2s2)]11 = [κ( �r1s1, �r2s2)]1−1 = κ( �r1+, �r2+), (12)

where the notation [..]ij means that the pairing tensor is
coupled to total spin S = i with projection Sz = j .

For the configuration shown in Fig. 2 the pairing ten-
sor κ ( �r1s1, �r2s2) is a complex quantity and we have the
relations

[κ( �r1s1, �r2s2)]00 =
√

2Re[κ( �r1+, �r2−)], (13)

[κ( �r1s1, �r2s2)]10 = i
√

2Im[κ( �r1+, �r2−)], (14)

[κ( �r1s1, �r2s2)]11 = [κ( �r1s1, �r2s2)]1−1 = κ( �r1+, �r2+). (15)

Finally, for configuration (c), shown in Fig. 3, we have

[κ( �r1s1, �r2s2)]00 =
√

2Re[κ( �r1+, �r2−)], (16)

[κ( �r1s1, �r2s2)]10 = 0, (17)

[κ( �r1s1, �r2s2)]11 = κ( �r1+, �r2+), (18)

[κ( �r1s1, �r2s2)]1−1 = κ( �r1−, �r2−) = κ∗( �r1+, �r2+). (19)

The results for the pairing tensor shown in this paper are
obtained by solving the HFB equations in a HO basis with
13 major shells for deformed nuclei. We have checked that
increasing the dimension of the basis does not significantly
change the spatial properties of the pairing tensor up to

zR

−r/2 r/2

y

FIG. 3. Geometrical configuration (c), corresponding to two
neutrons in the yz plane. R and r indicate the c.o.m. position and
the relative distance of the two neutrons.
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distances of about 10 fm in the nuclei studied here. This
shows that a finite discrete 13-major-shell HO basis correctly
describes these nuclei in the domain of interest of this work
and, in particular, that continuum coupling effects can be
ignored.

III. RESULTS AND DISCUSSION

A. Local and nonlocal parts of the pairing tensor

We start by briefly discussing the local part of the neutron
pairing tensor. To illustrate the effect of the deformation,
Fig. 4 is shows the neutron local part of the pairing tensor
for 152Sm calculated in the spherical configuration β = 0 and
in the deformed ground state β = 0.312, where β is the usual
dimensionless deformation parameter. The color scaling at the
right of the plots indicates the intensity of the local part of
the pairing tensor. In the spherical state the spatial structure
of the local part of the pairing tensor can be simply traced back
to the spatial localization of a few orbitals with energies close
to the chemical potential [7]. For 152Sm the most important
orbitals are 2f7/2, 1h9/2, 3p3/2, and 2f5/2. As shown in
Fig. 4, in the deformed state the spatial pattern of the pairing
tensor is more complicated. This stems from the fact that
it requires many single-particle configurations to explain its
detailed structure. The spatial distribution of the configurations
contributing the most to the pairing tensor are shown in Fig. 5;
plots correspond to the contribution of single-particle states of
given � and parity, with a different scaling for each plot.
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FIG. 4. (Color online) The local part of the pairing tensor
for 152Sm. Upper and lower panels correspond to the spherical
configuration and the deformed ground state, respectively.

1/2+ 1/2-

3/2+ 3/2-

5/2+ 5/2-

11/2-

7/2+ 7/2-

9/2+ 9/2-

0 2 4 6 8 10

z (fm)

0
2
4
6
8

r
(f

m
) 11/2+

FIG. 5. (Color online) Spatial structure of the single-particle
blocks �π that make the largest contribution to the pairing tensor
shown in the bottom panel of Fig. 4.

