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Final state polarization of protons in pp → ppω
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Model-independent formulas are derived for the polarizations and spin correlations of protons in the final
state of pp → ppω, taking into consideration all six threshold partial wave amplitudes, f1, . . . , f6, covering
the Ss, Sp, and Ps channels. It is shown that these measurements of the final state spin observables, employing
only an unpolarized beam and an unpolarized target, can be utilized to complement measurements at the
double-differential level suggested earlier [J. Balasubramanyam, Venkataraya, and G. Ramachandran, Phys. Rev.
C 78, 012201(R) (2008)] so that all six partial wave amplitudes can be determined empirically.
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Meson production in NN collisions has attracted con-
siderable attention [1] since the early 1990s, when total
cross-section measurements [2] for neutral pion production
were found to be more than a factor of 5 than the then available
theoretical predictions [3]. Experimental studies have indeed
reached a high degree of sophistication since then and detailed
measurements of the differential cross-section and of spin
observables have been carried out employing a polarized beam
and a polarized target [4,5]. Apart from the pseudoscalar pion,
vector mesons are also known to be significant contributors
for the NN interaction. When a meson is produced in the final
state, a large momentum transfer is involved, which implies
that the NN interaction is probed at very short distances,
estimated [6] to be of the order of 0.53, 0.21, and 0.18 fm
for the production of π,ω, and ϕ, respectively. Because the
singlet-octet mixing angle is close to the ideal value, the ω-
meson wave function is dominated by u and d quarks whereas
the strange quark dominates in the case of ϕ. As a result, the
ϕ-meson production is suppressed as compared to the ω-meson
production, according to the Okubo-Zweig-Iizuka (OZI) rule
[7]. This rule was, however, found to be violated dramatically
in the case of pp̄ collisions [8]. Consequently, attention has
been focused on the measurement [9–11] of the ratio Rϕ/ω

and its comparison with the theoretical estimates [12]. Apart
from Refs. [9–11] measurements of total cross-sections as
well as angular distributions for pp → ppω [13] at energies ε

above threshold up to 320 MeV in c.m., the reaction has also
been studied theoretically using several models [14]. A model-
independent theoretical approach has also been developed [15]
to study the measurements of not only the differential and
total cross-sections but also the polarization of ω in the final
state. A set of six partial wave amplitudes, f1, . . . , f6, has
been identified [15] to study pp → ppω at threshold and near
threshold energies covering the Ss, Sp, and Ps amplitudes.
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It has been further shown [16] that the dominant decay
mode ω → 3π can only be utilized to determine the tensor
polarization of ω. However, it has also been pointed out [15]
that the vector polarizations as well as the tensor polarizations
can be measured using the decay ω → π0γ , with the smaller
branching ratio of 8.92%. It is encouraging to note that
WASA at COSY [17] is expected to facilitate the experimental
study of pp → ppω via the detection of ω → π0γ decay. In
view of a recent measurement [18] of the analyzing power
Ay for the first time, the model-independent approach was
extended [19] to study ω production in pp collisions with a
polarized beam. While considering ω production it is worth
pointing out that the notation used by Meyer et al. [5] in the
context of neutral pion production has to be complemented.
Because ω is a spin 1 meson, one needs to specify also
the total angular momentum jω = |l − 1|, . . . , l + 1 of the ω

meson, where l denotes the orbital angular momentum with
which the meson is produced. Moreover, jω has to combine
with jf of the two-nucleon system in the final state to yield
total angular momentum j of the two-nucleon system in the
initial state due to the rotational invariance. This problem has
been discussed in Ref. [19] and the amplitudes f1, . . . , f6

have explicitly been given in terms of the amplitudes that
specify jf and jω. Considering the beam analyzing power
Ay and beam to meson spin transfers in addition to the
differential cross-section, at the double-differential level, it
was shown in Ref. [19] that the lowest three amplitudes, f1, f2,
and f3, covering the Ss and Sp channel can be determined
empirically without any discrete ambiguity, while information
with regard to the amplitudes f4, f5, and f6 covering the
Ps channel can only be extracted partially from these
measurements.

