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Improved transverse (e, e′) response function of 3He at intermediate momentum transfers
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The transverse electron scattering response function of 3He is studied in the quasielastic peak region for
momentum transfers between 500 and 700 MeV/c. A conventional description of the process leads to results that
vary substantially from experiment. To improve the results, the present calculation is done in a reference frame
[the active nucleon Breit (ANB) frame] that diminishes the influence of relativistic effects on nuclear states. The
laboratory frame response function is then obtained via a kinematics transformation. In addition, a one-body
nuclear current operator is employed that includes all leading-order relativistic corrections. Multipoles of this
operator are listed. It is shown that the use of the ANB frame leads to a sizable shift in the quasielastic peak
to lower energy and, contrary to the relativistic current, also to an increase in the peak height. The additionally
considered meson exchange current contribution is quite small in the peak region. In comparison with experiment,
there is excellent agreement of the peak positions. The peak height agrees well with experiment for the lowest
considered momentum transfer (500 MeV/c) but tends to be too high for higher momentum transfer (10% at
700 MeV/c).
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I. INTRODUCTION

In Ref. [1] we studied the longitudinal electron scattering
response function of trinucleons. We, as well as others [1–3],
observed that for increasing momentum transfer q, in particu-
lar, for q > 500 MeV/c, the nonrelativistic theoretical results
increasingly deviate from experiment. A similar problem arises
in the case of the transverse response of trinucleons [2–4].
These problems appear to be related in part to a deficiency
of the nonrelativistic nuclear dynamics at such q values. In
Ref. [5] methods were proposed that would allow the extension
of such nonrelativistic calculations to higher q. These methods
proved to be efficient in the case of the longitudinal response.

In the present work, with the help of one of these
methods we analyze the transverse response function of 3He
in the quasielastic peak region. Another improvement on
the nonrelativistic description in the present work results
from our taking into account all the leading-order relativistic
corrections to the one-body electromagnetic current operator.
Such corrections have been employed in the deuteron case [6]
and they were included [2,3] when calculating magnetic form
factors for elastic electron scattering on trinucleons. However,
they have not been previously taken into account for the A = 3
transverse responses. Here we account for these corrections
via consideration of the current operator that contains all the
correction terms of the M−3 order. We calculate this operator
proceeding from corresponding matrix elements [6] of the
current.

Our preceding study of the transverse response of 3He [4]
was done in the framework of a nonrelativistic description with
inclusion of the full final-state interaction via the Lorentz inte-
gral transform method [7,8]. We used the BonnA NN potential
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[9] plus conventional NNN forces as a nuclear dynamics input.
Use of the BonnA potential gave a “unique” prescription for
meson exchange contributions to the electromagnetic current
of the nucleus. It is of interest, however, to use for the present
study more modern NN interactions such as the AV18 potential
[10]. Our results for the transverse response functions of
trinucleons using the AV18 NN plus UIX NNN [11] potentials
recently appeared [12] for the threshold region. In that paper
we describe our procedure for using the Arenhövel-Schwamb
technique [13] meson exchange currents (MECs) of the AV18
potential. In the present work we extend our considerations
to the quasielastic region and consider various intermediate
momentum transfers.

II. FORMULATION

In the one-photon exchange approximation the cross section
for the process of inclusive electron scattering on a nucleus is
given by

d2σ

d�dω
= σMott

[
Q4

q4
lab

RL(qlab, ωlab)

+
(

Q2

2q2
lab

+ tan2 θ

2

)
RT (qlab, ωlab)

]
, (1)

where RL and RT are the longitudinal and transverse response
functions, respectively, ωlab is the electron energy loss, qlab

is the magnitude of the electron momentum transfer, θ is the
electron scattering angle, and Q2 = q2

lab − ω2
lab.

In the present work we study the transverse response
function. It may be written as

RT (qlab, ωlab) =
∑

Mi

∑∫
df (J†t )if̄ · (Jt )f̄ iδ(Ef̄ −Ei−ωlab).

