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BCS-BEC crossover in symmetric nuclear matter at finite temperature:
Pairing fluctuation and pseudogap
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By adopting a T -matrix-based method within the G0G approximation for the pair susceptibility, we studied
the effects of pairing fluctuation on the BCS-BEC crossover in symmetric nuclear matter. The pairing fluctuation
induces a pseudogap in the excitation spectrum of a nucleon in both superfluid and normal phases. The critical
temperature of the superfluid transition was calculated. It differs from the BCS result remarkably when density
is low. We also computed the specific heat, which shows a nearly ideal BEC-type temperature dependence at
low density, but a BCS-type behavior at high density. This qualitative change of the temperature dependence of
specific heat may serve as a thermodynamic signal for the BCS-BEC crossover.
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I. INTRODUCTION

One of the most common properties of the attractive
fermion many-body system is the arising of a superfluid state
at low temperature. Depending on the strength of the attractive
interaction between two fermions, however, the physical
contents of the superfluid state can be distinguishably altered.
When the interaction is weak, the system can be well described
by the BCS theory. In this case, the superfluidity is due to
the condensate of loosely correlated Cooper pairs and the
superfluid gap is much smaller than the Fermi energy. When
the interaction becomes sufficiently strong, the two-fermion
bound state can form, which may behave like a boson. In this
situation, the superfluidity is due to the Bose-Einstein con-
densation (BEC) of the tightly bound two-fermion state and
the superfluid gap can be much larger than the Fermi energy.
Although the BCS and BEC limits have quite different physics,
it was found that there is no true phase transition (traditional
symmetry breaking) happening in between. The transition
from a BCS state to a BEC state is smooth and is often called the
BCS-BEC crossover [1–4]. Such a BCS-BEC crossover was
recently realized in cold atomic experiments (see Refs. [5,6]
and references therein).

It was well known that cold nuclear matter can be in a
superfluid state, which plays a crucial role in a variety of
nuclear many-body problems, from neutron stars, low-energy
heavy-ion collisions, to finite nuclei. It was argued that the
BCS-BEC crossover should also occur in nuclear matter where
the BCS state of neutron-proton (np) Cooper pairs at high
density undergoes a smooth transition into the BEC state of
deuterons at low density [7–14]. At the same time, the chemical
potential changes its sign at a certain density and finally
approaches one-half of the deuteron binding energy at the
low-density limit. Recently, a similar situation was also studied
for the neutron-neutron (nn) pairs in the 1S0 channel [14–25].
It was found that in certain (low) density regions the nn pairs
can be strongly correlated. However, no assured BEC state was
found for nn pairs.

So far, most of the investigations of nuclear BCS-BEC
crossover in the literature focused on the ground-state

crossover described by BCS theory. Although the BCS
theory succeeds in describing the BCS-BEC crossover at
zero temperature, it, as a mean-field theory, is not sufficient
to describe low-density nuclear matter at finite temperature
where the pairing fluctuation is substantial due to the strongly
correlating nature of the system. Actually, as a consequence of
the strong correlation, the low-density nuclear matter exhibits
“pseudogap” phenomena above the critical temperature Tc of
superfluid transition and has an exotic normal state that is
different from the Fermi liquid normal state associated with
BCS theory [26–28]. Similar situations were also found in
other strongly correlated systems, such as high Tc supercon-
ductors [29–34] and cold atomic Fermi gases under Feshbach
resonances [33,35–40]. To include the pairing fluctuation
effects and investigate the pseudogap phenomena, we will
adopt a T -matrix formalism based on a G0G approximation
for the pair susceptibility, which was first introduced by the
Chicago group [34–40]. This formalism generalizes the early
works of Kadanoff and Martin [41] and Patton [42] and can
be considered as a natural extension of the BCS theory since
they share the same ground state. Moreover, this formalism
allows quasi-analytic calculations and gives a simple physical
interpretation of the pseudogap phase. It clearly shows that the
pseudogap is due to the incoherent pairing fluctuation.

Our focus will be put on the np pair in symmetric nuclear
matter (mainly in the low-density region), since the interaction
in this case is more attractive than in the nn or pp channels
and it provides a very good playground for the BCS-BEC
crossover. We will extend the early studies [7–14] to include
pairing fluctuation effects and determine the magnitude of the
pseudogap. Furthermore, the transition temperature for the
onset of the superfluid and the thermodynamic properties will
also be a concern. Such a study will be helpful to understand
the strongly coupling nature of low-density nuclear matter and
may give useful information on the physics of the surface of
nuclei, expanding nuclear matter from heavy-ion collisions,
collapsing stars, and so on.

The article is organized as follows. We give a brief summary
of the effective nucleon-nucleon potential in Sec. II. In Sec. III,
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we give a detailed theoretical scheme of how the T -matrix-
based formalism works at finite temperature. The numerical
results are presented in Sec. IV. We summarize our results in
Sec. V. Throughout this article, we use natural units h̄ = kB =
c = 1.