We focus now on the spatial structure of the nonlocal
neutron pairing tensor. Figures 6–8 show some typical results
for |κ( �R, �r)|2 in the three geometrical configurations (a), (b),
and (c) described in Figs. 1–3 for 152Sm, 102Sr, and 238U. At the
spherical deformation, the three geometrical configurations are
equivalent. For 102Sr, which manifests a coexistence feature,
|κ( �R, �r)|2 is shown only for the prolate minimum. For 238U, the
ground state as well as the isomeric state is displayed. The color
scaling at the right of the plots indicates the intensity of the
pairing tensor squared multiplied by a factor of 104. First we
notice that the pairing tensor for S = 1 (Fig. 6, bottom) is much
weaker than that for S = 0 (Fig. 7), by a factor of ∼20. This
is a general feature in open-shell nuclei (the pairing channel
S = 1 is significant in halo nuclei such as 11Li). Therefore, in
what follows we discuss only the channel S = 0.

Figures 6–8 show that with deformation the pairing tensor
is essentially confined along the direction of the c.o.m.
coordinate. As in spherical nuclei, the pairing tensor can
be preferentially concentrated either in the surface or in the
bulk, depending on the underlying shell structure. The most
interesting fact shown in Figs. 6–8 is the small spreading of
the pairing tensor in the relative coordinate. This is a feature
we have already observed in spherical nuclei. In Ref. [3], it is
reported that the predilection for small spreading in the relative
coordinate is caused by parity mixing. We go back to this point
in Sec. III B.

Quantitatively the spreading of the pairing tensor in the
relative coordinate can be measured by the local CL defined
in Ref. [8]. In the present study of deformed nuclei, as
particular angular dependences are assumed according to the
three geometrical configurations (a), (b), and (c), the following
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FIG. 6. (Color online) Nonlocal κ( �R, �r)2 for the isotope 152Sm.
The deformation is indicated by β, and S is the spin. For the spherical
case (upper panel), κ( �R, �r) is averaged over the angles of �R and �r .
For the deformed case (lower panel), geometrical configuration (a),
shown in Fig. 1, was adopted.

formula has been used:

ξ (R) =
√∫

r4|κ(R, r)|2dr∫
r2|κ(R, r)|2dr

. (20)

The pairing tensor κ(R, r) corresponds to a given total spin
S = 0 and a given geometrical configuration. For spherical
nuclear configurations, the expression adopted for the CL is
the standard one defined in Ref. [3], where averages are taken
over both the angles of �R and �r .

In Fig. 9, we present the neutron CL calculated for various
deformed nuclei and configurations (a), (b), and (c) described
in Figs. 1–3. We note that inside the nucleus the CL has
large values, up to about 10–14 fm. This order of magnitude
was already found in spherical nuclei. However, the CL
displays much stronger oscillations compared to spherical
nuclei, especially for geometrical configurations (a) and (b).
This behavior can be attributed to the large number of different
orbitals implied in pairing properties for deformed nuclei. An
interesting feature shown in Fig. 9 is the pronounced minimum
of about 2 fm far out in the surface that appears for all isotopes
and all geometrical configurations. The minimum found here
has a magnitude similar to that in spherical nuclei. We also
found a small CL, ∼2 fm, in the surface of nuclei for protons.
In the proton case, the Coulomb force was not taken into
account in the pairing interaction but it is not expected to
change the CL strongly.
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FIG. 7. (Color online) Nonlocal κ( �R, �r)2 for the isotope 152Sm.
The deformation is indicated by β, and S is the spin. (a), (b), and (c)
indicate the geometrical configurations shown in Figs. 1–3.

B. Discussion of coherence length

Compared to the smallest values of CL in nuclear matter,
about 4–5 fm (see Fig. 10 for symmetric and neutronic matter),
the minimal values (∼2 fm) of the CL in nuclei are aston-
ishingly small. The question then arises, What causes such
small values of CL in the surface of nuclei? Because, as just
mentioned, the general behavior of the CL is similar in spher-
ical and deformed nuclei, the following discussion focuses on
spherical nuclei. As a benchmark case, we consider the isotope
120Sn. In this case, the CL will be calculated as in Ref. [3],

ξ ( �R) =
√√√√∫

r2|κ( �R, �r)|2d3r∫ |κ( �R, �r)|2d3r
, (21)

where averages are taken over both the angles of �R and �r .
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FIG. 8. (Color online) Nonlocal κ( �R, �r)2 for isotopes 102Sr and
238U. For the latter, two cases are shown, corresponding to the
ground state (middle panel) and to the fission isomer (bottom panel).
Calculations were made assuming configuration (a), shown in Fig. 1.

