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Two integral relations derived from the Kohn variational principle (KVP) are used for describing scattering
states. In usual applications the KVP requires the explicit form of the asymptotic behavior of the scattering wave
function. This is not the case when the integral relations are applied since, due to their short-range nature, the only
condition for the scattering wave function � is that it be the solution of (H − E)� = 0 in the internal region.
Several examples are analyzed for the computation of phase shifts from bound-state-type wave functions or, in
the case of the scattering of charged particles, it is possible to obtain phase shifts using free asymptotic conditions.
As a final example we discuss the use of the integral relations in the case of the hyperspherical adiabatic method.
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I. INTRODUCTION

The study of bound and scattering states in few-nucleon
systems gives valuable information regarding the underlying
nuclear interaction. The fact that the spectrum of each
hydrogen and helium isotope has only one bound state in the
mass region A = 2–4, limits the applicability of bound-state
methods to a few states in the study of these nuclei. In Ref. [1]
a detailed study of the three-nucleon bound states has been
done, whereas a similar analysis in the case of 4He can be
found in Refs. [2,3]. In recent years much of the study of
the three-nucleon system has been done in the three-nucleon
continuum (see Refs. [4,5] and references therein). Results in
the four-body system have been obtained so far in the energy
region below the three particle breakup [6,7].

Well-established methods for treating both bound and
scattering states regard the solution of the Faddeev equations
(A = 3) or Faddeev-Yakubovsky equations (A = 4) in config-
uration or momentum space and the hyperspherical harmonic
(HH) expansion in conjunction with the Kohn variational
principle (KVP). These methods have proven to be of great
accuracy. They have been tested using different benchmarks
[8,9]. On the other hand, many other methods are presently
used to describe bound states: for example, the Green function
Monte Carlo (GFMC) and no-core shell model (NCSM)
methods have been used in nuclei up to A = 10 and A = 12,
respectively [10,11]. Attempts to use these methods for the
description of scattering states have recently appeared [12,13].

The possibility of employing bound-state techniques for
describing scattering states has always attracted particular
attention [14]. Recently continuum-discretized states obtained
from the stochastic variational method have also been used
to study α + n scattering [15]. In those two approaches
the tangent of the phase shift results to be a quotient of
two numbers. In the former the numerator and denominator
are obtained from two integral relations after projecting the

Schrödinger equation, whereas in the latter the numerator
results from an integral relation derived by means of the
Green’s function formalism and the denominator from the
normalization of the continuum-discretized state.

Another problem that has received particular attention in
few-nucleon scattering processes regards collisions between
charged particles. Traditionally, the Faddeev method has been
applied to the neutral n-d reaction. Applications to p-d zero
energy scattering were studied in configuration space by the
Los Alamos-Iowa group using s-wave potentials [16] and
realistic forces [17]. In those calculations the KVP was used
to correct the first-order estimate of the scattering length
after solving the Faddeev equations in which the partial
wave expansion of the Coulomb potential was truncated.
Low-energy p-d elastic scattering has also been studied using
the pair correlated hyperspherical harmonic (PHH) expansion
[18]. A benchmark comparing these two techniques was given
in Ref. [19]. A different way to treat the Coulomb potential
in few-nucleon scattering was proposed in Ref. [20], based
on the works of Ref. [21], in which the Alt-Grassberger-
Sandhas equations were solved using a screened Coulomb
potential and then the scattering amplitude was obtained after
a renormalization procedure. Summarizing, the description of
scattering states using very accurate methods are at present
limited to A � 4 systems. On the other hand, accurate methods
for describing bound states beyond the A = 4 mass system
exist, therefore the discussion of new methods for extending
these approaches to treating scattering states is of interest. In
this discussion the treatment of the Coulomb interaction cannot
be neglected.

Recently two integral relations have been derived from the
KVP [22]. It has been shown that starting from the KVP, the
tangent of the phase shift can be expressed as a quotient where
the numerator and the denominator are given in term of two
integral relations. This is similar to what was proposed in
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Ref. [14]; however, the variational character of the quotient
and its strict relation to the KVP were not recognized. In
fact, it is this property that makes possible many different and
interesting applications of the integral relations. Accordingly,
in the present study we would like to discuss some specific ex-
amples. We will show that the integral relations can be used to
compute phase shifts from bound-state-like functions. We start
our analysis from the simplest case, the A = 2 system, using
a model potential. Then, using a semirealistic interaction, n-d
as well as p-d scattering are considered. This is of particular
interest since, as we mentioned before, p-d scattering has been
a subject of intense investigations. A second application of the
integral relations regards the possibility of determining p-d
phase shifts from a calculation in which the Coulomb potential
has been screened. Finally, as a third application, we will
discuss the use of the integral relations with scattering wave
functions obtained from the hyperspherical adiabatic (HA)
expansion. All these examples serve to demonstrate the general
validity of the KVP formulated in terms of integral relations.
Due to their short-range nature, they are determined by the
wave function in the interaction region and not from its explicit
asymptotic behavior. This means that any wave function �

satisfying (H − E)� = 0 in the interaction region can be
used to determine the corresponding scattering amplitude even
when its asymptotic behavior is not the physical one.

The discussion presented here is limited to systems with
A = 2, 3. This is because our expertise to calculate few-
nucleon wave functions is limited to these systems. However
applications to heavier systems are possible and, in particular,
it would be interesting to analyze the use of the GFMC method
in the computation of the integral relations in systems with
A > 4. The article is organized as follows: in Sec. II the
integral relations are derived from the KVP. Applications to
the two- and three-body systems are given in Secs. III and IV,
respectively, whereas applications of the integral relations in
connection with the HA are given in Sec. V. The conclusions
are given in the last section.

II. INTEGRAL RELATIONS FROM THE KOHN
VARIATIONAL PRINCIPLE

In order to derive the integral relations we first consider a
two-body system interacting through a short-range potential
V (r) at the center-of-mass energy E in a relative angular
momentum state l = 0. The solution of the Schrödinger
equation in configuration space (m is twice the reduced mass),

(H − E)�(r) =
(

−h̄2

m
∇2 + V − E

)
�(r) = 0, (1)

can be obtained after specifying the corresponding boundary
conditions. For E > 0, with k2 = E/(h̄2/m) and assuming a
short-range potential V , �(r) = φ(r)/

√
4π and

φ(r → ∞) −→
√

k

[
A

sin(kr)

kr
+ B

cos(kr)

kr

]
. (2)

from which one gets � → AF + BG, where

F =
√

k

4π

sin(kr)

kr (3)

G =
√

k

4π

cos(kr)

kr
.