II. EFFECTIVE NUCLEON-NUCLEON POTENTIAL

The aim of this article is not to determine the precise values
of the pairing gap, the critical temperature, and so on, but
rather to perform a qualitative (or semiquantitative) study of
the effects of pairing fluctuation on the BCS-BEC crossover.
To highlight the essential physics, we will adopt a simple
density-dependent contact interaction (DDCI) developed in
Refs. [43,44]. The potential is of the form

V (x − x′) = v0

{
1 − η

[
ρ(x)

ρ0

]γ }
δ(x − x′), (2.1)

where v0, η, and γ are three adjustable parameters, ρ(x) =
ρn(x) + ρp(x) is the nuclear density, and ρ0 = 0.17 fm−3

is the normal nuclear density. Taking suitable values of
the parameters, one can reproduce the pairing gap �(kF )
as a function of Fermi momentum kF = (3π2ρ/2)1/3 in
the channels L = 0, I = 1, Iz = ±1, S = 0 and L = 0, I =
0, S = 1, Sz = 0 calculated from realistic nucleon-nucleon
potentials [43,44], where L is orbital angular momentum, I

denotes isospin, and S is spin. According to Garrido et al.
[43,44], we will choose in the following numerical calculation
η = 0, v0 = −530 MeVfm3 in the I = 0, 3S1 (np pairing)
channel and an energy cutoff εc = 60 MeV to regularize the
integration. With these parameters one must use a density-
dependent effective nucleon mass m(ρ) corresponding to the
Gogny interaction [43,44][

m(ρ)

m0

]−1

= 1 + m0

2

kF√
π

2∑
c=1

[Wc + 2(Bc − Hc) − 4Mc]

×µ3
ce

−xc

[
cosh xc

xc

− sinh xc

x2
c

]
, (2.2)

where xc = k2
F µ2

c/2, m0 = 939 MeV is the bare mass of the
nucleon, and µc,Wc, Bc,Hc,Mc are the parameters corre-
sponding to the Gogny force D1 [45,46], their values are listed
in Table I.

III. T-MATRIX-BASED FORMALISM

We consider the nuclear matter as an infinite system of
interacting fermions. In the low-density region, np pairing
is realized mainly in the spin-triplet s-wave channel, so
let us consider the following Lagrangian describing neutron

TABLE I. Parameters in the effective mass of nucleon (2.2)
corresponding to the Gogny interaction D1 [45,46].

c µc [fm] Wc [MeV] Bc [MeV] Hc [MeV] Mc [MeV]

1 0.7 −402.4 −100.0 −496.2 −23.56
2 1.2 −21.30 −11.77 37.27 −68.81

and proton interaction via two-body attractive forces in the
3S1, Sz = 0 channel,

L =
∑
i=,np

∑
σ=↑,↓

ψ̄i,σ

(
−∂τ + ∇2

2m
+ µ

)
�i,σ

+ g

2
(ψ̄n↑ψ̄p↓ − ψ̄p↑ψ̄n↓)(�p↓�n↑ − �n↓�p↑), (3.1)

where g = −v0 > 0 is the coupling strength in the np channel
and τ = it is the imaginary time. Introducing auxiliary fields
�̄ ≡ (g/2) (ψ̄n↑ψ̄p↓ − ψ̄p↑ψ̄n↓) and � ≡ (g/2) (�p↓�n↑ −
�n↓�p↑), we can recast Eq. (3.1) as

L =
∑
i=,np

∑
σ=↑,↓

ψ̄i,σ

(
−∂τ + ∇2

2m
+ µ

)
�i,σ − 2

g
�̄�

+ �̄(�p↓�n↑ − �n↓�p↑) + (ψ̄n↑ψ̄p↓ − ψ̄p↑ψ̄n↓)�

= �S−1� − 2

g
�̄�, (3.2)

where we introduced the Nambu-Gorkov spinor � =
(�n↑, ψ̄p↓, �p↑, ψ̄n↓)T and

S−1 ≡
(
S−1

1 0

0 S−1
2

)
, (3.3)

with

S−1
1 ≡

(−∂τ + ∇2/(2m) + µ �

�̄ −∂τ − ∇2/(2m) − µ

)
,

(3.4)

S−1
2 ≡

(−∂τ + ∇2/(2m) + µ −�

−�̄ −∂τ − ∇2/(2m) − µ

)
.

(3.5)

It is seen that S2 differs from S1 only by the minus signs in
front of � and �̄. To make our formulas more compact, in
the following discussions we will treat S1 only and neglect the
subscript 1 without confusion.

In the rest of this section, following the works of the
Chicago group, we will introduce the basic method of the
T matrix. This T matrix is defined as an infinite series of
ladder diagrams in a particle-particle channel (rather than a
particle-hole channel) by constructing the ladder by one free
nucleon propagator and one full nucleon propagator. Then, as
usual, the T matrix enters the nucleon self-energy in place
of the bare interaction vertex. The coupled T -matrix equation
and the self-energy equation (as well as the number density
equation) should be solved self-consistently. One can view this
approach as the simplest generalization of the BCS scheme,
which formally can also be cast in a T -matrix formalism. Let
us discuss this point in the following section.