A possible explanation for the small CL in the surface of
finite nuclei could be, for example, as suggested in Ref. [3],
that pairing correlations are particularly strong there. Indeed,
in the surface the neutron Cooper pairs have approximatively
the same size as the deuteron, a bound pair. This is a situation
similar to the strong coupling regime of pairing correlations.
However, it is generally believed that nuclei are in the weak
coupling limit with respect to pairing [9]. In what follows,
we examine whether there exists a correspondence between
the magnitude of the CL and an enhancement of pairing
correlations in the nuclear surface. Even though a local view
can only give an incomplete picture because of fluctuations, a
quantity that can be used to explore the spatial distribution of
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FIG. 9. Coherence length for various isotopes. β denotes the
deformation, while (a), (b), and (c) are the geometrical configurations
shown in Figs. 1–3.

pairing correlations is the local pairing energy,

Ec(R) = −
∫

d3r�( �R, �r)κ( �R, �r), (22)

where �( �R, �r) is the nonlocal pairing field. In practice, in
Eq. (22), we use the angle-averaged quantities.

The localization properties of Ec(R) are shown in Fig. 11
(black line), which displays the results for several spherical
nuclei. We note that in the surface region, where the minimum
CL is located, there is a local maximum of |Ec(R)| present for
all nuclei considered. The largest (absolute) value of Ec(R) is
not necessarily located in the surface region and the oscillations
of the inner part of the distributions seem to be caused mostly
by shell fluctuations.
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FIG. 10. Coherence length in symmetric and neutronic matter
according to the density normalized to the saturation density and
calculated with the D1S Gogny force.

To better exhibit a surface enhancement of pairing cor-
relations, we have to consider a normalized pairing energy,
otherwise the strong fall-off of the density will mask the local
increase in pairing to a great extent. One could divide Ec(R) by
the local density, as done in Eq. [1]. However, here we prefer
to divide by the local pairing density κ(R) = κ(R, 0), leading
to the following definition of an average local pairing field

�av(R) = 1

κ(R)

∫
d3r�( �R, �r)κ( �R, �r). (23)

In practice, in Eq. (23) we again use the angle-averaged
quantities. We remark that with a zero-range pairing force, the
preceding definition of the average pairing field gives the local
pairing field. The localization properties of �av(R) are shown
in Fig. 11 (bottom line). We notice a qualitatively similar
behavior as for Ec(R). However, owing to the normalization,
the average pairing field has significant values out in the
surface region. Closer inspection of Fig. 11 shows that the
averaged pairing field reaches 20% farther out into the surface
of the nucleus compared to the particle density (blue line).
This can be quantified by the corresponding root mean square
values. This push of pairing correlations to the external region
is determined by the localization properties of orbitals from
the valence shell, which give the main contribution to the
pairing tensor and pairing field. Because these states are less
bound they are more spatially extended than the majority of
states that determine the particle density and the nuclear radius.
Moreover, the increase in the effective mass in the surface also
probably plays an important role. Like the local pairing energy
Ec(R), the average pairing field �av(R) presents a generic local
maximum in the surface region with a local enhancement of
pairing correlations (at tenth the matter density in 120Sn, the
average pairing field still reaches the relatively large value of
∼0.5 MeV). On the contrary, this maximum is not necessarily
an absolute one and higher pairing field values can appear
in the interior of nuclei, depending on the underlying shell
structure.