Use of the Wronskian theorem immediately leads to the
following general expressions for the coefficients A and B:

B = m

h̄2 [〈F |H − E|�〉 − 〈�|H − E|F 〉]
(4)

A = m

h̄2 [〈�|H − E|G〉 − 〈G|H − E|�〉],
where we have made use of the fact that:

m

h̄2 [〈F |H − E|G〉 − 〈G|H − E|F 〉] = 1. (5)

With the above normalization, and assuming that � is an exact
solution of Eq. (1), it follows that � satisfies the following
integral relations:

− m

h̄2 〈�|H − E|F 〉 = B

m

h̄2 〈�|H − E|G〉 = A (6)

tan δ = B

A
.

Explicitly, they are

− m

h̄2
√

k

∫ ∞

0
dr sin(kr)V (r)[rφ(r)] = B

(7)
m

h̄2
√

k

∫ ∞

0
dr cos(kr)V (r)[rφ(r)] + φ(0)√

k
= A,

where in the last integral we have used the property that
∇2(1/r) = −4πδ(r).

In practical cases the solution of the Schrödinger equation
is obtained numerically. Then, tan δ is extracted from φ(r)
analyzing its behavior outside the range of the potential. The
equivalence between the extracted value and that obtained
from the integral relations defines the accuracy of the numeri-
cal computation. A relative difference of the order of 10−7 of
the two values is usually achieved using standard numerical
techniques to solve the differential equation and to compute
the two one-dimensional integrals. The short-range character
of the integral relations should be noticed. This means that the
phase shift is determined by the internal structure of the wave
function.

The second relation of Eq. (7) shows a dependence on the
value of the wave function at the origin. It could be convenient
to eliminate this explicit dependence since the numerical
determination of φ(0) might be problematic, as we will show.
To this end we introduce a regularized function G̃ = fregG

with the property that |G̃(r = 0)| < ∞ and G̃ = G outside
the interaction region. A possible choice is

G̃ =
√

k

4π

cos(kr)

kr
(1 − e−γ r ), (8)

where the regularization function freg = (1 − e−γ r ) has been
introduced, and γ is a nonlinear parameter which will be
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discussed below. Values satisfying γ > 1/r0, with r0 the
range of the potential, could be appropriate. The regularized
function G̃ (as well as the irregular function G) satisfies the
normalization condition

m

h̄2 [〈F |H − E|G̃〉 − 〈G̃|H − E|F 〉] = 1. (9)

Therefore the second integral relation in Eq. (6) remains valid
using G̃ in place of G,

m

h̄2 〈�|H − E|G̃〉 = A, (10)

with the explicit form:

m

h̄2
√

k

∫ ∞

0
dr cos(kr)V (r)[rφ(r)] + Iγ = A, (11)

where in Iγ all terms depending on γ , introduced by freg, are
included:

Iγ = − 1√
k

∫ ∞

0
dr

[
m

h̄2 V (r) cos kr−γ 2 cos kr−2γ k sin kr

]
× e−γ r [rφ(r)]. (12)

Comparing Eq. (11) to Eq. (7) we identify Iγ = φ(0)/
√

k.
This equality can be verified with the same relative accuracy
obtained for tan δ provided that the regularization of G is done
inside the interaction region.

In the following we demonstrate that the relation tan δ =
B/A, which is an exact relation when the exact wave function
� is used in Eq. (6), can be considered accurate up to second
order when a trial wave function is used, as it has a strict
connection with the Kohn variational principle.

The connection of the integral relations with the KVP is
straightforward. Defining a trial wave function �t to be

�t = �c + AF + B G̃, (13)

with �c → 0 as r → ∞, the condition �t → AF + B G as
r → ∞ is fulfilled. The KVP states that the second-order
estimate for tan δ is

[tan δ]2nd = tan δ − m

h̄2 〈(1/A)�t |H − E|(1/A)�t 〉. (14)

The above functional is stationary with respect to variations of
�c and tan δ. Without a loss of generality �c can be expanded
in terms of a (square integrable) complete basis

�c =
∑

n

anφn(r). (15)

The variation of the functional with respect to the linear
parameters an and tan δ leads to the following equations

〈φn|H − E|�t 〉 = 0
(16)〈G̃|H − E|�t 〉 = 0.

To obtain the last equation, the normalization relation of
Eq. (9) has been used. From these two equations, �c and
the first-order estimate of the phase shift (tan δ)1st can be
determined. It should be noted that the first equation implies
〈�c|H − E|�t 〉 = 0. Furthermore, from the general relation
for A in Eq. (4), and using the second equation in Eq. (16), the

following integral relation results

m

h̄2 〈�t |H − E|G̃〉 = A. (17)

Replacing the two relations of Eq. (16) into the functional of
Eq. (14), a second-order estimate of the phase shift is obtained

[tan δ]2nd = (tan δ)1st − m

h̄2 〈F |H − E|(1/A)�t 〉. (18)

Multiplying Eq. (18) by A one gets

B2nd = B1st − m

h̄2 〈F |H − E|�t 〉. (19)

On the other hand, a first-order estimate for the coefficient B

can be obtained from the general relation in Eq. (4), i.e.,

m

h̄2 [〈F |H − E|�t 〉 − 〈�t |H − E|F 〉] = B1st. (20)

Therefore, replacing Eq. (20) in Eq. (19), a second-order
integral relation for B is obtained. The above results can be
summarized as follow

B2nd = − m

h̄2 〈�t |H − E|F 〉

A = m

h̄2 〈�t |H − E|G̃〉 (21)

[tan δ]2nd = B2nd/A.

These equations extend the validity of the integral relations,
given in Eq. (6) for the exact wave functions, to trial
wave functions. To be noticed that F, G̃ are solutions of
the Schrödinger equation in the asymptotic region, therefore
(H − E)F → 0 and (H − E)G̃ → 0 as the distance between
the particles increases. As a consequence the decomposition
of �t in the three terms of Eq. (13) can be considered formal
since, due to the short-range character of the integral relations,
it is sufficient for the trial wave function to be a solution of
(H − E)�t = 0 in the interaction region, without an explicit
indication of its asymptotic behavior. This fact, together with
the variational character of the relations, allows for a number
of applications to be discussed in the next sections.