The purpose of the present article is to demonstrate
theoretically that all six amplitudes may be determined
empirically without any ambiguities, if some measurements
are carried out with regard to the final spin state of the
protons in an experiment employing an unpolarized beam
and an unpolarized target. We may perhaps mention here
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that we do not make any simplifying assumptions as have
been made in an older work [20]. It may further be noted
that the analysis reported in Ref. [20] made use of the then
existing unpolarized differential cross-section measurements
at the single-differential level, whereas we are considering
here all the observables at the double-differential level as in
our more recent work [19]. As such the present article carries
forward the analysis reported in Ref. [19] and is not in any
way dependent on the much earlier results of Ref. [20].

The reaction matrix M may be expressed, in a model-
independent way [15,19,20], as

M =
1∑

sf ,si=0

(sf +si )∑
λ=|sf −si |

1+sf∑
S=1−sf

(S+si )∑
�=|S−si |

× ((S1(1, 0) ⊗ Sλ(sf , si))
� · M�(Ssf si ; λ)), (1)

where si and sf denote, respectively, the initial and final spin
states of the two-nucleon system and S denotes the channel
spin in the final state of the reaction. The irreducible tensor
amplitudes M�

ν (Ssf si ; λ) of rank � are explicitly given, in
terms of partial wave amplitudes f1, . . . , f6, by

M1
0(101; 1) = 1

24π
√

π
f1, (2)

M1
±1(101; 1) = 0, (3)

M1
0(100; 0) = 1

8π
√

3π
f ′

23 cos θ, (4)

M1
±1(100; 0) = ∓ 1

8π
√

6π
f23 sin θe±iϕ, (5)

M1
0(110; 1) = 1

8π
√

3π
f ′

45 cos θf , (6)

M1
±(110; 1) = ∓ 1

8π
√

6π
f45 sin θf , (7)

M2
0(210; 1) = 0, (8)

M2
±1(210; 1) = − 3

80π
√

3π
f6 sin θf , (9)

M2
±2(210; 1) = 0, (10)

where the z axis is chosen along the beam, and the plane
containing the beam and pf = ( p1 − p2)/2 is chosen as the
z-x plane if p1 and p2 denote c.m. momenta of the two protons
in the final state. The polar angles of the c.m. momentum of
the meson are denoted by (θ, ϕ). The shorthand notation

fij = fi + 1√
10

fj , (11)

f ′
ij = fi − 2√

10
fj , (12)

is used with i, j = 2, 3 or 4, 5.
When the beam and the target are unpolarized the spin

density matrix ρf characterizing the final spin state of the
system is given by

ρf = 1
4MM†, (13)

so that the unpolarized double-differential cross-section is
given by

d2σo

dWd�f d�
= Tr(ρf ) ≡ d2σ0, (14)

where the abbreviation d2σ0 is employed for simplicity.
If measurements are not carried out with regard to the spin

state of ω, the density matrix

ρ =
1∑

µ=−1

〈1µ|ρf |1µ〉 (15)

describes the spin state of the protons in the final state. Here
|1µ〉 denotes the spin state of ω, with magnetic quantum
number µ.

It is well known that the state of polarization of two protons
is completely specified by measuring the expectation values

d2σ0 Pα(i) = Tr[σα(i)ρ], i = 1, 2, (16)

which denote the individual polarizations of the two protons
in the final state and their spin correlations

d2σ0 Cα,β = Tr[σα(1)σβ(2)ρ], (17)

where α and β denote Cartesian components α, β = x, y, z.
We obtain

−Px(1) = Px(2) = g	(γ ) sin θ sin ϕ cos θf , (18)

Py(1) = g

[ √
3

2
√

2
	(η3) − 	(γ ) sin θ cos ϕ cos θf

+	(η2) cos θ sin θf

]
, (19)

Py(2) = g

[ √
3

2
√

2
	(η3) + 	(γ ) sin θ cos ϕ cos θf

− 	(η2) cos θ sin θf

]
, (20)

−Pz(1) = Pz(2) = g	(η1) sin θ sin ϕ sin θf , (21)

Cxy − Cyx = 2g
(η1) sin θ sin ϕ sin θf , (22)

Cyz − Czy = −2g
(γ ) sin θ sin ϕ cos θf , (23)

Czx − Cxz = 2g[
(γ ) sin θ cos ϕ cos θf

− 
(η2) cos θ sin θf ], (24)

where

γ = f23f
′∗
45, (25)

η1 = f23

(
f45 − 3√

50
f6

)∗
, (26)

η2 = f ′
23

(
f45 + 3√

50
f6

)∗
, (27)

η3 = f ′
45

(
f45 − 3√

50
f6

)∗
, (28)

and

g =
√

6/32π3

Tr(ρf )
(29)
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is known from Eq. (14). Equations (18) to (24) for all the proton
spin observables in the final state are derived for the first time.
These observables at the double-differential level complement
the observables at the double differential considered in Ref.
[19].