To understand whether this local enhancement of pairing
correlations can explain the minimum value of ∼2 fm of the
CL in the surface of finite nuclei, we have calculated the CL
under the same conditions as before but with a variable factor
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FIG. 11. (Color online) Pairing correlation energies (right scale;
MeV) and average pairing fields (left scale; MeV in 120Sn, 60Ni, 136Sn,
and 212Pb. The blue line shows the neutron density relative to its value
in the center of the nucleus (left scale).
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α in front of the (S = 0, T = 1) pairing intensity of the D1S
Gogny force (and only there). The result is shown in Fig. 12 for
120Sn with α between 1.0 and 0.5 (top). It should be mentioned
that for α = 1.0, the 120Sn pairing energy is equal to ∼19 MeV,
whereas for α = 0.5 it is ∼0.5 MeV, which can be considered
as a very weak pairing regime. Despite these extreme variations
of the pairing field, the values of CL change very little overall,
except for R � 1 fm. At R 
 6 fm, the variation is less than
0.2 fm. As we will see, this behavior is completely different in
nuclear matter. From this study, it becomes clear that the CL is
practically independent of the pairing intensity, in particular,
in the surface of finite nuclei.

Therefore, we must revisit the interpretation proposed in our
preceding paper [3], that the minimal size of ∼2 fm of Cooper
pairs in the nuclear surface is a consequence of particularly
strong local pairing correlations. From the fact that completely
different behavior is obtained in infinite nuclear matter (see the
following and Fig. 16), the small size of the CL in the surface
of nuclei seems to be strongly related to the finite size of the
nucleus.

At this stage of our analysis, it is important to clarify the role
of parity mixing that was put forward in our preceding work [3]
on the behavior of the CL. The bottom panel in Fig. 12 displays
the CL calculated either with the even part of the pairing tensor
κe or with the odd one κo, for the same values of α as before.
In both cases, the value of the CL does not depend much
on the intensity of the pairing. This conclusion holds here
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FIG. 12. (Color online) Coherence length calculated with the total
pairing tensor κ (top panel) and the even κe and odd κo parts of the
total pairing tensor (bottom panel) for different intensities of pairing
strength, in the case of 120Sn.
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e and odd κ2
o parts of the nonlocal part of the pairing tensor

and the interference term 2κeκo for 120Sn.

for all values of R. Comparing the curves in the two panels
in Fig. 12, one sees that the even/odd CLs have reasonably
larger values in the center of the nucleus (∼10 fm) than those
calculated with the full κ (6–8 fm), almost independently of
the value of α. In the surface region they are practically of the
same magnitude (2–3 fm). These results indicate that the parity
mixing discussed in Ref. [3] influences the CL essentially for
small values of R. Therefore, parity mixing cannot be the main
reason for the small value of the CL in the surface region.

The trends shown in Fig. 12 can be traced back to the
variations of κ2 as well as κ2

e , κ2
o , and the interference term

2κeκo plotted in Fig. 13. The interference term is large only
along the axes r = 0 and R = 0. However, in calculating the
CL, |κ|2 is multiplied by a factor r4 in the numerator of
Eq. (21). Hence, the large values of this interference term near
the r = 0 axis will not come into play significantly. Therefore,
as observed previously, parity mixing will be significant
essentially for R � 1 fm.

This observation is confirmed by looking at the quantity

X(R, r) = r4|κ(R, r)|2
N (R)

, (24)

where N (R) = ∫ ∞
0 drr2κ(R, r)2. This quantity, once inte-

grated over r , yields the square of the CL, Eq. (21) namely,
ξ 2(R) = ∫ ∞

0 X(R, r)dr .
X(R, r) is presented in Fig. 14 for four values of R, namely,

0, 3, 6, and 9 fm, corresponding to the interior of the nucleus
and the vicinity of the surface. The results are displayed for
various values of the pairing factor α.

