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Vacuum pseudoscalar susceptibility
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We derive a novel model-independent result for the pion susceptibility in QCD via the isovector-pseudoscalar
vacuum polarization. In the neighbourhood of the chiral limit, the pion susceptibility can be expressed as a sum
of two independent terms. The first expresses the pion-pole contribution. The second is identical to the vacuum
chiral susceptibility, which describes the response of QCD’s ground state to a fluctuation in the current-quark
mass. In this result one finds a straightforward explanation of a mismatch between extant estimates of the pion
susceptibility.
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Color-singlet current-current correlators or, equivalently,
the associated vacuum polarizations, play an important role
in QCD because they are directly related to observables.
The vector vacuum polarization, for example, couples to
real and virtual photons. It is thus basic to the analysis
and understanding of the process e+e− → hadrons [1,2]. In
addition, analysis of the large Euclidean-time behavior of a
carefully chosen correlator can yield a hadron’s mass [3,4],
and correlators are also amenable to analysis via the operator
product expansion and are therefore fundamental in the
application of QCD sum rules [5].

In the latter connection, the vacuum pseudoscalar suscep-
tibility (also called the pion susceptibility) plays a role in
the sum-rules estimate of numerous meson-hadron couplings,
for example, the strong and parity-violating pion-nucleon
couplings, gπNN and fπNN , respectively [6–8]. Furthermore,
as will become plain herein, the pion susceptibility is as
intimate a probe of QCD vacuum structure as the scalar
susceptibility [9] but its veracious analysis is more subtle, with
conflicts and misconceptions being common [7,8,10–12].

We approach the vacuum pseudoscalar susceptibility via
the isovector-pseudoscalar vacuum polarization, which can be
written1

ω
ij

5 (P ; ζ ) = NctrZ4

∫ �

q

i

2
γ5τ

iS(q+)i�j

5 (q; P )S(q−), (1)

where the trace is over flavor and spinor indices; ζ is the
renormalization scale; Z4(ζ,�) is the Lagrangian mass-term
renormalization constant, which depends implicitly on the
gauge parameter;2 and

∫ �

q
:= ∫ �

d4q/(2π )4 represents a

1In our Euclidean metric: {γµ, γν} = 2δµν , γ †
µ = γµ, γ5 = γ4γ1γ2γ3,

ab = ∑4
i=1 aibi , and Pµ timelike ⇒ P 2 < 0.

2Physical quantities obtained from Eq. (1) are manifestly gauge
invariant.

symmetry-preserving regularization of the integral, with �

the regularization mass-scale which is taken to infinity as the
last step in a complete calculation.

Herein we will subsequently assume isospin symmetry,
namely, equal u- and d-quark current masses, in considering
the isovector channel. An extension to three flavors and the
flavor-singlet channel can be pursued following the methods
of Ref. [13].

In Eq. (1), S is the dressed-quark propagator and �5 is the
fully dressed pseudoscalar vertex, both of which depend on
the renormalization point. The propagator is obtained from
QCD’s gap equation, namely,

S(p)−1 = Z2(iγ · p + mbm) + 
(p),
(2)


(p) = Z1

∫ �

q

g2Dµν(p − q)
λa

2
γµS(q)

λa

2
�ν(q, p),

where Dµν(k) is the dressed-gluon propagator, �ν(q, p) is
the dressed-quark-gluon vertex, and mbm is the �-dependent
u- and d-quark current-quark bare mass. The quark-gluon
vertex and the quark wave function renormalization constants,
Z1,2(ζ,�), also depend on the gauge parameter.

The gap equation’s solution has the form

S(p)−1 = iγ · pA(p2; ζ 2) + B(p2; ζ 2) (3)

and the mass function M(p2) = B(p2, ζ 2)/A(p2, ζ 2) is renor-
malization point independent. The propagator is obtained from
Eq. (3) augmented by a renormalization condition.

