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Axial charges of the nucleon and N∗ resonances

Ki-Seok Choi, W. Plessas, and R. F. Wagenbrunn
Theoretische Physik, Institut für Physik, Karl-Franzens-Universität, Universitätsplatz 5, A-8010 Graz, Austria
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The axial charges of the nucleon and the well-established N∗ resonances are studied within a consistent
framework. For the first time the axial charges of the N∗ resonances are produced for the relativistic constituent
quark model. The axial charge of the nucleon is predicted close to experiment, and the ones of N∗(1535)
and N∗(1650), the only cases where such a comparison is possible, agree well with results from quantum
chromodynamics on the lattice that have recently become available. The relevance of the magnitudes of the N∗

axial charges for the low-energy behavior of quantum chromodynamics is discussed.
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The axial charge gA of the nucleon (N ) is an essential quan-
tity in understanding the electroweak and strong interactions
within the standard model of elementary particles. In the first
instance it is directly related to the neutron β decay, and its
experimental value can be deduced from the ratio of the axial to
the vector coupling constants gA/gV = 1.2695 ± 0.0029 [1];
usually this is done under the assumption of conserved vector
currents (CVC), which implies gV = 1. The deviation of
gA from 1, the axial charge of a pointlike particle, can be
attributed, according to the Adler-Weisberger sum rule [2,3],
to the differences between the π+N and π−N cross sections
in pion-nucleon scattering. Through the Goldberger-Treiman
relation, gA = fπgπNN/MN , the axial charge is connected
with the π decay constant fπ , the πNN coupling constant
gπNN , and the nucleon mass MN [4]. Thus the axial charge of
the N plays a key role for the spontaneous breaking of chiral
symmetry (SBχS) of quantum chromodynamics (QCD) in
low-energy hadron physics, a phenomenon that is manifested
by the nonvanishing value of the light-flavor chiral condensate
〈0|qq̄|0〉1/3 ≈ −235 MeV.

There have been a number of theoretical attempts to produce
the axial charge of the N ground state with many different
methods. We mention only the more novel approaches via the
relativistic constituent quark model (RCQM) [5–7], by chiral
perturbation theory [8], and within lattice QCD [9–15]. In
general, the theoretical results come close to the experimental
value of roughly 1.27, with the lattice-QCD predictions
scattering over a range of approximately 1.10−1.40, de-
pending on the various actions employed and a series of
technical details entering the calculations by the different
groups.

Recently, also the axial charges of the N∗ resonances have
come into the focus of interest, as it was suggested that their
values should become small or even vanishing for excited
states that could be parity partners in a scenario of chiral-
symmetry restoration higher in the hadron spectra [16,17].
As the gA values of N∗ resonances can hardly be measured
experimentally, this remains a highly theoretical question.
However, the problem can be explored by ab initio calculations
of QCD on the lattice. Corresponding first results have
become available lately for just two of the N∗ resonances,
namely N∗(1535) and N∗(1650) [15]. Both of them have
total angular momentum (intrinsic spin) J = 1

2 and parity

P = −1. Unfortunately, there is not yet any lattice-QCD
result for positive-parity states, and the above issue relating to
parity-doubling remains unresolved on this basis. In addition,
a systematic study of gA should give a clue to the magnitudes
of meson dressing in N and N∗ states.

It is thus most interesting to get insight into the N and
N∗ axial charges from different approaches. Especially by
the RCQM we can investigate the problem comprehensively,
as all the ground and resonant states are readily accessible.
Here we report theoretical predictions of gA for positive-
as well as negative-parity N∗ resonances up to J = 5

2 . The
calculations are performed employing a RCQM with the
quark-quark hyperfine interaction deduced from Goldstone-
boson-exchange (GBE) dynamics. In particular, we use both
existing versions of GBE RCQMs, the one with pseudoscalar
(ps) spin-spin forces only [18] and the extended GBE (EGBE)
RCQM with all the central, spin-spin, tensor, and spin-orbit
force components included [19]. For the sake of comparison
with another type of hyperfine interaction we employ also the
RCQM with one-gluon-exchange (OGE) dynamics [20].

The calculations are performed in the framework of
Poincarè-invariant quantum mechanics. In order to keep the
numerical computations manageable, we have to restrict the
axial current operator to the so-called spectator model (SM). It
means that the weak-interaction gauge boson couples only to
one of the constituent quarks in the baryon. This approximation
has turned out to be very reasonable already in a previous
study of the axial and induced pseudoscalar form factors of
the nucleon [5], where the SM was employed specifically in
the point form (PF) of relativistic quantum mechanics [21]. It
has also been used in studies of the electromagnetic structure
of the N , reproducing both the proton and neutron form factors
in close agreement with the experimental data [6,22–24].