Except for R = 0, X(R, r) and hence ξ (R) are not really
sensitive to the strength of the pairing interaction. The large
dependence of X(R, r) on the pairing strength at R = 0 comes
from the comparatively large parity mixing already mentioned
in connection with Fig. 13, which is negative and maximum
in absolute value for r 
 10 fm. Because the parity mixing
tends to disappear as the pairing strength decreases, the height
of the peak at r = 10 fm increases. In contrast, for R = 3,
6, and 9 fm the influence of parity mixing is very modest
and the behavior of X(R, r) is determined essentially by κ2

e

and κ2
o . From R 
 3 fm to R 
 6 fm, one observes a sensitive
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FIG. 14. (Color online) X(R, r) for R = 0, 3, 6, and 9 fm in the
case of 120Sn.

reduction of the magnitude of X(R, r), leading to a lowering of
the CL. In the vicinity of the surface (R � 6 fm), the oscillatory
behavior of X(R, r) disappears. Here, single-particle wave
functions have almost reached their exponential regime. This
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FIG. 15. Evolution of the numerator and denominator of ξ (R) for
various values of α, in the case of 120Sn.

explains why, at R � 6 fm, X(R, r) is characterized by only
one major peak. The width of this major peak is minimum at
the nuclear surface. Its broadening for R = 9 fm explains the
increase in the CL beyond the nuclear surface.

A more global way to analyze the behavior of the CL is to
consider directly the dependence on R of the numerator and
the denominator of Eq. (21). This is shown in Fig. 15.

One sees that, independently of the value of α (the color
code is the same as for Fig. 12), the denominator decreases
faster than the numerator around R = 6 fm and beyond. This
sudden change in the slope of the denominator is accountable
for the minimum value of CL.

A similar analysis of the CL and of the influence of pairing
correlations was carried out in infinite matter. In Fig. 16, we
show the CL in infinite symmetric nuclear matter as a function
of the density ρ normalized to its saturation value ρ0, for the
same α values as in the HFB calculations for finite nuclei. In the
nuclear matter case, we see that the CL depends very strongly
on the pairing intensity, whatever the density. For instance,
the minimum value of CL increases a lot as pairing decreases.
This behavior can be understood from an approximate analytic
evaluation of the CL in infinite nuclear matter based on the
definition, Eq. (21), which differs only slightly from the usual
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FIG. 16. (Color online) Coherence length calculated with differ-
ent intensities of pairing strength in symmetric nuclear matter.
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Pippard expression [10] (see Appendix):

ξnm = h̄2kF

2
√

2m∗|�F |

[
1 + a2

8
(3b2 − 12b + 4) + O(a3)

]
,

(25)

where a = |�F |/|εF |, b = kF �′
F /�F , with �F and �′

F the
pairing field and its derivative for the Fermi momentum kF .
As discussed in Appendix, the correction terms in Eq. (25) are
very small.

We see that the CL in infinite matter varies approximatively
inversely proportional to the gap at the Fermi surface. This
behavior is at variance with the results in finite nuclei,
particularly where the CL shows the minimum; see Fig. 12.
This clearly indicates that the behavior of the CL, in particular,
the small value obtained in the surface of finite nuclei, is
strongly influenced by the structure of the orbitals and that
pairing plays a secondary role.

To examine this question in more detail, we show in
Fig. 17 the extension of completely uncorrelated pairs made of
Hartree-Fock neutron single-particle wave functions. We use
a definition of the extension of the pair size similar to the CL
of Eq. (21) namely,

ξorb(R) = (
∫

r2|Ai( �R, �r)|2d3r)1/2

(
∫ |Ai( �R, �r)|2d3r)1/2

. (26)

The uncorrelated-pair wave function Ai( �R, �r) is defined as

Ai( �R, �r) = 1

4π
(2ji + 1)

∑
nαnβ

Cni li ji

nα
Cni li ji

nβ

×
∑
nNl

(−)l
(2l + 1)1/2

2li
unl(r/

√
2)uNl(

√
2R)

×Pl(cos θ )〈nlNl; 0|nαlinβli0〉, (27)

where C
nili ji
nα

is the component of the (niliji) neutron single-
particle orbital on the HO basis function (nαliji). This equation
is the same as Eq. (3) in Ref. [3], with the matrix κ

liji
nαnβ

of
the pairing tensor replaced with the product of the two C

coefficients.
Because ξorb(R) corresponds to two noninteracting neutrons

put into the same orbit and coupled to (L = 0, S = 0), it

0 1 2 3 4 5 6 7 8
R(fm)