Experimental measurements of Eqs. (23) and (18) deter-
mine, respectively, real and imaginary parts of γ given by
Eq. (25). Likewise, Eqs. (22) and (21) determine, respectively,
the real and imaginary parts of η1. Because 
(γ ) is known from
Eq. (23), the real part of η2 may be determined from Eq. (24). If
we consider Py(1) − Py(2), it is clear upon using Eqs. (19) and
(20) that 	(η2) can be determined, because 	(γ ) is known from
Eq. (18). Taking into consideration these additional inputs
together with inputs derived from the measurements discussed
earlier in Ref. [19], it is possible to determine all six partial
wave amplitudes f1, . . . , f6 along with their relative phases
empirically.

Let us therefore summarize in Table I the information
obtainable from various observables at the double-differential
level. We consider the unpolarized differential cross-section,
polarization of ω produced, the beam analyzing power, the
beam to ω meson spin transfers and the final state spin
observables of the pp system, formulas for which have been
derived for the first time in this article. The α, β, ζ, η, and
γ are bilinears in f1, f23, f

′
23, f45, f

′
45, and f6. The explicit

forms for η1, η2, and η3 are given by Eqs. (26) to (28), while
γ is given by Eq. (25) of the present article. The explicit form

TABLE I. Observables in pp → ppω at double-differential level.

Serial Observables and their Entities determinable
no. theoretical formulas from experimental

measurements

1 Unpolarized double differential
cross-section: d2σ0 = a = (α0 + 9ζ0)

1
768π3 (a + 0.9α2 cos2 θ + 9ζ2 cos2 θf ) α2, ζ2

2 Vector polarization
of ω: C0(t1

±1)0 = α3, ζ3
9i

4 ( 2√
10

α3 sin 2θ + ζ3 sin 2θf e±iϕf )
3 Tensor polarization of ω:

C0(t2
0 )0 = b = (α4 − 9ζ4)

1√
6
(b − 9α5 cos2 θ + ζ5 cos2 θf ) α5, ζ5

C0(t2
±1)0 = α6, ζ6

± 3
4 (2α6 sin 2θ − 3ζ6 sin 2θf e±iϕf )

C0(t2
±2)0 = α7, ζ7

− 3
4 (2α7 sin2 θ − 3ζ7 sin2 θf e±2iϕf )

4 Beam analyzing power:
C0 �A = √

2β1(q̂ × p̂i) β1

5 Beam to ω spin transfers:
C0K

x
x = C0K

y
y = −β4 cos θ, β4

C0K
z
x = √

2β2 sin θ β2

C0K
z
z = 1√

3
β3 β3

C0K
xx
y = −2C0K

yy
y = −2C0K

zz
y

= −2
√

2β1 sin θ β1

C0K
xz
y = −C0k

yz
x = − 3√

2
β5 cos θ β5

6 Final state polarization of η1, η2,
two protons: Eqs. (18) to (23) η3, and γ

of the present article

for α0 = α4 is given by Eq. (7) and Eq. (19) of Ref. [19]. We
may rewrite α2, α3, α5, and α6 given by Eqs. (7), (19), (20),
and (21) of Ref. [19] as

α2 = |f3|2 − 2
√

10
(f2f
∗
3 ) = 10

3
(|f ′

23|2 − |f23|2), (30)

α3 = 	(f2f
∗
3 ) = −

√
10

3
	(f23f

∗
23), (31)

α5 = |f2|2 + 3

10
|f3|2 − 2√

10

(f2f

∗
3 )= 1

3
(|f23|2 + 2|f ′

23|2),

(32)

α6 = |f2|2 − 1

5
|f3|2 − 1√

10

(f2f

∗
3 ) = 
(f23f

∗
23). (33)

The explicit forms for β1, . . . , β5 are given in Eqs. (12),
(37), and (38) of Ref. [19], while those for ζ0, ζ2, . . . , ζ7 are
given by Eqs. (8), (22), . . . , (26) of Ref. [19].