The axial charge is defined through the value of the axial
form factor GA(Q2) at Q2 = 0, where Q2 = −q2 is the
four-momentum transfer. The axial form factor GA(Q2) can
be derived from the relativistically invariant reduced matrix
element of the axial current operator Â

µ
a (Q2), with flavor index

a, sandwiched between the eigenstates of N or N∗. We denote
the latter generally by |P, J,�〉, i.e., as eigenstates of the
four-momentum operator P̂ µ, the intrinsic-spin operator Ĵ and
its z projection �̂. Since P̂ µ and the invariant mass operator
M̂ commute, these eigenstates can be obtained by solving the
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eigenvalue equation of M̂

M̂|P, J,�〉 = M|P, J,�〉, (1)

where M is the mass of N or N∗. For the various J = 1
2 , 3

2 , 5
2

states considered here, the axial charges gA are thus computed
from the matrix elements of the axial current operator Â

µ
a for

zero-momentum transfer〈
P,

1

2
, �′ ∣∣Âµ

a

∣∣P,
1

2
, �

〉
= Ū (P,�′)gAγ µγ5

τa

2
U (P,�) ,〈

P,
3

2
, �′ ∣∣Âµ

a

∣∣P,
3

2
, �

〉
= Ū ν(P,�′)gAγ µγ5

τa

2
Uν(P,�) ,〈

P,
5

2
, �′ ∣∣Âµ

a

∣∣P,
5

2
, �

〉
= Ū νλ(P,�′)gAγ µγ5

τa

2
Uνλ(P,�) .

(2)

Here U (P,�) are the usual Dirac spinors for spin- 1
2

and Uν(P,�) and Uνλ(P,�) are the Rarita-Schwinger
spinors [25] for spin- 3

2 and spin- 5
2 particles, respectively,

where we use the same notation and normalization as specified
in the appendix of Ref. [26]. The γ µ and γ5 are the usual Dirac
matrices and τa is the isospin matrix with Cartesian index a.

The matrix elements of Â
µ
a for any N or N∗ read

〈P, J,�′|Âµ
a (Q2 = 0)|P, J,�〉

= 2M
∑
σiσ

′
i

∫
d3�k1d

3�k2d
3�k3

δ3(�k1 + �k2 + �k3)

2ω12ω22ω3

×�
PJ�′ (�k1, �k2, �k3; σ ′

1, σ
′
2, σ

′
3)

×〈k1, k2, k3; σ ′
1, σ

′
2, σ

′
3|Âµ

a |k1, k2, k3; σ1, σ2, σ3〉
×�PJ�(�k1, �k2, �k3; σ1, σ2, σ3). (3)

The �’s are the rest-frame wave functions of the N or N∗ with
corresponding mass M and total angular momentum J with z

projections � and �′. Here they are represented as functions
of the individual quark three-momenta �ki , which sum up to
�P = �k1 + �k2 + �k3 = 0; ωi =

√
m2

i + �k2
i is the energy of quark

i with mass mi , and the individual-quark spin orientations are
denoted by σi .

The SM means that the matrix element of the axial
current operator Â

µ
a between (free) three-particle states

|k1, k2, k3; σ1, σ2, σ3〉 is assumed in the form

〈k1, k2, k3; σ ′
1, σ

′
2, σ

′
3|Âµ

a |k1, k2, k3; σ1, σ2, σ3〉
= 3〈k1, σ

′
1|Âµ

a,SM|k1, σ1〉2ω22ω3δσ2σ
′
2
δσ3σ

′
3
. (4)

For pointlike quarks this matrix element involves the axial
current operator of the active quark 1 (with quarks 2 and 3
being the spectators) in the form

〈k1, σ
′
1|Âµ

a,SM|k1, σ1〉 = ū(k1, σ
′
1)gq

Aγ µγ5
τa

2
u(k1, σ1), (5)

where u(k1, σ1) is the quark spinor and g
q

A = 1 the quark axial
charge. A pseudovector-type current analogous to the one in
Eq. (5) was recently also used in the calculation of gπNN and
the strong πNN vertex form factor in Ref. [27].

If we are interested only in the axial charges gA, the
expression (5) specifies to µ = i = 1, 2, 3 and can further be

TABLE I. Predictions for axial charges gA of the EGBE RCQM
in comparison to available lattice QCD results [9–15], the values
calculated by Glozman and Nefediev (GN) within the SU(6) × O(3)
nonrelativistic quark model [17], and the nonrelativistic (NR) limit
from the EGBE RCQM.