III. USE OF THE INTEGRAL RELATIONS IN THE
TWO-BODY CASE

In this section we present applications of the integral
relations of Eq. (21) to a two-body system. To make contact
with the results given in Refs. [22,23], we use a central, s-wave
Gaussian potential

V (r) = −V0 exp
(−r2

/
r2

0

)
, (22)

with V0 = −51.5 MeV, r0 = 1.6 fm, and h̄2/m =
41.4696 MeV fm2. This potential has a shallow L = 0 bound
state with energy E2B = −0.397743 MeV.

We introduce the orthogonal basis

φm = L(2)
m (z) exp −(z/2), (23)

with Lm a (normalized) Laguerre polynomial and z = βr ,
where β is a nonlinear parameter, to expand the wave function
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of the system

�0 =
M−1∑
m=0

a0
mφm. (24)

We solve the eigenvalue problem of H for different dimensions
M of the basis. The variational principle states that

E0 = 〈�0|H |�0〉 � E2B, (25)

with the equality valid when M → ∞. The nonlinear param-
eter β can be fixed to improve the convergence properties of
the basis. In fact, for each value of M there is a value
of β that minimizes the energy. Increasing M , the minimum
of the energy becomes less and less dependent on β resulting
in a plateau. Increasing further the dimension of the basis,
the extension of the plateau increases as well, without any
appreciable improvement in the eigenvalue, indicating that
the convergence has been reached to a certain accuracy. At
each step �0 represents a first-order estimate of the exact
bound-state wave function.

Since, in our example, the system has only one bound state,
with appropriate values of M and β, the diagonalization of
H results in one negative eigenvalue E0 and M − 1 posi-
tive eigenvalues Ej (j = 1, . . . . ,M − 1). The corresponding
wave functions

�j =
M−1∑
m=0

aj
mφm j = 1, . . . .,M − 1, (26)

are approximate solutions of (H − Ej )�j = 0 in the interac-
tion region. As r → ∞ they go to zero exponentially and
therefore they do not represent physical scattering states.
The negative energy E0 and the first three positive energy
eigenvalues (Ej , j = 1, 3) are shown in Fig. 1 as a function
of β for M = 40. We observe the plateau already reached by
E0 for the values of β showed in the figure. Furthermore, we
observe the monotonic behavior of the positive eigenvalues
toward zero as β decreases. The corresponding eigenvectors
can be used to compute the integral relations of Eq. (21)

1 1.5 2 2.5 3

β [fm
-1

]

-0.5

0

0.5

1

1.5

2

E
 [

M
eV

]

E
0
=-0.397743 MeV

E
1

E
2

E
3

M=40

FIG. 1. (Color online) The two-nucleon bound-state energy E0

and the first three positive eigenvalues Ej as a function of β in the
case of M = 40.

TABLE I. The two-nucleon bound-state E0 and the first three
positive eigenvalues Ej (j = 1, 3), as a function of the number of
Laguerre polynomials M . The second-order estimates, [tan δj ]2nd,
obtained applying the integral relations are given in each case and
compared to the exact results, tan δj .

M 10 20 30 40

E0 −0.395079 −0.397740 −0.397743 −0.397743

E1 0.536349 0.116356 0.048091 0.026008
[tan δ1]2nd −1.507280 −0.622242 −0.392005 −0.286479
tan δ1 −1.522377 −0.621938 −0.392021 −0.286480

E2 1.984580 0.449655 0.190019 0.103503
[tan δ2]2nd −5.919685 −1.353736 −0.812313 −0.584389
tan δ2 −5.703495 −1.354691 −0.812270 −0.584388

E3 4.512635 0.994433 0.423117 0.231645
[tan δ3]2nd 13.998124 −2.451174 −1.302799 −0.908128
tan δ3 12.684474 −2.448343 −1.302887 −0.908131

and to calculate the second-order estimate of the phase shifts
δj at the specific energies Ej . This analysis is shown in
Table I in which the nonlinear parameter β of the Laguerre
basis has been chosen to be 1.2 fm−1. In the first row of
the table the ground-state energy is given for different values
of the number M of Laguerre polynomials. The stability of
E0 at the level of 1 keV is achieved already with M = 20.
For a given value of M , Ej , with j = 1, 2, 3, are the first
three positive eigenvalues. The eigenvectors corresponding to
positive energies approximate the scattering states at these
specific energies. Since the lowest scattering state appears at
zero energy, none of the positive eigenvalues can reach this
value for any finite values of M . We observe (see Fig. 1) that
the eigenvalues diminish as M increases. Defining k2

j = m

h̄2 Ej ,
the second-order estimate for the phase shift at each energy
and at each value of M is obtained as

− m

h̄2 〈�j |H − E|Fj 〉 = Bj with Fj =
√

kj

4π

sin(kj r)

kj r

m

h̄2 〈�j |H − E|G̃j 〉 = Aj with G̃j = freg

√
kj

4π

cos(kj r)

kj r

[tan δj ]2nd = Bj

Aj

. (27)

On the other hand, as we are considering the A = 2 system,
at each specific energy value Ej the phase shift tan δj can be
obtained by solving the Schrödinger equation numerically. The
two values, [tan δj ]2nd and tan δj , are given in the Table I at the
corresponding energies as a function of M . We observe that,
as M increases, the relative difference between the variational
estimate and the exact value reduces, for example at M = 40 it
is about 10−6. In fact, as M increases, each eigenvector gives a
better representation of the exact wave function in the internal
region and the second-order estimates, [tan δj ]2nd approach the
exact result.

The study of the stability of the results in terms of the
nonlinear parameter γ in the regularization function freg is
given in Fig. 2. In the upper panel, the second-order [tan δ1]2nd,
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FIG. 2. The two-nucleon second-order estimate, [tan δ1]2nd, cal-
culated using �1 as a function of the nonlinear parameter γ , for the
values M = 20, 30, 40 and the integral Iγ as a function of γ at the
same three values of M .

corresponding to the eigenvalue E1 given in Table I, is
shown as a function of γ , for M = 20, 30, 40. We observe
a good stability for values of γ > 0.2 fm−1 indicating that
the regularization has to be done before ≈5 fm. In the lower
panel the corresponding values for Iγ as a function of γ

are shown. The stable values obtained for M = 20, 30, 40
when γ > 0.2 fm−1 are Iγ = −8.6234,−8.4334,−8.3755,
respectively. The exact values for φ(0)/

√
k, obtained solving

the Schrödinger equation numerically at the three energies are
−8.6188,−8.4338,−8.3755, respectively. We can observe
that for M = 40 there is a complete agreement between Iγ

and φ(0)/
√

k. Therefore, Iγ can be considered to be an
integral representation of φ(0)/

√
k. This is an important point

since such a value can be used to normalize the variational
wave function. In this example the integral relations derived
from the KVP have been used to compute phase shifts using
bound-state-like wave functions.