Since QCD is asymptotically free, the chiral limit is defined
by

Z2(ζ,�)mbm(�) ≡ 0, ∀� � ζ, (4)

which is equivalent to requiring that the renormalization point
invariant current-quark mass is zero; that is, m̂ = 0. A mass-
independent renormalization scheme can then be implemented
by fixing all renormalization constants in the chiral limit [14];
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namely, one solves the chiral limit gap equation subject to the
requirement

S−1
m̂=0(p)

∣∣
p2=ζ 2 = iγ · p. (5)

This is implicit in the subsequent analysis. We note that

Z2(ζ,�)mbm(�) = Z4(ζ,�)m(ζ ), (6)

where m(ζ ) is the familiar running current-quark mass.
The pseudoscalar vertex is determined from an inhomoge-

neous Bethe-Salpeter equation, namely,

[
�

j

5 (k; P )
]
tu

=Z4

[
1

2
γ5τ

j

]
tu

+
∫ �

q

[
χ

j

5 (q; P )
]
sr

Krs
tu (q,k; P ),

(7)

where k is the relative momentum and P is the total momentum
of the quark-antiquark pair; r , s, t , and u represent color, flavor,
and spinor indices;

χ
j

5 (k; P ) = S(k+)�j

5 (k; P )S(k−), (8)

k± = k ± P/2, without loss of generality owing to the
symmetry-preserving nature of the regularization scheme;
and K(q, k; P ) is the fully amputated two-particle-irreducible
quark-antiquark scattering kernel.

Much of the preceding material recapitulates results famil-
iar from QCD Dyson-Schwinger equations (DSEs) [15,16],
which also provide the foundation for our subsequent analysis.
Consider, then, that in the presence of a spacetime-independent
pseudoscalar source, �s5 �= 0, associated with the term∫

d4xq̄(x)
i

2
γ5 �τ · �s5q(x) (9)

in the action, one can define a vacuum pseudoscalar conden-
sate, whose gauge-invariant, properly renormalized form in
QCD is

σ
j

5 (�s5,m; ζ,�) = Z4Nctr
∫ �

q

i

2
γ5τ

jS(q; �s5,m; ζ ). (10)

This is analogous to the vacuum quark condensate [17]

σ (m; ζ,�) = Z4Nctr
∫ �

q

1

2
τ 0S(q; m; ζ ), (11)

τ 0 = diag[1, 1], whose source-term in the QCD action is that
associated with the current-quark mass.

It should be emphasized that when m̂ = 0, it is only
foreknowledge of nonzero current-quark masses via the
Higgs mechanism that leads one to express dynamical chiral
symmetry breaking (DCSB) as

−〈q̄q〉0
ζ = lim

m→0
σ (m; ζ,�) �= 0, (12)

instead of choosing a different vacuum vector, for exam-
ple, (σ ; �s5) ∝ (0; 1,−i, 0). Moreover, Eq. (12) defines what
we mean by an isoscalar-scalar configuration: isovector-
pseudoscalar correlations are by convention measured with
respect to this configuration.

These observations highlight the importance of the pseu-
doscalar susceptibility

X ij

5 (ζ ) := ∂

∂si
5

σ
j

5 (�s5,m; ζ,�)

∣∣∣∣
�s5=0

. (13)

Following the method of Ref. [9], it is straightforward to show
that

X ij

5 (ζ ) = −2ω
ij

5 (P = 0; �s5 = 0, m̂; ζ ). (14)

NB. While hitherto we have not specified a regularization
procedure for the susceptibility, it can rigorously be defined
via a Pauli-Villars procedure [9].