State J P EGBE Lattice QCD GN NR

N (939) 1
2

+
1.15 1.10 ∼ 1.40 1.66 1.65

N∗(1440) 1
2

+
1.16 – 1.66 1.61

N∗(1535) 1
2

−
0.02 ∼0.00 −0.11 −0.20

N∗(1710) 1
2

+
0.35 – 0.33 0.42

N∗(1650) 1
2

−
0.51 ∼0.55 0.55 0.64

evaluated to give

ū(k1, σ
′
1)γ iγ5

τa

2
u(k1, σ1)

= 2ω1χ
∗
1
2 ,σ ′

1

{[
1 − 2

3
(1 − κ)

]
σ i

+
√

5

3

κ2

1 + κ
[ [�v1 ⊗ �v1]2 ⊗ �σ ]i1

}
τa

2
χ 1

2 ,σ1
, (6)

where κ = 1/

√
1 + v2

1 and �v1 = �k1/m1. Herein σ i is the

i-th component of the usual Pauli matrix �σ and v1 the
magnitude of the three-velocity �v1. The symbol [. ⊗ .]ik denotes
the i-th component of a tensor product [. ⊗ .]k of rank k. We
note that a similar formula was already published before by
Dannbom et al. [28]; however, it was restricted to the case of
total orbital angular momentum L = 0. Our expression holds
for any L, thus allowing to calculate gA for the most general
wave function of a baryon specified by JP .

In Table I we give the predictions of the EGBE RCQM for
the N ground state and the first two N∗ excitations of J = 1

2
with positive as well as negative-parity P . It is seen that the
result for gA of the N comes close to the experimental value but
falling slightly below it; the same result is obtained for the
psGBE RCQM [5]. This might be linked, via the Goldberger-
Treiman relation, to a similar behavior of the πNN coupling
constant predicted by the GBE RCQM, where a value of
f 2

πNN

4π
= 0.0691 was found [27], which is to be compared

to the phenomenological value of about 0.075 [29]. Even if
these theoretical underestimates of both the gA and the fπNN

remain smaller than 10%, they could be interpreted as missing
π -dressing effects in the RCQM. However, in this context one
should also bear in mind that the phenomenological value of
gA ∼1.27 is supposed under the conjecture of CVC, and there
is a Goldberger-Treiman discrepancy of about ∼10%. For
RCQMs careful studies employing explicit meson-dressing
mechanisms are still necessary to resolve these issues.

The EGBE RCQM prediction for gA of the N is also quite
congruent with available lattice-QCD results. The latter can
be collected from various works that differ with regard to the
actions used, the methods for (chiral) extrapolations employed
and other input sources. A recent compilation of the lattice-
QCD world data for gA of the nucleon [30] exhibits a tendency
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TABLE II. Mass eigenvalues and axial charges gA of the N ground state and the positive-parity N∗ resonances as
predicted by the EGBE, the psGBE, and the OGE RCQMs.

State J p EGBE psGBE OGE

Mass gA Mass gA Mass gA

N (939) 1
2

+
939 1.15 939 1.15 939 1.11

N∗(1440) 1
2

+
1464 1.16 1459 1.13 1578 1.10

N∗(1710) 1
2

+
1757 0.35 1776 0.37 1860 0.32

N∗(1720) 3
2

+
1746 0.35 1728 0.34 1858 0.25

N∗(1680) 5
2

+
1689 0.89 1728 0.83 1858 0.70

of undershooting the experimental value, where a possible
reason is suspected in finite-volume effects. In any case,
statistical as well as systematic errors are still of considerable
sizes, and comparisons must be done with caution.

The congruency of the EGBE RCQM predictions with
lattice-QCD results obviously also holds for the two other
cases, where such data are already available, namely the JP =
1
2

−
resonances N∗(1535) and N∗(1650). Here, it should be em-

phasized that, due to the dynamics in its hyperfine interaction,
the EGBE RCQM incorporates all possible couplings of orbital
angular momentum and spin components in the three-quark
states. It is certainly remarkable that a practically vanishing
gA of N∗(1535) can obviously be achieved in a corresponding
relativistic calculation without advocating a cancellation of
{QQQ} and {QQQQQ̄} components as suggested in Ref. [31].
Similarly, a very small axial charge of N∗(1535) was found in a
chiral unitary approach in Ref. [32]. The simple SU(6) × O(3)
nonrelativistic quark model used by Glozman and Nefediev
cannot reproduce the gA of the N and it yields exactly the same
(too) big results for N and N∗(1440). The corresponding axial
charge of N∗(1535) is nonzero but negative, only the results
for N∗(1710) and N∗(1650) are similar to the ones of the
EGBE RCQM. In the last column of Table I we also quote
the results obtained in the nonrelativistic limit of the axial
current operator of Eq. (5). By comparing with the figures in
the first column, one can see that relativistic effects related to
the current operator are considerable in all instances.