A different application of the integral relations regards
the possibility of calculating the phase shift of a process in
which the two particles interact through a short-range potential
plus the Coulomb potential, imposing free asymptotic condi-
tions to the wave function. As an example we use the same
two-body potential used in the previous analysis and add the
Coulomb potential:

V (r) = −V0 exp −(r/r0)2 + e2

r
. (28)

For positive energies and l = 0, the wave function behaves
asymptotically as

�(c)(r → ∞) = AFc(r) + BGc(r), (29)

with Fc(r),Gc(r) the regular and irregular Coulomb functions,
respectively. The phase shift is tan δc = B/A. The KVP
remains valid when the long-range Coulomb potential is
considered and its form in terms of the integral relations results
to be:

− m

h̄2

〈
�

(c)
t

∣∣H − E|Fc〉 = B

m

h̄2

〈
�

(c)
t

∣∣H − E|G̃c〉 = A (30)

[tan δc]2nd = B

A
.

with G̃c = fregGc and �
(c)
t a trial wave function behaving

asymptotically as �(c). Since (H − E)|Fc〉 and (H − E)|G̃c〉
go to zero outside the range of the short-range potential,
the integrals in Eq. (30) are negligible outside that region.
Therefore, for the computation of the phase shift it is enough to
require that �

(c)
t satisfies (H − E)�(c)

t = 0, inside that region.
To exploit this fact, we introduce the following screened
potential:

Vsc(r) = −V0 exp [−(r/r0)2] + [
e−(r/rsc)n

]e2

r
. (31)

For specific values of n and rsc it has the property of being
extremely close to the potential V (r) of Eq. (28) for r < r0,
with r0 the range of the short-range potential. The screening
factor e−(r/rsc)n cuts the Coulomb potential for r > rsc. Using
the potential Vsc to describe a scattering process, the wave
function behaves asymptotically as

�n,rsc (r → ∞) = F (r) + tan δn,rsc G(r), (32)

where F,G are given by Eq. (27), since Vsc is a short range
potential. It should be noted that the screened phase shift
tan δn,rsc does not equal tan δc for any finite value of n and
rsc. Solving the Schrödinger equation for Vsc, it is possible to
obtain the wave function �n,rsc for different values of n and
rsc. This wave function can be considered to be a trial wave
function for the problem in which the Coulomb potential is
unscreened. Accordingly it can be used as input in Eq. (30) to
obtain a second-order estimate of the Coulomb phase shift,

− m

h̄2 〈�n,rsc |H − E|Fc〉 = B

m

h̄2 〈�n,rsc |H − E|G̃c〉 = A (33)

[tan δc]2nd = B

A
,

where the unscreened Coulomb potential is included in H .
This estimate depends on n and rsc as the wave function does.
In Fig. 3 the second-order estimate [tan δc]2nd is shown as a
function of rsc for different values of n. The straight line is
the exact value of tan δc obtained solving the Schrödinger
equation. We can observe that for n � 4 and rsc > 30 fm
the second-order estimate coincides with the exact results.
In this example the integral relations derived from the Kohn
variational principle have been used to extract a phase shift in
the presence of the Coulomb potential using wave functions
with free asymptotic conditions.
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FIG. 3. (Color online) The two-nucleon second-order estimate
[tan δc]2nd as a function of rsc for different values of n. As a reference
the exact value for tan δc is given as a straight line.

IV. USE OF THE INTEGRAL RELATIONS IN
THE THREE-BODY CASE

The integral relations derived from the KVP are general
and their validity is not limited to two-body systems. The
two-body system is the simplest system in which different
applications can be studied and compared to the exact solution
of the Schrödinger equation and, therefore, a detailed analysis
of the variational character of the relations can be performed.
In this section the study of the integral relations is extended
to describe a 2 + 1 collision in the three-body system, below
the breakup threshold into three particles. The description of
the breakup channel remains outside the scope of the present
work. In the following we will consider the two examples
already discussed in the previous section: the computation
of phase shifts using bound-state-like wave functions and the
calculation of phase shifts in presence of the Coulomb potential
using wave functions having free asymptotic conditions. To
this end we will use the s-wave MT I–III nucleon-nucleon
interaction [24], active in the singlet and triplet spin states,
respectively:

VMT I(r) = 1438.72

r
e−3.11r − 513.968

r
e−1.55r

(34)
VMT III(r) = 1438.72

r
e−3.11r − 626.885

r
e−1.55r

with distances in fm and energies in MeV. This interaction
has been used many times in the literature to study the
three-nucleon system at low energies. It is considered a
semirealistic interaction since it describes reasonably well
the deuteron binding energy and the singlet and triplet n-p
scattering lengths. Its predictions for these quantities are
Ed = −2.23069 MeV, 1an−d = −23.582 fm, and 3an−d =
5.5132 fm. To be noticed that this potential has a strong
repulsion at short distances.

To compute bound and scattering wave functions we make
use of the pair hyperspherical harmonic (PHH) method which
has proven to be extremely accurate [18,25]. In the following
a brief illustration of the method is given. For bound states, the
three-nucleon wave function is decomposed in three Faddeev-

like amplitudes

� = ψ(Xi , Yi) + ψ(Xj , Yj ) + ψ(Xk, Yk), (35)

where we have introduced the Jacobi coordinates: Xi = (rj −
rk)/

√
2 and Yi = (rj + rk − 2ri)/

√
6 (the generic vector rk

indicates the position of nucleon k). Each amplitude having
quantum numbers J, Jz, T , Tz is expanded in angular-spin-
isospin channels (called α channels) as

ψ(Xi , Yi) =
∑

α

	α(Xi, Yi)Yα(jk, i)

Yα(jk, i) = {[
Ylα (X̂i)⊗YLα

(Ŷi)
]

α

[
sjk
α ⊗ 1

2

]
Sα

}
JJz

[
t
jk
α ⊗ 1

2

]
T Tz

(36)

and the radial amplitudes are expanded in terms of the PHH
basis

	α(Xi, Yi) = ρlα+Lαfα(
√

2Xi)
∑
K

uα
K (ρ) (2)P

lα,Lα

K (φi),

(37)

where we have introduced the hyperspherical variables,
the hyperradius ρ and the hyperangle φi , defined by the
relations Xi = ρ cos φi, Yi = ρ sin φi , and (2)P lα,Lα

n (φi) is a
hyperspherical polynomial. The summation is given in terms
of the grand angular quantum number K = 2n + lα + Lα . The
correlation functions fα(r) are introduced to accelerate the rate
of convergence of the expansion. They take into account those
configurations in which two nucleons are close to each other.
A very convenient choice is to derive the correlation functions
from a Schrödinger like equation governed by the two-body
potential corresponding to the specific α channel [25].