(2)
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Here the subscripts i and f̄ label, respectively, the initial state
and final states including their total momenta Pi and Pf̄ . The
set f̄ includes Pf̄ and additional asymptotic quantum numbers,
which we denote f . One may write df̄ = dPf̄ df . Equation (2)
contains df only. The notation Ei and Ef̄ refers to total initial-
and final-state energies. (In Ref. [4] the notation Ei,f was used
for internal energies.) The quantities (Jt )f̄ i are on-shell matrix
elements of the transverse component of the nuclear current
operator J̄(q, ω),

(Jt )f̄ iδ(Pf̄ − Pi − q) = 〈�f̄ |J̄t (q, ω)|�i〉, (3)

taken at q = qlab, ω = ωlab, and Pi = 0. The states entering
here are eigenstates of the total Hamiltonian with eigenener-
gies Ef̄ and Ei . They are normalized as

〈�f̄ |�f̄ ′ 〉 = δ(f̄ − f̄ ′) = δ(Pf̄ − Pf̄ ′)δ(f − f ′),
〈�i |�i ′ 〉 = δ(Pi − Pi ′ ). (4)

These relationships refer to the laboratory reference frame.
It is also useful to consider a response-type quantity Rfr

T defined
by the same relationships referring to another reference frame.
We denote the corresponding quantities qfr, etc. In particular,
the states �f̄ and �i then will be eigenstates of the total
Hamiltonian in the reference frame considered. For the class of
reference frames moving with respect to the laboratory frame
along the q direction, the following relationship is valid:

RT (qlab, ωlab) = Efr
i

MT

Rfr
T (qfr, ωfr). (5)

Here MT is the mass of the target.
Relativistic effects are present in Eq. (3) both in the states

�i and �f̄ and in the nuclear current operator. To account for
the former effects we proceed as in the longitudinal case [5]
and introduce the active nucleon Breit (ANB) frame. In the
ANB frame, the nucleus has the momentum −AqANB/2 in
the initial state, qANB being the momentum transfer from the
electron to the nucleus in this reference frame. At high q

values, nucleon momenta in the initial state have the values
of about −qANB/2 in this reference frame. In the final state
in quasifree kinematics the active nucleon has a momentum
of about qANB/2, while the momentum of each of the other
nucleons remains at about −qANB/2. Thus, the typical initial-
and final-state nucleon momenta are restricted to magnitudes
of about qANB/2 � q/2 in the ANB reference frame, while,
say, in the laboratory frame nucleon momenta up to q are
present. Furthermore, it also follows from the preceding that
the energy transfer ωANB in the ANB reference frame is
zero at the quasielastic peak, and this applies to both the
relativistic and the nonrelativistic case. Therefore, even when
one treats the nucleus nonrelativistically the peak remains at
the same position as in the relativistic case. This contrasts
with a description of the process in the laboratory reference
frame, where positions of the peak in the relativistic and
the nonrelativistic cases would differ considerably. Hence
one expects that performing nonrelativistic calculations in the
quasielastic region in the ANB frame minimizes errors owing
to kinematic relativistic effects. This expectation proves true
in the longitudinal case [5]. The laboratory response function

sought for is obtained subsequently with the help of Eq. (5),
with “ANB” being substituted for “fr.”

We perform the corresponding nonrelativistic calculation
in the ANB reference frame. One defines the internal current
operator J obtained by taking a matrix element in the center-
of-mass subspace of the total current operator:

Jδ(Pf̄ − Pi − q) = 〈Pf̄ |J̄(q, ω)|Pi〉. (6)

At Pi = Pi q̂, q̂ being q−1q, this operator may be written as
J(q, ω, Pi). One may then rewrite Eq. (2) as