Next we are going to present and compare the relativistic
predictions of gA for the N ground state and all positive- as well
as negative-parity N∗ excitations with masses below ∼1.9 GeV
for three distinct types of RCQMs. The specific RCQMs

considered here differ mainly with regard to their hyperfine
interactions. The psGBE RCQM contains only the spin-spin
part of the pseudoscalar meson exchange and carries an explicit
flavor dependence. In the construction of this model the tensor
and spin-orbit forces were omitted because they can only play
a minor role in baryon spectroscopy, as is exhibited by small
level splittings in the phenomenological data [33]. The same
assumption was made also for the OGE RCQM; however, its
spin-spin part has no flavor dependence, since it is derived from
OGE [20]. The EGBE RCQM contains all force components
generated by pseudoscalar meson exchange, including in
particular the corresponding tensor force. The latter, however,
is so strong that it destroys the remarkably small splittings of
alike spin states in the baryon spectra. Its effect is compensated
by the inclusion of vector-meson exchange, whose tensor force
comes with opposite sign. The vector and the additional scalar
meson exchanges, also included in the EGBE RCQM, can be
interpreted as describing the effects of multiple Goldstone-
boson exchanges [19]. It should be noted that for the baryon
spectra the net effect of hyperfine forces other than the
spin-spin ones is presumably small. This might not be the
case with regard to other (dynamical) observables, as the full
couplings of orbital angular momentum and spin components
come into play when calculating transition matrix elements.
Corresponding effects are naturally included by the EGBE
RCQM, contrary to the other dynamical models considered
here and also in previous works, such as Ref. [17].

Tables II and III show the relativistic results of gA as
obtained with the three different RCQMs. The EGBE and
the psGBE RCQMs produce identical figures for gA of
the N ground state. In addition, the axial charges are very

TABLE III. Same as Table II but for the negative-parity N∗ resonances.

State J p EGBE psGBE OGE

Mass gA Mass gA Mass gA

N∗(1535) 1
2

−
1498 0.02 1519 0.09 1520 0.13

N∗(1650) 1
2

−
1581 0.51 1647 0.46 1690 0.44

N∗(1520) 3
2

−
1524 −0.64 1519 −0.21 1520 −0.15

N∗(1700) 3
2

−
1608 −0.10 1647 −0.50 1690 −0.47

N∗(1675) 5
2

−
1676 0.84 1647 0.83 1690 0.80
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similar for most of the excited states, except for the JP = 3
2

−

states N∗(1520) and N∗(1700). Here, the remarkably large
differences of the EGBE RCQM predictions relative to both
the psGBE as well as OGE RCQMs have evidently to be
attributed to tensor and/or spin-orbit forces prevailing in the
former. In this context it is quite interesting to observe that
at least the N∗(1520), which has no parity partner, was also
found exceptional regarding the large size of the π -coupling
constant fπN∗N of the N∗(1520)→ Nπ decay, and large
effects from SBχS have been suspected to be responsible for
this behavior [34].

Except for these two cases just discussed there are also
no big differences between the results of both the EGBE
and psGBE with the ones of the OGE RCQM, even though
the theoretical resonance masses show sometimes consid-
erable differences [20,35]. It will be very interesting to
confront these predictions by the RCQMs with results by
other approaches and in particular with further data from
lattice QCD.

It is particularly satisfying to find the RCQM predictions
for the axial charges not only of the nucleon N but also of
the N∗(1535) and N∗(1650) resonances in agreement with the
lattice-QCD results. We may thus be confident that at least
in the limit of zero-momentum-transfer processes the mass
eigenstates of the N and the above N∗ excitations, especially
as produced with the EGBE RCQM, are quite reasonable. It
should be recalled that in this particular model the mutual
interaction between constituent quarks is furnished by a linear

confinement, whose strength is consistent with the string
tension of QCD as well as the slopes of Regge trajectories [18],
and by (all components of) a hyperfine interaction derived from
GBE dynamics. The latter is supposed to model the SBχS
property of low-energy QCD. This type of hyperfine inter-
action, which also introduces an explicit flavor dependence,
has been remarkably successful in describing a number of
phenomena in low-energy baryon physics. Most prominently,
it produces the correct level orderings of the positive- and
negative-parity N∗ resonances and simultaneously the ones in
the other hyperon spectra, notably the � spectrum [36]. The
RCQM with GBE dynamics does not have any mechanism
for chiral-symmetry restoration built in. As such it cannot
be expected to produce parity doublets due to this reason.
Nevertheless the GBE RCQM describes the pattern of N∗
resonance masses in good agreement with the experimental
data (mostly within the experimental error bars or at most
exceeding them by 4%). This is due to the refined interplay
of different force components in the effective interaction
between constituent quarks. In view of these findings it will
be most interesting if the present results for N∗ axial charges
derived within the RCQM will in the future be confirmed by
lattice-QCD calculations.
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