We are interested in the value ofX ij

5 (ζ ) in the neighborhood
of the chiral limit. Therein one may write [18]

i�
j

5 (k; 0) = 1

2
iγ5τ

jER
5 (k; 0) + rπ

m2
π

�j
π (k; 0), (15)

where �
j
π (k; P ) is the pion bound state’s canonically normal-

ized Bethe-Salpeter amplitude; rπ (ζ ), determined by

iδjkrπ (ζ ) = 〈0|q̄ 1

2
γ5τ

kq|πj 〉 (16)

= NctrZ4

∫ �

q

1

2
γ5τ

kχj
π (q; P ), (17)

is the residue of this bound state in the inhomogeneous pseu-
doscalar vertex; and ER

5 (k; P ) is a part of the inhomogeneous
pseudoscalar vertex that is regular as P 2 + m2

π → 0.
These statements will not be surprising once one recalls

that the solution of a linear, inhomogeneous integral equation
is a sum, namely, the regular solution of the inhomogeneous
equation plus a solution of the homogeneous equation, here,
naturally, the canonically normalized solution. In terms of
this solution, the pion’s leptonic decay constant is expressed
through

δjkfπPµ = 〈0|q̄ 1

2
γ5γµτ kq|πj 〉 (18)

= NctrZ2

∫ �

q

1

2
γ5γµτ kχj

π (q; P ). (19)

One can turn to the axial-vector Ward-Takahashi identity to
determine ER

5 (k; P ); that is,

Pµ�
j

5µ(k; P ) + 2m(ζ )i�j

5 (k; P )

= S−1(k+) 1
2 iγ5τ

j + 1
2 iγ5τ

jS−1(k−), (20)

where �
j

5µ(k; P ) is the inhomogeneous axial-vector vertex.
At P = 0 with m̂ �= 0 there is no pole contribution on the
left-hand side and hence Eq. (20) states

m(ζ )ER
5 (k; P = 0) = B(k2; m; ζ 2), (21)

namely, this regular piece of the pseudoscalar vertex is
completely determined by the scalar part of the m̂ �= 0 quark
self-energy. NB. It is straightforward to verify Eq. (21),
order-by-order, via the gap and Bethe-Salpeter equations using
the systematic, nonperturbative, symmetry-preserving DSE
truncation scheme introduced in Refs. [19,20].
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We insert Eq. (15) into Eq. (14) to obtain

X ij

5 (ζ )
m̂∼0= δijX5(ζ ), (22)

X5(ζ ) = X π
5 (ζ ) + XR

5 (ζ ) + O(m̂); (23)

that is, in the neighbourhood of m̂ = 0 the susceptibility splits
into a sum of two terms. The first of these expresses the
contribution of the pion pole, O(m̂−1), and can readily be
expressed in the closed form

X π
5 (ζ ) = 2rπ (ζ )2

m2
π

m̂=0= −〈q̄q〉0
ζ

m(ζ )
, (24)

where the last equality is proved in Ref. [18]. The second term
in Eq. (23), O(m̂0), is implicitly determined via

m(ζ )XR
5 (ζ )δjk

m̂∼0= −NctrZ4

∫ �

q

iγ5τ
kS(q)

i

2
γ5τ

jB(q2; m)S(q)

= δjkσ (m; ζ,�), (25)

where the last line is obtained using {γ5, γµ} = 0.
We can now proceed to our desired result. Equation (25)

entails

XR
5 (ζ ; m) = X (ζ ) + O(m̂), (26)

where the vacuum chiral susceptibility is [9]

X (ζ ) = ∂

∂m(ζ )
σ (m; ζ,�)

∣∣∣∣
m̂=0

. (27)

Hence we arrive at a model-independent consequence of chiral
symmetry and the pattern by which it is broken in QCD,
namely,

X5(ζ )
m̂∼0= −〈q̄q〉0

ζ

m(ζ )
+ X (ζ ) + O(m̂). (28)

For illustration, in Table I we report numerical values
computed from two models for the gap equation’s kernel.
Namely, we simplify the renormalization-group-improved
effective interaction in Ref. [22],

Z1g
2Dρσ (p − q)�a

σ (q, p)

= G((p − q)2)Dfree
ρσ (p − q)

λa

2
�σ (q, p), (29)

TABLE I. Vacuum pseudoscalar susceptibility and related quan-
tities computed using the two kernels of the Bethe-Salpeter equation
described in connection with Eqs. (30), (31), and (32). Dimensioned
quantities are listed in GeV, κ := −(〈q̄q〉0

ζ )1/3, and f 0
π is the pion’s

chiral-limit leptonic decay constant. The entries were compiled from
Refs. [9,21]. NB. For quantitative comparison with some other studies
[7,8,10,12], our results for X should be multiplied by (2π )2.