RANB
T (qANB, ωANB) =

∑
Mi

∑∫
df 〈ψi |J†t |ψf 〉

· 〈ψf |Jt |ψi〉δ[ef − e(qANB, ωANB)],

(7)

where the transverse component Jt of J(q, ω, Pi) is used and
the values q = qANB, ω = ωANB, and Pi = −AqANB/2 are set.
Here ψi and ψf are the nonrelativistic internal states. They are
independent of the center-of-mass momenta. The energy ef is
the internal energy in the final state, and

e(qANB, ωANB) = ei + ωANB +
(
P ANB

i

)2 − (
P ANB

f

)2

2MT

= ei + ωANB + (A − 1)q2
ANB

2MT

, (8)

where ei is the internal energy in the initial state. One also has

qANB = γ (qlab − βωlab),
(9)

ωANB = γ (ωlab − βqlab), γ = (1 − β2)−1/2,[
M2

T + (
P ANB

i

)2]1/2 = γMT ,
(10)

β = qlab

2(MT /A)

[
1 + ωlab

2(MT /A)

]−1

.

(One gets ωANB = 0 when substituting ωlab = [(MT /A)2 +
q2

lab]1/2 − MT /A in the expression for ωANB. This is in
agreement with the preceding statement saying that at the
quasielastic peak ωANB = 0.)

III. THE NUCLEAR CURRENT OPERATOR AND ITS
MULTIPOLE DECOMPOSITION

We employ the transition current operator, which is the
sum of one-body and two-body currents. In Ref. [4] the
nonrelativistic expression for the one-body current was used.
For the present applications we have calculated relativistic
corrections to the one-body current operator. To do this we
proceeded from the expressions for matrix elements of the
one-body current of the form 〈pf |J̄|pi〉 listed in Ref. [6]. The
operator so obtained reproduces these expressions.

This operator, denoted J(1), includes all the relativistic
corrections up to order M−2, that is, in addition to the non-
relativistic spin current and convection current terms of order
M−1, it includes all the terms of order M−3. Our expression
for this operator given here is the internal operator as defined
by Eq. (6). We also assume that the initial momentum Pi

is directed along q. (This is the case for the ANB reference
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frame.) Then the current operator includes dependence on q, ω,
and the magnitude of Pi . In the subsequent expression for it
all the momentum operators are placed on the right, hence
rendering the operators in nonsymmetric forms. Nevertheless,
the hermiticity of J(x) is still intact but, in momentum space,
reads as J†(q) = J(−q). We use the notation r′ = r − R and
p′ = p − A−1P, with P and R being the total momentum
operator and the nonrelativistic center-of-mass operator.

The resulting one-body current operator is

J(1)(q, ω, Pi) = jspin + jp + jq + 
j + (ω/M)jω, (11)

with

jspin = eiqr′ i[�σ × q]

2M

[
GM

(
1 − q2

8M2

)
− GE

κ2q2

8M2

]
, (12)

jp = eiqr′ p′

M

{
GE

[
1 − q2

8M2
(κ2 + 2)

]
+ GM

q2

8M2

}
,

(13)

jq = eiqr′ κq
2M

{
GE

[
1 − q2

8M2
(κ2 + 3)

]
+ GM

q2

4M2

}
,

(14)


j = eiqr′

8M3
{−2GE[κq(p′)2 + 2p′(p′)2 + 2κp′(p′ · q)]

+ [GM − GE(1 + 2κ2)]q(p′ · q)

− 2iGE[�σ × q][(p′)2 + κ(p′ · q)]

+ i(GE−GM )[p′ × q][κ(�σ · q)+2(�σ · p′)]}, (15)

jω = eiqr′ GE − 2GM

8M
(q + iκ[�σ × q] + 2i[�σ × p′]). (16)

In the preceding expressions we use the notation

GE,M = G
p

E,M (Q2)
1 + τz

2
+ Gn

E,M (Q2)
1 − τz

2
,

where G
p,n

E,M are the Sachs form factors. We also denote

κ = 1 + 2Pi/Aq. (17)