A. BCS theory

The BCS theory is based on the mean-field approximation
to the (anomalous) self-energy, that is, � and �̄ are chosen as
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their mean-field values � = �sf and �̄ = �̄sf (without loss
of generality, we put �sf and �̄sf to be constants and �̄sf =
�sf), which are regarded as order parameters for the superfluid
phase transition. We start with the Nambu-Gorkov formalism
in momentum space

S−1
mf (K) =

(
G−1

0 (K) �sf

�sf −G−1
0 (−K)

)
, (3.6)

where K = (iωn, k) and iωn = i(2n + 1)πT is the fermion
Matsubara frequency. G−1

0 (K) = iωn − ξk is the inverse of the
free nucleon propagator, ξk = k2/(2m) − µ is the dispersion
relation of the free nucleon. From Eq. (3.6) one gets,

Smf(K) =
(
Gmf(K) Fmf(K)

Fmf(K) −Gmf(−K)

)
, (3.7)

where Fmf(K) is the anomalous propagator,

Fmf(K) = �sfGmf(K)G0(−K) = −�sf

(iωn)2 − E2
k

, (3.8)

and Gmf(K) is the mean-field single nucleon propagator,

Gmf(K) = [
G−1

0 (K) − �mf(K)
]−1 = iωn + ξk

(iωn)2 − E2
k

, (3.9)

with the mean-field dispersion relation of nucleon Ek =√
ξ 2

k + �2
sf and the mean-field self-energy

�mf(K) = −�2
sfG0(−K). (3.10)

The coupled gap and density equations read

�sf = g

βV

∑
K

Fmf(K) = g�sf

V

∑
k

1

2Ek
[1 − 2nF (Ek)] ,

ρ = 2

βV

∑
K

eiηωnGmf(K) = 2

V

∑
k

[
1 − ξk

Ek
(1 − 2nF (Ek))

]
,

(3.11)

where nF (x) = 1/[exp (βx) + 1] is the Fermi-Dirac function
and eiηωn with η → 0 is a convergence factor for the Matsubara
summation. The prefactor 2 on the right-hand side of the
density equation counts the degeneracy of S1 and S2.

In BCS theory, np pairs enter into the problem below Tc,
but only through their condensates at zero momentum. By
rewriting the mean-field self-energy �mf(K) in a manner of

�mf(K) = 1

βV

∑
Q

tmf(Q)G0(Q − K), (3.12)

we are aware of the fact that these condensed pairs can be
associated with a T matrix in the following form

tmf(Q) = −�2
sfδ(Q), (3.13)

with Q = (q0, q), q0 = iων = i2νπT , ν ∈ Z being the boson
Matsubara frequency and δ(Q) = βδν,0δ

(3)(q). Furthermore,
if we define the mean-field pair susceptibility as

χmf(Q) = 1

βV

∑
K

Gmf(K)G0(Q − K), (3.14)

we can re-write the gap equation in a superfluid phase as

1 − gχmf(0) = 0, T � Tc. (3.15)

This suggests that one can consider the uncondensed pair
propagator or T matrix to be of the form

tpair = −g

1 − gχmf(Q)
, (3.16)

and then the gap equation is given by t−1
pair(0) = 0.

It is well known that the critical temperature Tc in the BCS
theory is related to the appearance of a singularity in a T matrix
in the form of Eq. (3.16), but with �sf = 0. This is the so-called
Thouless criterion for Tc [47]. But the meaning of Eq. (3.15)
is more general as stressed by Kadanoff and Martin [41]. It
states that under an asymmetric choice of χ , the gap equation
is equivalent to the requirement that the T matrix associated
with the uncondensed pair remains singular at zero momentum
and energy for all temperatures below Tc.

Although the construction of the uncondensed pair propaga-
tor (3.16) in the BCS scheme is quite natural, the uncondensed
pair has no feedback to the nucleon self-energy (3.12). When
the coupling is weak, such a feedback is not important,
but if the system is strongly coupled, this feedback will be
significant. The simplest way to include the feedback effects
is to replace tmf in Eq. (3.12) by tmf + tpair. But to make such an
inclusion self-consistent, tpair should be somewhat modified,
which we discuss in the next section.

B. G0 G formalism at T � Tc

Physically, the BCS theory involves the contribution to
nucleon self-energy below Tc only from those condensed
pairs (i.e., the q = 0 Cooper pairs). This is justified only at
a weak-coupling region. Generally, in the superfluid phase,
the self-energy consists of two distinctive contributions, one
from the superfluid condensate and the other from thermal
pair excitations. Correspondingly, it is natural to decompose
the self-energy into two additive terms

�(K) = 1

βV

∑
Q

t(Q)G0(Q − K) = �mf(K) + �pg(K),

(3.17)

with the T matrix accordingly given by

t(Q) = tmf(Q) + tpg(Q),
(3.18)

tpg(Q) = −g

1 − gχ (Q)
,

where the subscript pg indicates that this term will lead to the
pseudogap in the nucleon dispersion relation as will become
clear soon. See Fig. 1 for the Feynman diagrams for tpg(Q) and
�(K). Comparing with the BCS scheme, tmf(Q) in Eq. (3.12)
is replaced by t(Q) and �(K) now contains the feedback of
uncondensed pairs. The pair susceptibility χ (Q), as inspired by
Eq. (3.14), is chosen to be the following asymmetric G0G form

χ (Q) = 1

βV

∑
K

G(K)G0(Q − K). (3.19)

In the spirit of Kadanoff and Martin, we now propose the
superfluid instability condition or gap equation as [extension

034007-3



XU-GUANG HUANG PHYSICAL REVIEW C 81, 034007 (2010)

Σ =

tpg = = +

+

Σpg Σmf

FIG. 1. Feynman diagrams for the T matrix of noncondensed
pairs and the nucleon self-energy in the G0G formalism.

of Eq. (3.15)]

1 − gχ (0) = 0, T � Tc. (3.20)

We stress here that this condition has quite clear physical
meaning in the BEC regime. The dispersion relation of the
bound pair is given by t−1(Q) = 0, hence t−1(0) ∝ µb, with
µb the effective chemical potential of the pairs. Then the BEC
condition requires µb = 0 for all T � Tc.