In the following we consider a three-nucleon system in
either the J = 1/2+ or J = 3/2+ states with total isospin
T = 1/2. The central character of the MT I–III interaction de-
couples those channels with different values of 
α . Moreover,
as the interaction acts only in the s wave, we have lα = 0.
This condition limits the number of channels of the (
α = 0)
J = 1/2+ state to two channels, corresponding to s

jk
α = 0, 1,

and to one channel, corresponding to s
jk
α = 1, in the case of

the (
α = 0) J = 3/2+ state. Finally, following Ref. [26],
the hyperradial functions are expanded in terms of Laguerre
polynomials

uα
K (ρ) =

M−1∑
m=0

Aα
K,mL(5)

m (z) exp (−z/2) (38)

with z = βρ, and β a nonlinear parameter. We can define
a complete antisymmetric three-nucleon state |α,K,m〉, in
terms of which the wave function �n for the n-th state results
to be

�n =
∑

α,K,m

A
α,n
K,m|α,K,m〉. (39)

The linear coefficients in the expansion are determined by
solving the generalized eigenvalue problem∑

α′,K ′,m′
A

α′,n
K ′,m′ 〈α,K,m|H − En|α′,K ′,m′〉 = 0. (40)

034002-6



VARIATIONAL DESCRIPTION OF CONTINUUM STATES . . . PHYSICAL REVIEW C 81, 034002 (2010)

The extension of the PHH method to describe scatter-
ing states below the deuteron breakup, using the KVP, is
straightforward [18,26]. As for bound states, we limit the
discussion to the (
α = 0) J = 1/2+, 3/2+ states with total
isospin T = 1/2. The N -d scattering wave �k function at the
center-of-mass energy E = Ed + (4/3)(h̄2/m)k2, is written as

�k =
∑

α,K,m

A
α,k
K,m|α,K,m〉 + |Fk〉 + tan δ|G̃k〉

|Fk〉 =
∑

i

φd (Xi)F0(kyi)
[
sjk 1

2

]
JJz

[
t jk ⊗ 1

2

]
T Tz

(41)

|G̃k〉 =
∑

i

φd (Xi)freg(yi)G0(kyi)
[
sjk 1

2

]
JJz

[
t
jk
α ⊗ 1

2

]
T Tz

,

with φd (Xi) the deuteron wave function having spin sjk = 1
and isospin t jk = 0. F0,G0 are proportional to the regular
and irregular Bessel functions in the case of n-d scattering
or to the regular and irregular Coulomb functions, divided by
kyi , in the case of p-d scattering. The distance between the
nucleon i and the deuteron, formed by nucleons j, k, is yi and
freg(y) = [1 − exp (−γy)] is the chosen regularization factor.
In our calculations a value of γ = 0.25 fm−1 has been found
to be appropriate. The coefficients A

α,k
K,m and the first-order

estimate of tan δ are obtained by solving the following linear
system∑

α′,K ′,m′
A

α′,k
K ′,m′ 〈α,K,m|H − E|α′,K ′,m′〉

+ tan δ〈α,K,m|Gk〉 = −〈α,K,m|Fk〉∑
α,K,m

A
α,k
K,m〈α,K,m|Gk〉 + tan δ〈G̃k|Gk〉 = −〈G̃k|Fk〉,

(42)

where we have defined |Gk〉 = (H − E)|G̃k〉 and |Fk〉 = (H −
E)|Fk〉. Following Eq. (21), the second-order estimate for tan δ

is

B2nd
k = − m

h̄2 〈�k|Fk〉

Ak = m

h̄2 〈�k|Gk〉 (43)

[tan δk]2nd = B2nd
k

/
Ak.

It should be observed that in the present case, due to
the definition of the asymptotic behavior of �k , we have
(m/h̄2)〈�k|Gk〉 = 1.

In Table II, the 3H and 3He bound states and the doublet
and quartet n-d and p-d scattering lengths, corresponding to
the MT I–III potential, are given in terms of the number M of
Laguerre polynomials used in the expansion of the hyperradial
functions. The calculations have been done using K = 16
which corresponds to 18 (9) hyperradial functions in the case
of J = 1/2+ (J = 3/2+). With M = 24, an accuracy better
than 1 keV is obtained for the bound-state energies and of
the order of 0.001 fm for the scattering lengths. In Figs. 4
and 5 the J = 1/2+, 3/2+, l = 0, phase shifts δ are given as
a function of the energy in the form of the effective range
functions for n-d and p-d, respectively. Following Ref. [27],

TABLE II. Convergence of the 3H and 3He bound states (in MeV)
and the n-d and p-d doublet and quartet scattering lengths (in fm),
using the PHH expansion, as a function of the number of Laguerre
polynomials M .

M B (3H) B (3He) 2and
4and

2apd
4apd

4 −8.5117 −7.8404 1.0207 6.4590 0.3987 14.088
8 −8.5351 −7.8683 0.7251 6.4434 0.0363 13.978

12 −8.5357 −7.8688 0.7031 6.4413 0.00636 13.967
16 −8.5357 −7.8689 0.7019 6.4412 0.00472 13.966
20 −8.5357 −7.8689 0.7018 6.4412 0.00461 13.965
24 −8.5357 −7.8689 0.7018 6.4412 0.00458 13.965
28 −8.5357 −7.8689 0.7018 6.4412 0.00456 13.965
32 −8.5357 −7.8689 0.7018 6.4412 0.00454 13.965

for n-d scattering this function is defined as (E0 = E − Ed )

K(E0) = k cot δ, (44)

whereas for p-d scattering it is defined as

K(E0) = C2
0 (η)k cot δ + 2kηh(η), (45)

where η is the Coulomb parameter, C2
0 = 2πη/(e2πη − 1) and

h(η) = −ln(η) + Reψ(1 + iη) (ψ is the digamma function).
The solid line in the figures represents these two functions
obtained solving Eqs. (42) and (43) for several values of the
center-of-mass energy E0 in the interval [0, |Ed |]. The solid
points in the figures are the results obtained from the integral
relations using bound-state wave functions as explained below.