(Note that 2p + q = 2p′ + κq.) The terms jp and jq together
represent the convection current. The latter longitudinal
component of this current does not enter the net response.
However, this component, which contains the charge operator,
is required when one uses an alternative expression (the Siegert
form; see Eq. (20) in Ref. [4]) for electric multipoles based
on the continuity equation. If we chose to use this form in the
present calculation, then the charge operator with inclusion of
the standard Darwin-Foldy and spin-orbit corrections would
be used for calculating electric multipoles. In detail this is
given by1

ρ(q, ω)= eiqr′
[
GE

(
1 − q2

8M2

)
−GE−2GM

4M2
i(�σ · [q×p′])

]
.

(18)

For the two-body current operator we use the customary
nonrelativistic expressions of the form listed in Appendix A in

1In Ref. [1] the spin-orbit contribution to the charge was listed with
a misprint; it included GM instead of 2GM . The actual calculation
was performed with the correct expression.

Ref. [4]. The regularization constants entering the two-body
current are adjusted to the NN interaction we use so that the
continuity equation is satisfied approximately; see Ref. [12].
For high q values the relative contribution of the two-body
current in the region of the quasielastic peak is less important.

As explained in Ref. [4], the current operator is to be
used in the form of an expansion over the multipole operators
T el

jm(q, ω) and T
mag
jm (q, ω):

Jt = 4π
∑

λ=el,mag

∑
jm

ij−εT λ
jm(q, ω)Yλ∗

jm(q̂). (19)

Here ε = 0 in the electric case and ε = 1 in the magnetic case.
The quantities Yλ

jm are electric and magnetic vector spherical
harmonics [14]. We calculate the multipole operators T λ

jm in
terms of similar operators T l

jm related to the vector spherical
harmonics of the form

Yl
jm(q̂) =

∑
m′+µ=m

C
jm

lm′1µYlm′(q̂)eµ. (20)

Here eµ are the spherical unit basis vectors [14], and l =
j ± 1, j . By expressing the expansion of Eq. (19) in terms of
the harmonics (20), one obtains the operators

T l
jm = 1

4πij−ε

∫
dq̂

[
Yl

jm(q̂) · J(q, ω, Pi)
]
. (21)

These operators are irreducible tensors of rank j . In accordance
with the expressions for the harmonics Yel,mag

jm , in terms of the
harmonics, Eq. (20) [14], one has

T̂ el
jm =

(
j + 1

2j + 1

)1/2

T̂
j−1
jm +

(
j

2j + 1

)1/2

T̂
j+1
jm , (22)

T̂
mag
jm = T̂

j

jm. (23)

Expressions for the components of the multipoles (21) per-
taining to the current (11) are listed in the Appendix. The
alternative expression for electric multipoles of the current
also contains the multipoles,

ρjm(q, ω) = 1

4πij

∫
dq̂Yjm(q̂)ρ(q, ω), (24)

of the charge density operator.
The dynamical part of the calculation of the response

function RANB
T (7) is performed in the same way as for the

laboratory response function in Ref. [4].

IV. RESULTS AND DISCUSSION

As mentioned in the Introduction we use the AV18 NN
potential and the UIX 3NF as the nuclear force. The calculation
is carried out in the ANB frame for eight momentum transfers
qANB: 400, 450, 500, 550, 600, 650, 700, and 750 MeV/c. We
consider electric and magnetic multipole contributions up to a
maximal total angular momentum J max

f of the final state such
that a convergent result of RT is obtained for any q value.
For instance, we take J max

f = 19/2 and 37/2 for q = 400 and
750 MeV/c, respectively. As already pointed out we use the
Lorentz integral transform (LIT) formalism [7,8] to take into
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FIG. 1. (Color online) RT (qANB, EANB) of 3He with relativistic
one-body and meson exchange current at various q values (internal
excitation energy EANB = ωANB + q2

ANB/MT ).

account the final-state interaction. For the LIT parameter σI we
choose two values, namely, σI,1 = 5 MeV and σI,2 = 50 MeV.
We combine both results in the following way:

Ltot(σR, σI ) = L(σR, σI,1)f (σR)

+
(

σI,2

σI,1

)2

L(σR, σI )[1 − f (σR)], (25)

where L denotes the Lorentz transforms of the response, and

f (σR)= exp[−(σR/σ0)6](σR � 0) and f (σR)=1(σR � 0),

(26)

with σ0 = 100 MeV. This choice has the advantage that one
has a relatively large resolution for the RT behavior at
lower energies, while for the high-energy behavior a smaller
resolution is completely sufficient. The integral equation that
corresponds to the transform Ltot was solved to extract RT .
The inversion of the LIT [15–17] was done as described in
Ref. [4].

In Fig. 1 we show RT (qANB, ωANB) for the previously men-
tioned eight q values using our full current operator (relativistic
one-body + isovector MEC consistent with AV18). One sees
that the qANB dependence of RT exhibits a very regular and
smooth pattern. This allows us to use a spline interpolation
to determine RT (qANB, ωANB) for intermediate qANB values.
In this way we are able to obtain results for RT (qlab, ωlab)
via the transformation of Eq.(5) for 500 MeV/c � qlab �
700 MeV/c.

In the following we investigate three theoretical aspects:
(i) comparison of laboratory and ANB frame calculations,
(ii) relativistic contributions to the one-body current operator,
and (iii) the MEC contribution. We first turn to the comparison
of laboratory and ANB frame results. In Fig. 2 we show
RT (qlab, ωlab) evaluated with the nonrelativistic one-body
current for laboratory and ANB frame calculations. The ANB
results show a sizable shift of the peak position to lower
energies, which grows with increasing q. In detail one has
the following shifts: 8.7, 16.7, and 29.3 MeV at q = 500,
600, and 700 MeV/c. The size of the shifts is very similar
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FIG. 2. (Color online) RT (qlab, ωlab) of 3He from ANB (dashed
line) and laboratory (dotted line) frame calculations with nonrela-
tivistic one-body current.

to that found for the longitudinal response function RL in
[5] and corresponds to the differences of nonrelativistic and
relativistic kinetic energies of a nucleon with momentum qlab

(see discussion of peak position in Sec. III). One also finds
an increase in the peak heights, namely, by 5.6%, 10.3%, and
16.7%. The relativistic contribution to the one-body current is
illustrated in Fig. 3. It leads to a reduction of the peak heights
of 6.2%, 8.5%, and 11.3% at q = 500, 600, and 700 MeV/c,
while there are no sizable effects on the peak position. Finally
Fig. 4 shows the MEC contributions. As one might expect they
are rather small and decrease with increasing q. In detail one
has increases of 3.2%, 2.7%, and 2.2% for the three considered
q values.

Now we turn to a comparison with experimental data (see
Fig. 5). For all three momentum transfers considered, one
finds an excellent agreement of experimental and theoretical
peak positions. For q = 500 MeV/c one also has an excellent
agreement of the peak height. At q = 600 and 700 MeV/c

the theoretical peak height overestimates the data by about
5% and 10%, respectively. We would like to mention that a
different choice for the nucleon form factor fits should lead
to only rather small effects. The reason is that at higher
momentum transfer RT is dominated by the spin current
contribution, where the magnetic nucleon form factors enter,
which for the various fits are rather similar, in the range
500 MeV/c � q � 700 MeV/c (e.g., compare the dipole fits
with those in Ref. [18]). In the present work we do not
consider any 
 degrees of freedom. As shown in Ref. [2],
up to q = 500 MeV/c there are only tiny 
 effects in the
quasielastic region. Also, at higher q one may expect that
the quasielastic response is not affected much by 
 isobar
currents (compare to deuteron electrodisintegration results;
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FIG. 3. (Color online) RT (qlab, ωlab) of 3He from ANB frame
calculation with relativistic (dash-dotted line) and nonrelativistic
(dashed line) one-body current.