Vertex
√

D ω κ f 0
π m

√
X π

5

√
X R

5

RL [Eq. (31)] 1 1
2 0.25 0.091 0.0050 1.77 0.39

BC [Eq. (32)] 1√
2

1
2 0.26 0.11 0.0064 1.66 0.28

wherein Dfree
ρσ (p − q) is the Landau-gauge free gauge-boson

propagator, through the choice

G(s)

s
= 4π2

ω6
Dse−s/ω2

, (30)

which is a finite width representation of the form introduced
in Ref. [23]. This interaction has been rendered as an inte-
grable regularization of 1/k4 [24]. Equation (30) delivers an
ultraviolet finite model gap equation. Hence, the regularization
mass-scale can be removed to infinity and the renormalization
constants set equal to one.

The kernel is completed by specifying the dressed-quark-
gluon vertex. At leading-order in the systematic DSE trunca-
tion scheme [19,20] the vertex is

�σ (q, p) = γσ . (31)

This defines the rainbow-ladder (RL) truncation. One can al-
ternatively employ ansätze for the vertex whose diagrammatic
content is unknown. A class of such models, which has seen
much use in diverse applications (e.g., Refs. [9,21,25–28]),
can be characterized by [29]

i�σ (k, �) = i
A(k2, �2)γσ + (k + �)σ

×
[

i

2
γ · (k + �)�A(k2, �2) + �B(k2, �2)

]
,

(32)

where


F (k2, �2) = 1

2
[F (k2) + F (�2)], (33)

�F (k2, �2) = F (k2) − F (�2)

k2 − �2
, (34)

with F = A,B, namely, the scalar functions in Eq. (3). This
ansatz satisfies the vector Ward-Takahashi identity and is often
referred to as the BC vertex.

Equation (28) is a remarkable result, which is nonetheless
readily understood. Recall that, in the absence of a current-
quark mass, the two-flavor action has a SUL(2)⊗SUR(2) sym-
metry and, moreover, that ascribing scalar-isoscalar quantum
numbers to the QCD vacuum is a convention contingent upon
the form of the current-quark mass term.

It follows that the massless action cannot distinguish
between the continuum of sources specified by

constant ×
∫

d4xq̄(x)eiγ5 �τ ·�θq(x), |θ | ∈ [0, 2π ). (35)

Hence, the regular part of the vacuum susceptibility must be
identical when measured as the response to any one of these
sources, so thatXR = X for all choices of �θ . This is the content
of the so-called “Mexican hat” potential, which is used in
building models for QCD. The magnitude of X depends on
whether the chiral symmetry is dynamically broken and the
strength of the interaction as measured with respect to the
critical value required for DCSB [9]. When the symmetry is
dynamically broken, then the Goldstone modes appear, by
convention, in the pseudoscalar-isovector channel, and thus
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the pole contributions appear in X5 but not in the chiral
susceptibility. It is valid to draw an analogy with the Weinberg
sum rule [25,30].

With Eq. (28) we have, in addition, provided a novel, model-
independent perspective on a mismatch between the evaluation
of the pion susceptibility using either a two-point or three-point
sum rule. Namely, the two-point study [10] produces the pion
pole contribution, X π

5 , which is also the piece emphasized in
Ref. [11], whereas a three-point method [8] isolates the regular
piece,XR

5 , because a vacuum saturation ansatz is implemented
in the derivation. Thus, the analyses are not essentially in
conflict. Instead, they emphasize different, independent pieces
of the susceptibility, which, with care, can be distinguished.

However, in a sum-rules estimate of pion-nucleon coupling
constants, only the regular piece should be retained [6].

We note in closing that the vacuum tensor susceptibilities,
which can be related to the nucleon’s tensor charges [31], can
similarly be analyzed. Such a study is under way.
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