The capability of the PHH to produce a very accurate
description of bound and scattering states can be used to study
different applications of the integral relations. The lowest
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FIG. 4. The effective range function for J = 1/2+ (a) and J =
3/2+ (b) in the n-d case. The solid points are obtained from the
second-order estimates of [tan δn]2nd given in Table III for 3H at the
corresponding energies.
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FIG. 5. The effective range function for J = 1/2+ (a) and J =
3/2+ (b) in the p-d case. The solid points are obtained from the
second-order estimates of [tan δn]2nd given in Table III for 3He at the
corresponding energies.

eigenvalue after the diagonalization procedure of Eq. (40)
corresponds to the three-nucleon bound-state energy of 3H
(Tz = −1/2) or 3He (Tz = 1/2). However, more negative
eigenvalues could appear. For example, in the case of K = 16,
M = 24, and β = 1 fm−1, six negative eigenvalues En appear
satisfying |En|〈|Ed |. They are given in Table III transformed
to the positive energies E0

n = En − Ed . The corresponding
eigenvectors �n approximately describe a scattering process
at the center-of-mass energy E0

n, though asymptotically they
go to zero. In the following we use the index n to label
these approximate scattering states and reserve the continuous
index k to label those scattering states having the correct
asymptotic behavior, as given by Eq. (41). We now consider
the diagonalization of the Hamiltonian calculated using the
PHH basis with the aforementioned values of K , M , and β

but for the J = 3/2+ state. The J = 3/2+ state does not have
any bound state; however, six negative eigenvalues appear,
all of them satisfying |En| < |Ed |. The positive energies E0

n

are also given in Table III. As in the previous case, the
corresponding eigenvectors approximately describe the N -d
scattering states, though asymptotically they go to zero. It
should be observed that changing the values of K , M , and
β, the number of these states and the corresponding energies
at which the eigenvalues appear change. They do not present
the stability that a true bound state shows. If we call ED

0 the
bound-state energy calculated using a basis of dimension D,
the variational principle establishes that ED

0 � E3B , with E3B

the energy corresponding to D → ∞. When the value of D

is sufficiently high, a further increase of the dimension of
the basis will not give an appreciable improvement in ED

0 ,
showing a pattern of convergence of the type given in Table II.
On the other hand, the eigenvalues En are embedded in the

TABLE III. For the three-nucleon system, the six eigenvalues
satisfying Ed < En < 0 (given in the form E0

n = En − Ed ) in the
specific case of K = 16, M = 24, and β = 1 fm−1. The correspond-
ing second-order estimate of [tan δn]2nd, obtained from the integral
relations, are also shown.

J = 1/2+ J = 3/2+

E0
n (MeV) [tan δn]2nd E0

n (MeV) [tan δn]2nd

3H
0.05934 0.03898 0.06789 0.30511
0.18262 0.09204 0.20458 0.54508
0.39445 0.17588 0.43850 0.84177
0.70247 0.28429 0.77281 1.21661
1.11898 0.41131 1.21923 1.74161
1.65752 0.55093 1.79295 2.59081

3He
0.09857 0.00753 0.10338 0.13807
0.22822 0.03915 0.24470 0.33970
0.44642 0.10965 0.48326 0.60099
0.75903 0.21248 0.82144 0.91555
1.18003 0.33871 1.27157 1.32466
1.72398 0.48111 1.84927 1.92215

continuum spectrum of H which starts at Ed . Accordingly,
increasing D these eigenvalues tend to Ed and the number
of them also increases. Similarly to what it has been done
in the two-body case, we can consider these states to be
approximate solutions of (H − En)�n = 0 in the interaction
region and use them as inputs in the integral relation to
compute second-order estimates of the phase shifts. Defining
k2
n = (4/3)E0

n/(h̄2/m), with �n the corresponding eigenvector
and |Fn〉, |G̃n〉 the asymptotic functions of Eq. (41) calculated
at kn, the second-order estimate for the phase shift at each
energy is obtained as

− 2m

h̄2 〈�n|H − En|Fn〉 = Bn

2m

h̄2 〈�n|H − En|G̃n〉 = An (46)

[tan δn]2nd = Bn

An

.

The second-order estimates of the phase shifts for the six
cases given in Table III are shown in Figs. 4 and 5 as solid points
in the effective range functions. We can observe an extremely
good agreement with the scattering calculations. This method
allows for the calculation of phase shifts using bound-state-
type functions, even in the case of charged particles. These
results can be compared to the analysis of Ref. [27], in which
N -d phase shifts were obtained solving the Faddeev equations
in configuration space. For the n-d case, the results presented
here and those from Ref. [27] are in complete agreement. In the
p-d case the results of Ref. [27] were obtained considering the
Coulomb potential in s wave, without including the correction
obtained using the KVP as was done in Ref. [16]. In fact,
that article reports the doublet and quartet p-d scattering
lengths considering the Coulomb potential in s wave (the given
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values are 0.16 and 13.75 fm, respectively). After the cor-
rection introduced by using the KVP and considering the
complete Coulomb potential, the results from Ref. [16] are
0.003 and 13.95 fm, respectively. They are in close agreement
with the results obtained here and given in Table II. It is worth
noting that the use of the integral relations permits a correct
computation of the p-d phase shifts in the energy range [0, Ed ],
after a diagonalization procedure of the Hamiltonian using
square integrable basis functions.

In the last example of this section, we explore the possibility
of extracting p-d phase shifts from a calculation in which the
Coulomb potential has been screened at a certain distance,
as we have already done for the two-body case. In the three
nucleon system, we define the screened Coulomb potential as

Vsc(i, j ) = [
e−(rij /rsc)n

] e2

rij

(
t iz + 1/2

)(
t jz + 1/2

)
, (47)

with rij the interparticle distance between nucleons (i, j ).
Using the PHH method, we solve a p-d scattering problem
using the screened potential and, therefore, the asymptotic
behavior is of the form of Eq. (41), with F0 and G0 the regular
and irregular Bessel functions. For different values of n and
rsc we calculate the scattering wave function �

n,rsc
k and, using

the integral relations, we determine the Coulomb phase shift.
Similarly to what we have done in the two-body case, the
integral relations are

B2nd

k = − m

h̄2

〈
�

n,rsc
k

∣∣H − E|Fk〉

Ak = m

h̄2

〈
�

n,rsc
k

∣∣H − E|G̃k〉 (48)

[tan δc,k]2nd = B2nd

k

/
Ak.