The gap equation (3.20) tells us that tpg(Q) is highly peaked
around Q = 0, so we can approximate �pg as

�pg(K) 
 −�2
pgG0(−K), T � Tc, (3.21)

where we defined the pseudogap parameter via

�2
pg = − 1

βV

∑
Q

tpg(Q). (3.22)

The total self-energy now is

�(K) = −�2G0(−K), (3.23)

with �2 = �2
sf + �2

pg. It is clear that �pg also contributes to
the energy gap in quasinucleon excitation. Physically, the pseu-
dogap �pg below Tc can be interpreted as an extra contribution
to the excitation gap of a nucleon quasiparticle: An additional
energy is needed to overcome the residual attraction between
nucleons in a thermal excited pair to produce fermion-like
quasiparticles. One should note that the �pg is associated with
the fluctuation of the pairs �2

pg ∼ 〈�2〉 − 〈�〉2 [34,37], hence
it does not lead to superfluid (symmetry breaking).

With Eq. (3.21), the pair susceptibility reads

χ (Q) = 1

V

∑
k

[
Ek + ξk

2Ek

nF (−ξq−k) − nF (Ek)

Ek + ξq−k − q0 − i0+

− Ek − ξk

2Ek

nF (Ek) − nF (ξq−k)

Ek − ξq−k + q0 + i0+

]

= 1

V

∑
k,s=±

sEk + ξk

2sEk

nF (−sEk) − nF (ξq−k)

sEk + ξq−k − q0
, (3.24)

with Ek =
√

ξ 2
k + �2. The number equation remains un-

changed except the replacement of �mf → �.
Furthermore, the gap equation (3.20) suggests that we can

make the following pole approximation to the pair propagator
or T matrix tpg(Q) as

tpg(Q) 
 Z−1

q0 − q2/(2mb)
, (3.25)

where the residue Z−1 and effective “boson” mass are given
by

Z = ∂χ

∂q0

∣∣∣∣
Q=0

,

(3.26)
Z

mb

= −1

3

∂2χ

∂q2

∣∣∣∣
Q=0

.

We stress here that, in general, the expansion of t−1
pg (Q) should

also contain a term ∝ q2
0 , but such a term does not bring

qualitative change to the crossover physics [38], hence we
neglect it in Eq. (3.25).

A straightforward calculation gives

Z = 1

V

∑
k

∑
s=±

s

2Ek

nF (Ek) − nF (sξk)

Ek − sξk

= 1

�2

[
ρ

4
− 1

V

∑
k

nF (ξk)

]
, (3.27)

and

Z

mb

= 1

V

∑
k

∑
s

1

2sEk

[
1

m

nF (−sEk) − nF (ξk)

sEk + ξk

− 2k2

3m2

(
nF (−sEk) − nF (ξk)

(sEk + ξk)2
+ n′

F (ξk)

sEk + ξk

)]

= Z

m
− 1

V

∑
k

2k2

3m2�2
n′

F (ξk) − 1

V

∑
k

k2

3m2Ek�4

× {(
E2

k + ξ 2
k

)
[1 − 2nF (Ek)] − 2Ekξk[1 − 2nF (ξk)]

}
.

(3.28)

The expression in the square bracket of the right-hand-side of
Eq. (3.27) is nothing but one-half the density of the pairs ρb/2,
we then have ρb = 2Z�2.

Substituting Eq. (3.25) into Eq. (3.22) leads to

�2
pg = 1

ZV

∑
q

nB[q2/(2mb)] = 1

Z

(
T mb

2π

)3/2

ζ

(
3

2

)
,

(3.29)

where nB (x) = 1/[exp (βx) − 1] is the Bose-Einstein function
and a vacuum term was regularized out. It should be stressed
that at zero temperature �2

pg = 0, hence the G0G scheme
yields the BCS ground state. One should note that �2

pg =
ρuncondensed

b /2Z, and hence �2
sf = ρcondensed

b /2Z.
Now, Eqs. (3.20) and (3.29), as well as a number equation

are coupled to determine the total excitation gap �, the
pseudogap �pg, and the nucleon chemical potential µ at a
given density and temperature below Tc. In short, they are

1 = g

V

∑
k

1

2Ek
[1 − 2nF (Ek)] ,

ρ = 2

V

∑
k

[
1 − ξk

Ek
(1 − 2nF (Ek))

]
, (3.30)

�2
pg = 1

Z

(
T mb

2π

)3/2

ζ

(
3

2

)
.
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C. G0 G formalism above Tc

Above Tc, Eq. (3.20) does not apply, hence Eq. (3.21)
no longer holds. To proceed, we extend our more precise
T � Tc equations to T > Tc in the simplest fashion. We will
continue to use Eq. (3.23) to parametrize the self-energy, but
with � = �pg, and ignore the finite-lifetime effect associated
with normal state pairs. It was shown that this is still a good
approximation when temperature is not very high [36,38,40].
The T matrix tpg(Q) at small Q can be approximated now as

tpg(Q) 
 Z−1

q0 − �q
, (3.31)

where �q = q2/(2mb) − µb. Since there is no condensation
in the normal state, the effective pair chemical potential µb is
no longer zero, instead it should be calculated from

Zµb ≡ t−1(0) = − 1

g
+ χ (0) = − 1

g
+ 1

V

∑
k

1 − 2nF (Ek)

2Ek
.