3
4
5
6
7
8
9

10
11
12
13

or
b.
(f

m
)

3s1/2

2d3/2

2d5/2

1g7/2

1h11/2

FIG. 17. Coherence length for Hartree-Fock single-particle
orbitals of the neutron valence shell of 120Sn.

contains only the correlations induced by the confinement of
the single-particle wave functions. As Fig. 17 shows, ξorb has a
pattern rather similar to the global CL displayed in Figs. 9 and
12, except for the 3s1/2 orbital. Thus, provided that this orbital
is not strongly populated, a change in the relative contributions
of the single-particle states in the pairing tensor, for example,
induced by varying the intensity of pairing correlations, will
not cause significant modifications of the global CL. This result
was also found by Pastore [11].

From Fig. 17 we see that (except for 3s1/2), ξorb(R) exhibits
a minimum in the surface of the order of 
3.5 fm. This is
indeed small but still larger than the 2.3 fm found with Eq. (21)
for α = 1 (or 2.5 fm for α = 0.5). The reduction by about 30%,
from 3.5 to 2.3 fm, of the minimum of the CL is very likely
because, even for very small pairing, some orbit mixing takes
place (remember that the influence of pairing is compensated
in the ratio of numerator to denominator and that the chemical
potential is not necessarily locked to a definite level but may
stay in between levels). The cross terms of the wave functions
can be negative, yielding a possible explanation of the effect.
Let us also point out that the CL implying only the even part of
the pairing tensor (or the odd one), see Ref. [3], is of the order
of ∼2.7 fm for 120Sn; see Fig. 12. Therefore, there should exist
a slight influence of parity mixing in the CL calculated with
the full κ .

Nonetheless, the preceding discussion clearly indicates that
the small value of the CL in the surface of finite nuclei is
essentially caused by the structure of the single-particle wave
functions. Our conclusion is somewhat different from the one
put forward in our early paper [3]. There, we had not explored
the behavior of the CL as a function of the pairing strength,
which led us to conclude that the small size of Cooper pairs
stems from a local strong coupling pairing regime. However,
the other results and conclusions of Ref. [3] still hold.

One may speculate about the reason for this radically
different behavior of the CL in nuclei and infinite nuclear
matter. One issue that certainly can be invoked is that, in
macroscopic systems, the number of single-particle states in an
energy range of the order of the gap is huge, whereas in nuclei
there are only a few states per MeV. To examine this effect
more precisely, let us consider, for convenience, the example
of a spherical HO potential. We want to keep the essential
finite size effects but eliminate unessential shell effects. It is
well known that this can be achieved via so-called Strutinsky
smoothing. Single shells are washed out and what remains
is a continuum model with energy as a variable, instead of
individual discrete quantum states. Therefore for the pairing
tensor in Wigner space, we can write

κ( �R, �p) =
∫

E

dEκ(E)f (E; �R, �p), (28)

where κ(E) = uEvE is the Strutinsky averaged pairing ten-
sor [12] and f (E; �R, �p) is the Strutinsky averaged Wigner
transform of the density matrix on the energy shell E [13].
Integration of this quantity over energy up to the Fermi level
yields the Strutinsky averaged density matrix in Wigner space.
The latter quantity is shown in Fig. 1 of Ref. [14].

A particularity of the Strutinsky smoothed spherical HO is
that all quantities depend on �R and �p only via the classical
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Hamiltonian Hcl( �R, �p). We see that the Wigner transform of
the density matrix is approximately constant for energies below
the Fermi energy and drops to zero within a width of order
h̄ω. The corresponding density matrix on the energy shell can
then be obtained from the quantity shown in Ref. [14] by dif-
ferentiation with respect to energy. We, therefore, deduce that
f (E; Hcl) is peaked around E ∼ Hcl, with a width of order h̄ω.