In H the unscreened Coulomb potential is included and the
asymptotic functions Fk and G̃k are given in Eq. (41) in terms
of the Coulomb functions F0,G0. The results are shown in
Fig. 6 for the case of J = 3/2+ at Ec.m. = 2 MeV. The second-
order estimates [tan δc,k]2nd

are given for different values of n

as a function of rsc. For n > 4 and rsc ≈ 30 fm, the results
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sc 
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δ c,
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tanδ
c

FIG. 6. (Color online) The three-nucleon second-order estimate
[tan δc,k]2nd as a function of rsc for different values of n, at E =
0.2 MeV. As a reference the exact value for tan δc is given as a
straight line.

are in complete agreement with the value obtained solving
the p-d case without any screening of the Coulomb potential,
tan δc = −2.1037, which is shown as a straight line in the
figure. This method can be compared to the method given in
Ref. [20] in which the Coulomb potential was screened using
the same screening function as in Eq. (47) and the Coulomb
phase shift was recovered after a renormalization procedure.
We can conclude that the integral relations used in Eq. (48)
produce the same effect as the renormalization procedure.

V. INTEGRAL RELATIONS WITHIN THE
HYPERSPHERICAL ADIABATIC METHOD

In order to study applications of the integral relations using
the HA method for a three-nucleon system, we give a brief
introduction to the method following Refs. [22,23] (for more
details see Ref. [28]). In the HA method the three-body wave
function of Eq. (35) is expanded as

� =
∞∑

µ=1

wµ(ρ)	µ(ρ,), (49)

where 	µ(ρ,) is a HA basis element and [ρ,] ≡
[ρ, φi, X̂i , Ŷi] is the set of coordinates consisting of the
hyperradius and of the five hyperspherical coordinates. The
HA basis elements are the eigenfunctions of the hyperangular
part of the Hamiltonian at fixed values of ρ:[

h̄2

2mρ2
G2 + V (ρ,)

]
	µ(ρ,) = Uµ(ρ)	µ(ρ,),

(50)

where G2 is the grand-angular operator and V (ρ,) =∑
i V (Xi) is the potential energy. The eigenvalues, Uµ(ρ),

are the adiabatic potentials that appear in the coupled set of
differential equations[
− h̄2

2m
Tρ + Uµ(ρ) − h̄2

2m
Qµµ(ρ) − E

]
wµ(ρ)

− h̄2

2m

NA∑
µ′ �=µ

[
Qµµ′(ρ) + Pµµ′(ρ)

(
5

ρ
+2

d

dρ

)]
wµ′(ρ) = 0,

(51)

with Tρ = ∂2/∂ρ2 + (5/ρ)∂/∂ρ, NA the number of adi-
abatic channels included in the calculation, E the
three-body energy, and from which the hyperradial
functions wµ(ρ) are obtained. The coupling terms are
defined as Pµµ′ = 〈	µ(ρ,)|∂/∂ρ|	µ′ (ρ,)〉 and Qµµ′ =
〈	µ(ρ,)|∂2/∂ρ2|	µ′(ρ,)〉. In Ref. [22] the solution of the
system of Eq. (51) has been studied for scattering states below
the three-body breakup. In that study it emerged that the use of
the integral relations helped to obtain a pattern of convergence
for the phase shift, in terms of the adiabatic channels, similar to
the pattern obtained when the HA expansion is used to describe
the bound states. It was also shown that the convergence,
without the application of the integral relations, is extremely
slow. This problem originates in the boundary conditions
imposed on the solution of the linear system. As ρ → ∞ the
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scattering wave function behaves asymptotically as

�k → φd (r)

[
sin (kρρ)√

kρρ
+ tan δρ

cos (kρρ)√
kρρ

]
|ST 〉. (52)

with |ST 〉 the total spin-isospin function and k2
ρ = E0/

(h̄2/2m) = 3
2k2. In fact, when ρ → ∞, the distance Xi is

limited by φd and yi =
√

6
2 Yi →

√
6

2 ρ, then the approximate
relation kyi ≈ kρρ holds. However, the exact equivalence
between kyi and kρρ is not matched for any finite value of
ρ and, accordingly, the boundary condition of Eq. (52) is
equivalent to that of Eq. (41) only at ρ ≈ ∞ and NA → ∞.
As a consequence δρ converges extremely slowly to δ by
increasing the number of adiabatic states. Therefore, the
application of the integral relations in the case of the HA
method, as discussed in Ref. [22], removes the limitation given
by the slow convergence allowing an accurate description of
the scattering states.

Motivated by the results obtained in the previous section, we
would like to analyze the possibility of computing phase shifts
solving the system of Eqs. (51) using bound-state boundary
conditions, namely imposing wµ(ρ) → 0 as ρ → ∞. To
this end we expand the hyperradial functions in the basis
of Laguerre polynomial given in Eq. (38) and define the
complete antisymmetric three-nucleon state |µ,m〉, with µ

indicating an HA basis element and with m a Laguerre basis
element, respectively. In terms of this basis the three-body
wave function results to be

�n =
∑
µ,m

An
µ,m|µ,m〉, (53)

where n indicates the different bound states. As we did in
the previous section, fixing the number of adiabatic channels
NA and the number M of Laguerre polynomials, we solve
the generalized eigenvalue problem for specific values of
Jπ , T and identify the negative eigenvalues En. They can
represent true bound states (|En| > |Ed ) or they can indicate
the possibility of approximate scattering states (|En| < |Ed ).
As an example, for J = 3/2+, T = 1/2, using the MT-III
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FIG. 7. The effective range function for J = 3/2+ (solid line) in
the n-d case. The solid points are obtained from the second-order
estimates of [tan δn]2nd

using the HA expansion.

potential with NA = 40,M = 60 and with the nonlinear
parameter fixed to the value β = 1 fm−1, a very dense spectrum
of 23 negative eigenvalues is obtained, all of them satisfying
|En| > |Ed . The corresponding eigenvectors �n are used to
compute the second-order estimates of the phase shifts at the
specific energies using Eq. (46). The results are shown in Fig. 7
as solid points on the effective range line. We observe a perfect
agreement between the 23 points and the exact results given by
the straight line. In the solution of the same problem using the
PHH basis, we have used M = 24 (see Table III) and obtained
six negative eigenvalues. With the HA expansion, using M =
60, we obtain a much denser spectrum covering the whole
energy range [0, Ed ] below the breakup into three particles.