(3.32)

This is used as the modified gap equation. Similarly, above Tc

the pseudogap �pg is determined by

�2
pg = 1

ZV

∑
q

nB(�q) = 1

Z

(
T mb

2π

)3/2

Li 3
2
(eµb/T ),

(3.33)

where Lin(z) is the polylogarithm function. Then Eqs. (3.32),
(3.33), and the number equation that remains unchanged
determine �pg, µ, and µb.

In summary, at T > Tc, the order parameter is zero and
� = �pg. The closed set of equations determining �, µ, and
µb is

Zµb = − 1

g
+ 1

V

∑
k

1 − 2nF (Ek)

2Ek
,

ρ = 2

V

∑
k

[
1 − ξk

Ek
(1 − 2nF (Ek))

]
, (3.34)

�2
pg = 1

Z

(
T mb

2π

)3/2

Li 3
2
(eµb/T ).

D. Thermodynamics

The thermodynamics of the matter are governed by the
thermodynamic potential, which reads

� = �f + �b, (3.35)

where �f and �b are the contributions from nucleons and
thermal excited pairs

�f = 2�2χ (0) − 4T

V

∑
k

[
Ek − ξk

2
+ ln (1 + e−βEk )

]
,

(3.36)

�b = 2

βV

∑
q

ln (1 − e−β�q ). (3.37)

FIG. 2. (Color online) The nucleon chemical potential over Fermi
energy ratio µ/εF , the scaled pair size ξ/d , and the scaled scattering
length of np collision 1/(kF a) as functions of density. The right
and left vertical lines that separate the BCS, BEC, and crossover
regions are, respectively, determined by the conditions ξ/d = 1 and
µ/εF = 0. The red vertical line in the crossover region denotes the
unitary point where 1/(kF a) = 0.

Other thermodynamic quantities can be derived from � (e.g.,
the entropy density is given by s = −∂�/∂T and the specific
heat cV is given by cV = T ∂s/∂T ).

IV. NUMERICAL RESULTS

We now discuss the results obtained by numerically solving
Eq. (3.30) for T � Tc and Eq. (3.34) for T > Tc. We will
mainly focus on the intermediate (the crossover region, see
Fig. 2) and low-density regions, since the high-density region
is proven to be well understood in BCS theory. We begin with
the results concerning the critical temperature for superfluid
transition in the BCS-BEC crossover.

A. BCS-BEC crossover and critical temperature

At zero temperature, the G0G formalism reproduces the
usual BCS theory. To have a quantitative examination of the
BCS-BEC crossover, it is convenient to define the condensed
np Cooper pair wave function at zero temperature

ψ(r) ≡ C〈BCS|a†
n↑(x)a†

p↓(x + r)|BCS〉

= C ′
∫

d3k
(2π )3

ψ(k)eikr, (4.1)

where a
†
nσ (a†

pσ ) is the creation operator of a neutron (proton)
with spin σ and ψ(k) are the anomalous density distribution
function

ψ(k) = 〈BCS|a†
n↑(k)a†

p↓(−k)|BCS〉 = �

2Ek
. (4.2)

After substituting Eq. (4.2) into the number and gap equations,
we get the following Schrödinger-like equation

k2

m
ψ(k) − g(1 − 2nk)

∫
d3k′

(2π )3
ψ(k′) = 2µ�(k). (4.3)
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In the limit of vanishing density nk → 0, this equation goes
over into the Schrödinger equation for the np bound states
(the deuterons) in the center-of-mass frame and the chemical
potential 2µ then plays the role of the binding energy.
Hence, one expects that at sufficiently low density and low
temperature, the symmetric nuclear matter should be in the
BEC phase.

To have a more quantitative description of the BCS-BEC
crossover, we define other characteristic quantities: The mean-
square-root size of the np pair

ξ 2 =
∫

d3xx2|ψ(x)|2∫
d3x|ψ(x)|2 , (4.4)

and the s-wave scattering length a that relates the coupling
constant g to the low-energy limit of the two-body T matrix
of np scattering in a vacuum

m

4πa
= − 1

g
+

∫
d3k

(2π )3

m

k2
. (4.5)

In the BCS region, ξ is expected to be larger than the average
distance between the neutron and proton d ≡ (ρ/2)−1/3 and
at the same time the scattering length a should be negative
to ensure that the interaction between the neutron and proton
is attractive. In the BEC region, however, ξ/d should be very
small reflecting the compactness of the pair and the scattering
length will be positive to guarantee the appearance of the
two-body bound state.