The preceding integral over E in κ( �R, �p) is, therefore, a
convolution of two functions, one of width ∼� and the other
of width ∼h̄ω. As long as the gap is smaller than h̄ω, the
�R and �p behavior of κ will be dominated by f (E; Hcl), that

is, by the oscillator wave functions. This is what happens in
finite nuclei. On the contrary, in infinite matter or in LDA
descriptions, f (E; �R, �p) is a δ function, δ(E − Hcl), and then
the �R, �p behavior of κ( �R, �p) is entirely determined by the
width of κ(E), that is, by the intensity of pairing.

This interpretation qualitatively explains the very different
behaviors of the CL with respect to the magnitude of pairing in
finite nuclei and infinite matter. It also explains why the value
of the CL in the surface of finite nuclei can be much smaller
than that calculated in infinite nuclear matter at any density.

More quantitative investigations along this line are in
preparation [15].

IV. CONCLUSIONS

In this paper we have continued our study of the spatial
properties of pairing correlations in finite nuclei. We first
generalized our previous work [3] to deformed nuclei and
found that the spatial behavior of pairing is rather similar
to that in the spherical case. This concerns, for instance,
the remarkably small value of the CL (
2 fm) in the
nuclear surface. Farther inside the nucleus, more pronounced
differences sometimes appear. We then concentrated on the
reason for this strong minimal extension of the CL in the
surface of nuclei. It was found that this feature is practically
independent of the intensity of pairing and seems to survive
even in the limit of very small pairing correlations. A detailed
analysis of the quantities entering the definition of the CL
indicates that, in finite nuclei, the latter is mainly determined
by the single-particle wave functions, that is, by finite size
effects. This eliminates suggestions that the strong observed
lowering of the CL in the nuclear surface has something to do
with especially strong pairing correlations in the surface [3] or
in a surface layer, that is, with a two-dimensional effect [16].
A particular situation seems to prevail in the two-neutron halo
state of 11Li [17].

We have also made the same study in infinite nuclear matter.
We found that in that case the CL depends strongly on the gap,
and an approximate inverse proportionality between the gap
and the CL could be established. Concerning the reason why
nuclei and infinite matter behave so differently with respect to
the CL, we put forward the fact that the number of levels in
the range of the gap value is huge in a macroscopic system,
whereas there are only a handful of levels in finite nuclei. In
such situations the numerator and denominator in the definition
of the CL have a similar dependence on pairing and its
influence tends to cancel. From this work, it appears that the CL
may not be a good indicator of the spatial structure of pairing

correlations in the case of nuclei or of other finite systems
with a weak coupling situation such as certain superconducting
ultrasmall metallic grains [18]. This fact should not make us
forget that, for other quantities, pairing in nuclei can have
a strong effect, as is well known. For example, the pairing
tensor itself, as studied in this work, is very sensitive to parity
mixing (see Fig. 13), where a strong redistribution, that is, a
concentration of pairing strength along the c.o.m. positions of
the pairs, takes place. Such a feature probably is responsible
for the strong enhancement of pair transfer into superfluid
nuclei [19]. This small extension of the pairing tensor in the
relative coordinate may be present not only in the surface but
also in the bulk, depending somewhat on the shell structure.
However, on average a generic but moderate enhancement of
pairing correlations (obtained with the D1S Gogny force) is
present in the nuclear surface; see Fig. 11. Further elaboration
of these aspects will be given in a forthcoming paper [15].
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APPENDIX: NEUTRON COHERENCE LENGTH IN
INFINITE NUCLEAR MATTER

Introducing the Wigner transform,

κW ( �R, �k) =
∫

d3rκ( �R, �r)ei�k�r , (A1)

of the HFB neutron pairing tensor κ( �R, �r), the CL defined by
Eq. (21) can be rewritten as

ξ ( �R) =
√√√√∫

d3k|−→∇ kκW ( �R, �k)|2∫
d3k|κW ( �R, �k)|2 . (A2)

In infinite nuclear matter, κW is independent of �R, depends on
�k only through the length k = |�k|, and is given by κW (k) =
�(k)/2E(k), where �(k) is the HFB neutron pairing field
and E(k) =