We readily find that

|f1|2 = β3. (34)

We can choose the phase of f1 to be zero without any loss
of generality so that f1 is known empirically from Eq. (34).
We denote the relative phases of f23, f

′
23, f45, f

′
45, and f6 with

respect to f1 as ϕ23, ϕ
′
23, ϕ45, ϕ

′
45, and ϕ6, respectively. We

readily see that

|f23|2 = α7, (35)

whereas ϕ23 is given, without any trigonometric ambiguity, by

cos ϕ23 = β2

f1|f23| , sin ϕ23 = β1

f1|f23| . (36)

Thus f23 is known empirically. Likewise we find that

|f ′
23|2 = α7 + 0.3α2, (37)

cos ϕ′
23 = β4

f1|f ′
23|

, sin ϕ′
23 = − β5

f1|f ′
23|

, (38)

which determine f ′
23 empirically. Similarly

|f45|2 =
∣∣∣∣f23η2 + f ′

23η1

2f23f
′
23

∣∣∣∣
2

, (39)

cos ϕ45 = 1

2f1|f45|
(

β2
η1 + β1	η1

|f23|2 + β4
η2 − β5	η2

|f ′
23|2

)
,

(40)

sin ϕ45 = 1

2f1|f45|
(

β1
η1 − β2	η1

|f23|2 − β5
η2 + β4	η2

|f ′
23|2

)
,

(41)

which determine f45 empirically. We next note that

|f ′
45|2 = ζ0 + ζ2 = ζ5 − ζ4, (42)

where

ζ0 = 1
2ζ7 + 1

27 (a − b), ζ4 = − 1
2ζ7 + 2

27 (a − b), (43)

in terms of the entities listed in the second column of Table I.
Moreover,

cos ϕ′
45 = β2
γ + β1	γ

f1|f ′
45||f23|2 , sin ϕ′

45 = β1
γ − β2	γ

f1|f ′
45||f23|2 , (44)
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which together with Eq. (42) determine f ′
45 empirically. Finally

|f6|2 = 25

18

∣∣∣∣f23η2 − f ′
23η1

f23f
′
23

∣∣∣∣
2

, (45)

cos ϕ6 = 5
√

2

6f1|f6|
[
β4
η2 − β5	η2

|f ′
23|2

− β2
η1 + β1	η1

|f23|2
]

,

(46)

sin ϕ6 = − 5
√

2

6f1|f6|
[
β5
η2 + β4	η2

|f ′
23|2

+ β1
η1 − β2	η1

|f23|2
]

,

(47)

which determine f6 empirically. Thus we see from Eqs.
(34), (35), (37), (39), (42), and (45) that the moduli of
f1, f23, f

′
23, f45, f

′
45, and f6 can be determined. The relative

phases of f23, f
′
23, f45, f

′
45, and f6 are determinable with

respect to f1 using Eqs. (36), (38), (40), (41), (44), (46),
and (47) without any trigonometric ambiguity, choosing f1

to be real without any loss of generality. Therefore the
amplitudes f1, f23, f

′
23, f45, f

′
45, and f6 are determinable

purely empirically.
It may be noted that |f1| is determined directly from

a measurement of the beam to meson spin transfer Kz
z .

The |f23| and |f ′
23| are determinable from the measurements

of the unpolarized differential cross-section and the tensor

polarization of ω The determination of relative phases of
f23 and f ′

23 with respect to f1 involve measurement of
beam to meson spin transfers. The |f ′

45| is determinable from
unpolarized differential cross-section and tensor polarization
of ω. The determination of relative phases ϕ′

45 as well as ϕ6

involve proton spin measurements in the final state that are
advocated for the first time in the present article.

Having determined fij and f ′
ij , i, j = 2, 3 or 4, 5 we may

readily obtain fi and fj individually through

(
fi

fj

)
= 1

3

(
2 1√
10 −√

10

)(
fij

f ′
ij

)
. (48)

Thus, one can determine all six partial wave amplitudes,
f1, . . . , f6, purely empirically in terms of entities (listed in
column 2 of Table I) that are extracted from the experimental
measurements (listed in column 1 of Table I) at the double-
differential level.
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