In Fig. 2, we show the nucleon chemical potential over
Fermi energy ratio µ/εF , the scaled mean-square-root size
ξ/d, and the inverse scattering length 1/(kF a) as functions
of nuclear density. Although ξ itself is not a monotonous
function of ρ, the scaled one goes down monotonously
with decreasing density and finally approaches zero at zero
density. The right vertical line around ρ/ρ0 ∼ 0.5 indicates
the position of ξ = d, which can be used to separate the BCS
(weak coupling) region from the crossover (intermediately
strong coupling) region. The chemical potential roughly equals
the Fermi energy at the BCS region, but it drops down
with decreasing density and becomes negative below ρ/ρ0 ∼
0.002. The position where µ changes sign can be regarded
as the boundary between the BEC (strong coupling) region
in which µ is negative and the other region with positive µ.
The third panel shows that 1/(kF a) increases with decreasing
density and becomes positive after ρ/ρ0 ∼ 0.06. This turning
point is called the unitary limit, which we indicate by a red
vertical line in the figure. We will discuss the unitary limit in
next section.

The numerical result for the critical temperature is shown
in Fig. 3. The dashed line shows the critical temperature over
the Fermi energy ratio given by BCS theory, which blows up
quickly when density goes down in the crossover and BEC
regions (T BCS

c is almost ten times larger than Tc at density ρ =
0.0001ρ0). Physically, the ratio T BCS

c /εF as well as �T =0/εF

measures the strength of the attraction between the neutron
and proton. However, due to the lack of pairing fluctuation
effect, in the crossover and BEC regions the BCS theory does
not give the correct critical temperature for superfluid/normal
transition, which is mainly determined by the bosonic degree

FIG. 3. (Color online) The critical temperature Tc scaled by the
Fermi energy εF as a function of density. Also shown is the BCS
prediction (dashed line).

of freedom in these regions. The solid line is for Tc obtained
from Eq. (3.30). We can see that the evolution of Tc is smooth
and the superfluid phase transition is second order in the whole
density region. Also, it can be seen that Tc is not a monotonous
function of density: There is a local maximum in the Tc curve,
which is roughly located around the unitary point. One should
notice that a similar local maximum also appears in the famous
Nozieres-Schmitt-Rink approach for Tc [3]. At the low-density
limit, all the nucleons participate into the deuterons, which
are long lived at a temperature lower than Tc, the system is
essentially a deuteron gas and the superfluid is totally due to
the BEC of deuterons. In this case, we have, at Tc, 2Z�pg(T =
Tc) = ρuncondensed

b = ρ/2. Solving out Tc, we get

Tc = 2π

mb

[
ρ

4ζ (3/2)

]2/3

. (4.6)

This is just the BEC transition temperature for a boson of mass
mb. Adopting that mb ≈ 2m, we arrived at the well-known
result,

Tc ≈ 0.218εF , (4.7)

which coincides well with our numerical result.
It should be stressed that the BCS critical temperature T BCS

c

was found to be a good approximation for the pair dissociation
temperature T ∗ (above which the pairs are essentially dissoci-
ated by the thermal motion of the participators) [36]. So it is a
pseudogap-dominated region in between Tc and T BCS

c .
Corresponding to the evolution of the critical temperature,

it is indicative to see how the pseudogap evolves. In Fig. 4, we
plot the zero temperature excitation gap �(T = 0) as well as
the pseudogap �pg(T = Tc) at Tc. It can be seen that at low
density ρ <∼ 0.01ρ0, �pg(T = Tc) is roughly equal to �(T =
0) (but they do not completely coincide) reflecting the strong
coupled nature in this case; however, at high density, �pg(T =
Tc) is much smaller than �(T = 0), indicating that the pairing
fluctuation is not essential there and BCS theory can work
well. In the following sections, we will focus on the crossover
and BEC regions where BCS theory is not applicable at finite
temperature.
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FIG. 4. (Color online) The excitation gap � at zero temperature
and the pseudogap at Tc as functions of density.

B. Unitary matter

As shown in the last section, the np scattering length
kF a is infinite at the unitary point ρ ≈ 0.06ρ0. We call the
nuclear matter at this point a unitary matter. It is interesting
because it exhibits universal behaviors (i.e., the physical
properties of unitary matter are independent of the details
of the interactions [48]). Hence, the unitary nuclear matter
behaves just like the unitary cold atomic Fermi gas that was
realized in the laboratory through the Feshbach resonance. For
unitary matter, the unique characteristic scale is given by the
Fermi momentum kF , so we have µT =0 = ζεF , �T =0 = γ εF ,
Tc = αεF , �pg(T = Tc) = λεF , and so on, with ζ, γ, α, λ,
and so on, being universal constants. In our G0G scheme,
the universal coefficients are given by ζ ≈ 0.59, γ ≈ 0.64,
α ≈ 0.26, and λ ≈ 0.53. For comparison, we would like to list
the values obtained by Monte Carlo techniques: ζ ≈ 0.42 [49],
γ ≈ 0.50 [49], α ≈ 0.157 [50], or 0.25 [51]. Our results are
larger than the Monte Carlo values. It is easy to show that
the energy per particle in unitary matter is E/N = ζ (E/N)free

where (E/N)free is the energy per particle for free fermion gas.
Moreover, the equation of state of unitary matter is the same
as the free fermion gas ε = 3P/2, with P being the pressure.