VI. CONCLUSIONS

The description of scattering states from the KVP has
not been used in the literature as much as the equivalent
form for bound states, the Rayleight-Ritz variational principle.
A possible explanation for this is the different care that is
required at the moment of describing the asymptotic structure
of the system. For example, when a complete basis is used
to describe an A-body bound state, the main condition for
the basis elements is that they be square integrable. Elements
having Gaussian or exponential tails are often used. It is well
known that these bases do not describe correctly the asymptotic
structures as the distances between the particles increase.
However, the error introduced by these configurations in the
computation of the binding energies is small. Conversely, the
extraction of the asymptotic constants could be problematic
if the number of basis states is not sufficiently high (see, for
example, Refs. [3,29]). The situation drastically changes when
the KVP is considered. The asymptotic structure of the system
has to be introduced in an exact form in the trial wave function
�t otherwise the matrix element 〈�t |H − E|�t 〉 could well
not be finite. In other words, �t has to satisfy asymptotically
that (H − E)�t = 0. Formally �t can be decomposed in an
internal and in an asymptotic part as in Eq. (13). Then, the
internal part of �t can be expanded over a square integrable
basis. However, the necessity of taking care explicitly of
the (sometimes very complicated) asymptotic structures has
limited the application of the KVP. The reformulation of
the KVP, given in Eq. (14), to the form given in Eq. (21)
changes this situation. The KVP, given in terms of integral
relations, does not necessitate the explicit introduction of the
correct asymptotic behavior in �t . The two integrals involved,
〈�t |H − E|F 〉 and 〈�t |H − E|G̃〉, go very fast to zero since
F and G̃ are asymptotic solutions of the Schrödinger equation.
Therefore, the only condition necessary to obtain accurate
second-order estimates through the integral relations is that the
trial wave function fulfill (H − E)�t = 0 in the interaction re-
gion. This condition can be achieved with a variety of methods.

In the present article we have discussed two applications
of the integral relations: the use of bound-state-like wave
functions to describe scattering states and, in the case of
charged particles, the possibility of computing phase shifts
using scattering wave functions with free asymptotic condi-
tions, obtained after screening the Coulomb interaction. Both
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problems are of interest in the study of light nuclei. We started
discussing the applications to the A = 2 system with a model
(short-range) potential. In this system the solution of the
Schrödinger equation is possible and, therefore, meaningful
comparisons between the variational estimates of the phase
shifts and the exact values can be performed. In the analysis
it was shown that after a diagonalization procedure of the
two-nucleon Hamiltonian those eigenvectors corresponding
to eigenvalues embedded in the continuum spectrum can be
used as inputs in the integral relations to determine the phase
shifts at those energies. We have observed that increasing
the number of basis states, the phase shifts converge to the
exact values. In the second application we have performed
a scattering calculation adding to the short-range potential a
screened Coulomb potential. Accordingly we have imposed
free asymptotic conditions to the wave function. It is well
known that increasing the screening radius, the phase shift
calculated with the screened potential will never match the
phase shift obtained considering the full Coulomb potential.
A renormalization procedure is necessary (see Ref. [21] and
references therein). It is very interesting to observe that the
relation integrals as given in Eq. (33) produce the correct
result. In fact, for suitable values of rsc and n, the wave
function calculated with the screened potential, �(n)

rsc
, is an

approximate solution of (H − E)�(n)
rsc

= 0 in the region in
which the short-range potential is active, with H containing
the bare Coulomb interaction. In fact, due to the short-range
character of the integral relations, it is equivalent to use �(n)

rsc

or the wave function calculated with the Coulomb interaction
in Eq. (33).

These examples have been discussed also in the three-
nucleon system. As a reference, we have used the PHH
method which gives a very accurate description of the A = 3
system and is well documented in the literature. First, we have
calculated bound-state wave functions using a semirealistic
interaction. For fixed values of Jπ and T the Hamiltonian has
been diagonalized and attention has been given to those eigen-
values satisfying Ed < E < 0. This energy region corresponds
to N -d elastic scattering and is located below the breakup
into three particles. The corresponding eigenvectors have been
used to compute the second-order estimate of the tangent
of the phase shift. In order to show the results in a visible
way, we compute the effective range function K(E0) using
the PHH method, which gives an almost exact result. Then,
the second-order estimates obtained from the bound-state-like
wave functions have been compared to K(E0). We have
observed that the variational estimates and the exact results
at the level of four digits coincide. This is practically the level
of accuracy reached by the PHH method, therefore we can
conclude that the results based on the integral relations can
reach the same level of accuracy as other methods usually
used to describe scattering states in A = 3. Moreover, a similar

accuracy has been obtained when the Coulomb interaction has
been considered. We consider this result to be of particular
importance. For example, the application of the Faddeev
method for describing p-d scattering has been a subject of
intense investigations and different techniques for including
the long-range Coulomb interaction has been proposed (see
the Introduction). From the results presented here it emerges
that elastic p-d scattering in the low-energy region can
be described using bound-state-like wave functions which
can be easily computed. Furthermore, we have also analyzed
the computation of p-d phase shifts from a calculation in
which the Coulomb potential has been screened, as we have
done in the two-nucleon system. Again, for suitable values
of rsc and n we were able to reproduce the p-d phase shifts
using the integral relations. This result will be useful for a
simple extension of the Faddeev method, normally used to
describe n-d scattering, to determine p-d phases without the
normalization procedure described in Ref. [20].

In the last section we discuss an application of the integral
relations in connection with the HA method. This method
is often used to describe three-body bound states in nuclear,
atomic, and molecular physics. It is very efficient, in particular
when the interaction has a strong repulsion at short distances.
In Ref. [22] we have shown how to apply the HA method
to describe a 1 + 2 collision solving the system of Eq. (51)
with appropriate boundary conditions and then, using the
integral relations, the phase shift has been extracted. Here we
have shown a different application, the system of equations
given in Eq. (51) has been solved using bound-state boundary
conditions and then, using the integral relations, the phase shift
has been extracted. We have solved the same case previously
considered using the PHH expansion for the J = 3/2+, T =
1/2 state. We have obtained an extremely good description
of the phase shifts using HA bound-state-like wave functions.
This application will help to extend the applicability of the
HA to describe, for example, atom-dimer collisions at low
energies.

Summarizing, we have demonstrated the usefulness of the
KVP formulated in terms of integral relations. We have shown
the general validity of the formulation with several applications
to the A = 2, 3 systems. In particular, we have in mind the
possible use of this technique for describing scattering states
using bound-state methods in systems with A � 4, as, for
example, the GFMC method or the stochastic variational
method.
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