see, e.g., Ref. [19]). The increasing difference between theory
and experiment with growing momentum transfer suggests that
unincluded relativistic effects (wave function boost, dynamical
effects) are increasing in importance. Wave function boost
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FIG. 4. (Color online) RT (qlab, ωlab) of 3He from ANB frame
calculation with relativistic one-body current with (solid line) and
without (dash-dotted line) meson exchange current.
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FIG. 5. (Color online) RT (qlab, ωlab) of 3He from ANB frame
calculation with relativistic one-body and meson exchange current
(solid line) in comparison with experimental results from Ref. [20]
(squares), Ref. [21] (diamonds), and Ref. [22] (circles).

effects have already been considered in realistic few-body
calculations, namely, in deuteron electrodisintegration [6] and
in the pd scattering process [23]. In future we will investigate
to see if we can get a better understanding of these effects to
improve the comparison with experiment.

For the comparison with the experimental data in Fig. 5, one
must consider that pion production is not taken into account
in our calculation. The pion production thresholds are at about
180, 200, and 220 MeV at q = 500, 600, and 700 MeV/c,
respectively. For q = 500 MeV/c one can see nicely from
the figure that the theoretical RT starts to underestimate the
experimental RT in the pion threshold region. Because the pion
production channel is not included in our calculation, this is
what one would expect.

To sum up we can say the following. We have calculated
the 3He transverse response function RT (q, ω) with a realistic
nuclear force (AV18 two-nucleon and UIX three-nucleon
potential) in the quasielastic region at 500 MeV/c � q �
700 MeV/c with full inclusion of the final-state interaction.
The calculation is carried out in the ANB frame, with
subsequent transformation of RT to the laboratory system.
Relativistic effects of the one-body current operator as well
as MECs are taken into account. Our calculation shows that
the effects owing to the relativistic one-body current reduce
the quasielastic peak height, while the MEC contributions
are rather unimportant. The use of the ANB frame provides
an excellent agreement with experimental peak positions.
Concerning the peak heights one finds a good agreement of
theoretical and experimental results at q = 500 MeV/c, while
theory overestimates data up to 10% at higher q.
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APPENDIX: MULTIPOLES OF THE ONE-BODY CURRENT
AND CHARGE OPERATORS

In the formulas below we use the notation

ψj = jj (qr ′)Yjm(r̂′), �a = √
2a + 1,

�ab =
√

(2a + 1)(2b + 1).

The following quantity ∂ ′
µ is defined by the relationship

−i∂ ′
µ = p′

µ, and Xγµ = (∂ ′ ⊗ ∂ ′)γµ. Denoting −i�∂ ′(A) = p′
A,

where p′
A is the last particle internal momentum, one has

∂ ′(A)
µ =

[
A − 1

A

]1/2
∂

∂ξA−1,µ

.

Here the derivative is taken with respect to a component of
the last Jacobi vector defined as �ξA−1 = √

(A − 1)/A[rA −
(A − 1)−1 ∑A−1

i=1 ri].
Various operators entering the current, Eq. (11), make the

following contributions to the multipoles (21):

(4πij−1)−1
∫

dq̂eiqr′
i
(
Yj

jm(q̂) · [�σ × q̂]
)

=
(

j

2j + 1

)1/2

(ψj+1 ⊗ σ )jm

−
(

j + 1

2j + 1

)1/2

(ψj−1 ⊗ σ )jm, (A1)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj+1

jm (q̂) · [�σ × q̂]
)

= −
(

j

2j + 1

)1/2

(ψj ⊗ σ )jm, (A2)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj−1

jm (q̂) · [�σ × q̂]
)

= −
(

j + 1

2j + 1

)1/2

(ψj ⊗ σ )jm. (A3)

(4πij−1)−1
∫

dq̂eiqr′(
Yj

jm(q̂) · p′) = (ψj ⊗ ∂ ′)jm, (A4)