In Fig. 5, we plot �sf (in units of εF , the same in the follow-
ing), �pg, and � as functions of temperature for unitary matter.
As a comparison, we also plot the BCS result �BCS above Tc.
As we can see from the figure, with decreasing temperature
below Tc, �pg(T ) is a monotonically decreasing function from
its maximum value at Tc and it essentially vanishes at T = 0
roughly according to �pg(T ) ∝ T 3/4 [see Eq. (3.29)], while
�sf(T ) and �(T ) both increase monotonically and become
coincident at T = 0. Such kinds of temperature dependence
reflect the fact that the pseudogap is due to the thermally
excited pairs with finite q: When T grows higher and higher,
more and more pairs are excited from the condensate and at
Tc all the condensed pairs are thermally excited; after that the
thermal motion of nucleons begins to dissociate the pairs and
hence �pg (more exactly, Z�2

pg) begins decreasing above Tc.
In addition, the critical temperature Tc is smaller than the BCS
prediction, which shows the fact that the pairing fluctuation

FIG. 5. (Color online) The superfluid gap �sf (dashed line),
pseudogap �pg (dotted line), and the total gap � (solid line) as
functions of the temperature at unitary point ρ = 0.06ρ0. The BCS
result (dot-dashed line) above Tc is also shown.

tends to destroy the order of the system. Although the physical
picture is clear, our formalism cannot be applied to very high
temperature, where the effects of finite lifetime of the pairs
become significant, which are not included in our formalism.

One should note that � and its derivative d�/δT are
continuous at Tc. This is very different from the BCS case,
where d�BCS/δT is discontinuous at T BCS

c . Such a difference
can be reflected in thermodynamic quantities such as the
specific heat. In Fig. 6, we illustrate the entropy density
and the specific heat cV for unitary matter. We compute cV

through cV = T ∂s/∂T , which involves the derivatives ∂µ/∂T ,
∂�/∂T , ∂mb/∂T , and ∂µb/∂T , so it is a nontrivial calculation.
As is well known, for the weak-coupling BCS case, the specific
heat has a jump �cV ∝ d�2/δT at T BCS

c , which reflects the
sudden opening of the excitation gap. For unitary matter,
however, we found a continuous cV at Tc. This continuity of cV

reflects the previous existence of the excitation gap above Tc

due to the pairing fluctuation. It may serve as an experimentally

FIG. 6. (Color online) The entropy density and the specific heat of
unitary matter as functions of temperature. Unlike the weak-coupling
BCS case, there is no jump for the specific heat at Tc.
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accessible signal for the existence of the pseudogap in the
normal phase.

C. Deuteron gas

When density is very low, say ρ < 0.002ρ0 from Fig. 2, the
symmetric nuclear matter is effectively a Bose gas of deuteron.
We, in this section, study the properties of deuteron gas based
on our G0G formalism. First, we observed from Figs. 2 and
3 that when ρ → 0, −µ � Tc. In this case, �, µ, and Z

are almost temperature independent below Tc reflecting the
strong np attraction. Then for T < Tc, the governing equations
become (expanding in powers of a3ρ and �2/µ2) [38]

m

4πa
= 1

V

∑
k

(
m

k2
− 1

2Ek

)
≈ m

√
2m|µ|
4π

(
1 + �2

16µ2

)
,

ρ = 2

V

∑
k

(
1 − ξk

Ek

)
≈ m2�2

2π
√

2m|µ| , (4.8)

�2
pg ≈ 4�2

ρ

(
T m

π

)3/2

ζ

(
3

2

)
.

Hence at low temperature, we have

�2 ≈ 2πρ

m2a

(
1 − πa3ρ

2

)
,

�2
pg ≈ 8π

m2a
ζ

(
3

2

)(
mT

π

)3/2 (
1 − πa3ρ

8

)
, (4.9)

µ ≈ − 1

2ma2
(1 − πa3ρ).

These relations give how �(ρ), �pg(ρ), µ(ρ), and mb(ρ)
evolve with ρ at T < Tc in the deep BEC region.

Next, let us study the temperature dependence of these
characteristic quantities. To specify the problem, we fix the
density as ρ = 0.001ρ0. By solving the coupled equations
(3.30), we get the transition temperature Tc 
 0.22εF ≈ 0.08
MeV. In Fig. 7, we show the superfluid gap �sf , the pseudogap
�pg, and the total excitation gap � as functions of temperature.
Due to the stronger attraction, unlike for the unitary matter,

FIG. 7. (Color online) The superfluid gap �sf , pseudogap �pg,
and the total gap � as functions of the temperature at density ρ =
0.001ρ0. The BCS result is also shown above TC .

FIG. 8. (Color online) The nucleon chemical potential and the
effective deuteron chemical potential as functions of T at density
ρ = 0.001ρ0.

now �(T ) is almost a constant below Tc and at T = 0, �/εF

is even larger than 1. But near zero temperature, �pg(T ) still
behaves as �pg ∝ T 3/4, as shown in Eq. (4.9).