√
[e(k) − µ]2 + �(k)2 the neutron quasiparticle

energies, with e(k) the single-neutron energies and µ the
neutron chemical potential. Substituting these expressions into
Eq. (A2) yields ξnm = √

N/D, with

N =
∫ ∞

0
k2dk

[e(k) − µ]2{�′(k)[e(k) − µ] − �(k)e′(k)}2

{[e(k) − µ]2 + �(k)2}3
,

(A3)

D =
∫ ∞

0
k2dk

�(k)2

[e(k) − µ]2 + �(k)2
.

The primed quantities are first derivatives. To be able to express
the integrals analytically, we introduce the following three
approximations:

(i) µ 
 e(kF ) ≡ eF , where kF is the neutron Fermi mo-
mentum.
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(ii) e(k) 
 h̄2k2/(2m∗), where m∗ is the kF -dependent
neutron effective mass.

(iii) In the usual situation of nuclear physics, where the
gap values are much smaller than the Fermi energy,
the functions under the two integrals, Eqs. (A3), are
sufficiently peaked around k = kF so that one can take
�(k) 
 �(kF ) ≡ �F and �′(k) 
 �′(kF ) ≡ �′

F .

Using these assumptions and making the change of vari-
ables k = xkF , expressions (A3) become

N = a2kF

∫ ∞

0

x2(x2 − 1)2[b(x2 − 1) − 2x]2

[(x2 − 1)2 + a2]3
dx,

(A4)

D = a2k3
F

∫ ∞

0

x2

(x2 − 1)2 + a2
dx,

with a = |�F /eF |, b = kf �′
F /�F . Assuming a �= 0, the

integrals on the right-hand sides of Eqs. (A4) can be calculated
analytically using contour integration in the complex plane and
the method of residues. (More precisely, the integrand for N

can be broken into an even function for which the integration
range, as that for D, can be extended from −∞ to +∞ and
integrated by the method of residues, and an odd function that
is easily integrated after the change of variable y = x2). One
gets

N = a2kF

⎧⎨⎩2π

⎛⎝aY

√
1 + √

1 + a2

2
−X

√
−1 + √

1+a2

2

⎞⎠
− b

4a

[
3π

2
+ 3 cot−1(a) − a

1 + a2

]⎫⎬⎭ ,

D = π

2
ak3

F

√
1 + √

1 + a2

2
, (A5)

where X and Y are functions of a and b given by

X = a2b2(4a2 + 5) − 2(1 + a2)(5a2 + 2)

64 a2(1 + a2)2
,

(A6)

Y = a2b2(21a4 + 35a2 + 12) + 4(1 + a2)(7a2 + 4)

128 a4(1 + a2)2
.

Usually, a is much smaller than 1, even at low densities.
Expanding Eqs. (A6) around a = 0, one obtains

ξnm ∼ 1

akF

√
2

[
1 + a2

8
(3b2 − 12b + 4) + O(a3)

]
. (A7)

With a = |�F |/(h̄2k2
F /2m∗), the leading term yields

ξnm ∼ 1

2
√

2

h̄2kF

m∗|�F | . (A8)

This expression is very close to the Pippard approximation of
the CL [10],

ξPippard = 1

π

h̄2kF

m∗|�F | , (A9)

the prefactor being 1/2
√

2 ∼ 1/2.8 instead of 1/π . Usual
values of a and b show that the first correction term in Eq. (A7)
is very small. For instance, in symmetric nuclear matter at
one-tenth the normal density, one gets kF 
 0.6 fm−1, a 
 0.2,
and b 
 0.3 with the Gogny effective force, which yields
3.10−3 for this term. The next terms can be shown to be even
smaller. Moreover, numerical evaluations of the integrands in
Eqs. (A3) for the Gogny force show that the three preceding
approximations employed for deriving Eqs. (A5), in particular,
the third one, are extremely well justified for densities ranging
from zero to twice the normal density in symmetric nuclear
matter.
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