(4πij )−1
∫

dq̂eiqr′(
Yj±1

jm (q̂) · p′)= ± (ψj±1 ⊗ ∂ ′)jm. (A5)

(4πij−1)−1
∫

dq̂eiqr′(
Yj

jm(q̂) · q̂
) = 0, (A6)

(4πij )−1
∫

dq̂eiqr′(
Yj+1

jm (q̂) · q̂
) = −

(
j + 1

2j + 1

)1/2

ψjm,

(A7)

(4πij )−1
∫

dq̂eiqr′(
Yj−1

jm (q̂) · q̂
) =

(
j

2j + 1

)1/2

ψjm.

(A8)

(4πij−1)−1
∫

dq̂eiqr′(
Yj

jm(q̂) · p′)(p′ · q̂)

=
√

5j

{
1 1 2

j − 1 j j

}
(ψj−1 ⊗ X2)jm

+
√

5(j + 1)

{
1 1 2

j + 1 j j

}
(ψj+1 ⊗ X2)jm, (A9)

(4πij )−1
∫

dq̂eiqr′(
Yj+1

jm (q̂) · p′)(p′ · q̂) = −U
j+2
j ,

(A10)

(4πij )−1
∫

dq̂eiqr′(
Yj−1

jm (q̂) · p′)(p′ · q̂) = U
j

j , (A11)

Uλ
j = √

λ − 1
∑

γ=0,2

�γ

{
1 1 γ

λ − 2 j λ − 1

}
(ψλ−2 ⊗ Xγ )jm,

+
√

λ
∑

γ=0,2

�γ

{
1 1 γ

λ j λ − 1

}
(ψλ ⊗ Xγ )jm.

(A12)

(4πij−1)−1
∫

dq̂eiqr′(
Yj

jm(q̂) · q̂
)
(p′ · q̂) = 0, (A13)

(4πij )−1
∫

dq̂eiqr′(
Yj+1

jm (q̂) · q̂
)
(p′ · q̂) =

√
j + 1S,

(A14)

(4πij )−1
∫

dq̂eiqr′(
Yj−1

jm (q̂) · q̂
)
(p′ · q̂) = −

√
jS,

(A15)

S = (2j+1)−1[
√

j (ψj−1 ⊗ ∂ ′)jm +
√

j+1(ψj+1 ⊗ ∂ ′)jm].

(A16)

(4πij−1)−1
∫

dq̂eiqr′
i
(
Yj

jm(q̂) · [�σ × q̂]
)
(p′ · q̂)

=
[

(j+1)

(2j−1)(2j+1)

]1/2

[
√

j−1((ψj−2 ⊗ ∂ ′)j−1 ⊗ σ )jm

+
√

j ((ψj ⊗ ∂ ′)j−1 ⊗ σ )jm]

−
[

j

(2j+1)(2j+3)

]1/2

[
√

j+1((ψj ⊗ ∂ ′)j+1 ⊗ σ )jm

+
√

j + 2((ψj+2 ⊗ ∂ ′)j+1 ⊗ σ )jm]. (A17)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj+1

jm (q̂) · [�σ × q̂]
)
(p′ · q̂) =

√
jS,

(A18)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj−1

jm (q̂) · [�σ × q̂]
)
(p′ · q̂)=

√
j+1S,

(A19)

S = (2j + 1)−1[
√

j ((ψj−1 ⊗ ∂ ′)j ⊗ σ )jm

+
√

j + 1((ψj+1 ⊗ ∂ ′)j ⊗ σ )jm]. (A20)
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(4πij−1)−1
∫

dq̂eiqr′
i
(
Yj

jm(q̂) · [p′ × q̂]
)
(�σ · q̂)

=
[

(j − 1)(j + 1)

2j + 1

]1/2

�j−1

{
1 j − 2 j − 1

1 j j − 1

}
((ψj−2 ⊗ ∂ ′)j−1 ⊗ σ )jm

−
[
j (j + 1)