In Fig. 8, we give the temperature dependence of the
nucleon chemical potential µ(T ) and the effective deuteron
chemical potential µb(T ). Below Tc, µb is zero meaning that
the BEC superfluid is formed. Above Tc, both µ and µb

decrease, corresponding to the thermal dissociating effect. Just
above Tc, a simple calculation leads to that µ(T ) − µ(Tc) ∝
µb ∝ (T − Tc)2. Since µb is related to µ and the deuteron
binding energy Eb through µb = 2µ + Eb, we get that the
binding energy Eb at zero temperature is roughly 0.6εF at
ρ = 0.001ρ0 from Fig. 8. The effective deuteron mass mb(T )
is shown in Fig. 9. It is seen that at low temperature mb is
almost a constant, but it drops when temperature becomes
higher. We note here that mb can be regarded as the medium
renormalized deuteron mass only in a deep BEC region
[52,53]. It is renormalized because it contains indirectly the
deuteron-deuteron interaction through the nucleon-deuteron
coupling in the nucleon self-energy. Hence, this effective mass
is not equal to 2m − Eb, as one may intuitively expect. It

FIG. 9. (Color online) The effective deuteron mass parameter as
a function of T at density ρ = 0.001ρ0.
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FIG. 10. (Color online) The entropy density and the specific heat
of symmetric nuclear matter as functions of temperature at density
ρ = 0.001ρ0.

is actually a parameter measuring the effective size of the
noncondensed pairs, hence it is also defined in intermediate
coupling and even weak coupling regions. The drop of mb

at high temperature simply indicates that the effective size of
the noncondensed pair is enlarged by the thermal motion of
participate nucleons.

Finally, we depict the entropy density and the specific
heat for deuteron gas in Fig. 10. One should note that at
low temperature the behavior of cV is very different from
the prediction of BCS theory: It shows T 3/2 dependence at
low T rather than an exponential suppression. Actually, since
the condensate does not contribute to entropy, cV at T � Tc

contains contributions from quasinucleons and from thermal
excited pairs. The former contribution is just the BCS theory
result

cBCS
V ∝

(
�0

T

)1/2

e−�0/T , T � Tc, (4.10)

with �0 = �T =0. The latter one is dominated by T ∂�2
pg/∂T

for other quantities are almost independent of T [see Eq. (4.9)],
hence

c
pg
V ∝ T 3/2, T � Tc, (4.11)

which dominates cV at low temperature. At the phase transition
point, similarly with unitary matter, due to the continuity of
the temperature derivative of the excitation gap, cV does not
get a discontinuity, but a λ-type behavior. Now, both the low
temperature and the critical behaviors of cV are quite similar
with the situation found in an ideal BEC superfluid. It indicates
that the symmetric nuclear matter at very low density is a nearly
ideal deuteron gas.

Figures 6 and 10 inspire us that the specific heat jump
at Tc may serve as a possible thermodynamic signal for the
BCS-BEC crossover. We hence draw in Fig. 11 the specific
heat jump �cV ≡ cV (Tc − 0+) − cV (Tc + 0+) at Tc over the
density ratio as a function of density. As density decreases,
�cV /ρ monotonously decreases and vanishes when density
is smaller than 0.06ρ0 which is just the unitary point. The
physical reason for such a kind of behavior is clear: as density
decreases the system becomes more and more bosonic and the

FIG. 11. (Color online) The specific heat jump at Tc over density
ratio �cV /ρ as a function of density.

finite jump of the specific heat at Tc, which is a typical BCS
feature gets suppressed.

V. SUMMARY AND DISCUSSION

As is well known, BCS theory is only applicable to a
weak-coupling system or at zero temperature since it does
not contain any pairing fluctuation effects. To study the
BCS-BEC crossover at finite temperature, it is necessary to
go beyond the BCS description. We, in this article, studied
the effects of the pseudogap due to the pairing fluctuation on
the BCS-BEC crossover problem in symmetric nuclear matter.
For this purpose, we adopted a T -matrix method based on a
G0G approximation for the pair susceptibility. This method is
a natural extension of BCS theory and has been widely used in
theoretical studies of high Tc superconductor and BCS-BEC
crossover problems in cold fermion atoms.

The pseudogap is determined by the density of thermally
excited np pairs and vanishes at zero temperature. We found
that its effects are substantial for intermediate and strong
coupling regions (corresponding to intermediate and low-
density regions) in the BCS-BEC crossover when temperature
is not zero. At a high-density region, the pseudogap is
essentially small and the G0G theory recovers the BCS theory.
Taking into account the pseudogap effects, we calculated the
critical temperature for the superfluid phase transition shown
in Fig. 3. At high density, Tc follows the BCS result, but
at intermediate and low densities it deviates from the BCS
prediction remarkably. At a dilute limit, Tc coincides with the
BEC transition temperature of dilute deuterons.

The pseudogap persists in both the T > Tc and T < Tc

regions. We investigated how the pseudogap affects the
properties of unitary matter and dilute deuteron matter. At
intermediate and low densities, the significant result is that due
to the pseudogap, the specific heat is continuous at Tc. At low
density, cV ∝ T 3/2 at low temperature and has a continuous
λ-type behavior at Tc just like an ideal BEC superfluid. The
qualitative change of the temperature dependence of specific
heat from high density to low density also indicates the
BCS-BEC crossover. Moreover, as density decreases, the jump
of specific heat at Tc decreases and eventually disappears
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when ρ <∼ 0.06ρ0 as shown in Fig. 11. This may serve as a
thermodynamic signal for the BCS-BEC crossover.

We stress that the G0G approximation is, in principle, not
applicable at a temperature much higher than Tc, since then the
thermal dissociation effect will result in a finite width of the
pairs, which we did not take into account. Besides, symmetric
nuclear matter may favor the formation of α cluster [54], but we
did not consider this situation in the present article. Finally,
since most of the nuclear systems in nature do not contain
equal numbers of neutrons and protons. It will be significant
to extend the present formalism to asymmetric nuclear matter
[14]. We leave all these challenges for future studies.
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