2j + 1

]1/2 ∑
l=j±1,j

(−1)l−j�l

[{
1 j j − 1

1 j l

}
−

{
1 j j + 1

1 j l

}]
((ψj ⊗ ∂ ′)l ⊗ σ )jm

−
[
j (j + 2)

2j + 1

]1/2

�j+1

{
1 j + 2 j + 1

1 j j + 1

}
((ψj+2 ⊗ ∂ ′)j+1 ⊗ σ )jm, (A21)

(4πij )−1
∫

dq̂eiqr′
i(Yj+1

jm (q̂) · [p′ × q̂])(�σ · q̂) =
√

jS,

(A22)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj−1

jm (q̂) · [p′×q̂]
)
(�σ · q̂)=

√
j + 1S,

(A23)

S =
(

j

2j + 1

)1/2 ∑
l=j−1,j

(−1)l−j�l

{
1 j − 1 j

1 j l

}

((ψj−1 ⊗ ∂ ′)l ⊗ σ )jm +
(

j + 1

2j + 1

)1/2 ∑
l=j,j+1

(−1)l−j�l

{
1 j + 1 j

1 j l

}
((ψj+1 ⊗ ∂ ′)l ⊗ σ )jm. (A24)

(4πij−1)−1
∫

dq̂eiqr′
i
(
Yj

jm(q̂) · [p′ × q̂]
)
(�σ · p′)

= −
(

j + 1

2j + 1

)1/2 ∑
γ=0,2

∑
l

�lγ

{
1 1 γ

l j − 1 j

}

((ψj−1 ⊗ Xγ )l ⊗ σ )jm +
(

j

2j + 1

)1/2 ∑
γ=0,2

∑
l

�lγ

{
1 1 γ

l j + 1 j

}
((ψj+1 ⊗ Xγ )l ⊗ σ )jm, (A25)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj+1

jm (q̂) · [p′ × q̂]
)
(�σ · p′)

=
(

j

2j + 1

)1/2

S,

(4πij )−1
∫

dq̂eiqr′
i
(
Yj−1

jm (q̂) · [p′ × q̂]
)
(�σ · p′)

=
(

j + 1

2j + 1

)1/2

S,

S =
∑

γ=0,2

∑
l

�lγ

{
1 1 γ

l j j

}
((ψj ⊗ Xγ )l ⊗ σ )jm.

(A26)

(4πij−1)−1
∫

dq̂eiqr′
i
(
Yj

jm(q̂) · [�σ × p′]
)

= −
√

6
∑

l=j±1,j

�l

{
1 1 1

j j l

}
((ψj ⊗ ∂ ′)l ⊗ σ )jm.

(A27)

(4πij )−1
∫

dq̂eiqr′
i
(
Yj±1

jm (q̂) · [�σ × p′]
)

= ±
√

6
∑

l

�l

{
1 1 1

j ± 1 j l

}
((ψj±1 ⊗ ∂ ′)l ⊗ σ )jm.

(A28)

In deriving these formulas the expressions for n · Yl
jm(n)

in terms of spherical harmonics, and for nYjm(n) and [n ×
Yl

jm(n)] in terms of vector spherical harmonics [14], were
used. We also used the relationship

(n · a)(Yl
jm(n) · b) =

(
l

2l + 1

)1/2

((Yl−1(n) ⊗ a)l ⊗ b)jm

−
(

l + 1

2l + 1

)1/2

((Yl+1(n) ⊗ a)l ⊗ b)jm.

The spin-orbit component of the charge density operator,
Eq. (18), in Eq. (24) leads to the multipoles,

(4πij )−1
∫

dq̂eiqr′
Yjm(q̂)i(�σ · [q̂ × p′])

=
√

6
∑

l

�l

[(
j

2j + 1

)1/2
{

1 1 1

j + 1 j l

}

((ψj+1 ⊗ ∂ ′)l ⊗ σ )jm

]
. (A29)
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