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Transport equations and linear response of superfluid Fermi mixtures in neutron stars
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Transport properties of a strongly interacting superfluid mixture of two Fermi liquids are studied. A typical
example of such matter is the neutron-proton liquid in the cores of neutron stars. To describe the mixture, the
Landau theory of Fermi liquids, generalized to allow for the effects of superfluidity, is employed. The kinetic
equation is formulated and the linear response of the system to vector (e.g., electromagnetic) perturbation is
analyzed. In particular, the transverse and longitudinal polarization functions for both liquid components are
calculated. It is demonstrated that they can be expressed through the Landau parameters of the mixture and
polarization functions of noninteracting matter (when the Landau quasiparticle interaction is neglected). These
results can be used, for example, for studies of the kinetic coefficients and low-frequency long-wavelength
collective modes in superfluid Fermi mixtures.
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I. INTRODUCTION

Neutron stars are ultracompact objects with radius R ∼
10 km and a mass ∼M�, where M� ≈ 1.99 × 1033 g is the
solar mass. The density in the cores of neutron stars is a few
times larger than the density ρ0 ≈ 2.8 × 1014 g cm−3 in atomic
nuclei. The simplest matter composition in the internal layers
of neutron stars includes neutrons, protons, and electrons.
Neutrons and protons form a strongly nonideal, degenerate
Fermi liquid, while electrons can be considered as a degenerate
gas of free relativistic particles. It is generally accepted [1–3]
that at low enough temperatures T <∼ 108–1010 K neutrons
and protons become superfluid. Thus, to compare the theory
with observations of neutron stars one should be able to
describe a strongly nonideal, superfluid mixture of Fermi
liquids. In particular, the kinetic properties of such matter are
of primary interest.

One of the important problems in the kinetics of superfluid
mixtures is the calculation of the so-called response functions
that characterize response of the system to small external
perturbations. The response functions determine, for example,
the emissivity of various neutrino processes (e.g., the Cooper-
pairing neutrino emission processes [4–9] or bremsstrahlung
processes [10]) and thus influence the thermal evolution
of neutron stars. Furthermore, the formalism of response
functions is ideally suited to study collective modes in the
system, which may lead to a discovery of new exotic processes
of neutrino emission. Finally, the vector response functions
determine the screening properties of particle interaction,
influence particle collision amplitudes, and hence affect kinetic
coefficients.

Although for normal matter of neutron stars the response
functions and the collective degrees of freedom have been
extensively discussed in the literature (see, e.g., Refs. [11–22]),
the author is unaware of any discussion concerning the
response in superfluid strongly interacting mixtures. However,
for a one-component, strongly nonideal, superfluid Fermi
liquid (neutrons in the crust of a neutron star), the response
functions were calculated recently by Leinson [9]. He gener-
alized the results of Leggett [23] to the case of not too small

wave vectors and perturbation frequencies and calculated the
response of the system to axial-vector perturbation.

The same problem was also examined in Ref. [6]. The au-
thors of this reference considered a superfluid neutron-proton
mixture; however, they do not allow for interaction between
neutrons and protons. Therefore, de facto they analyze the
system of two noninteracting one-component Fermi liquids.
The results obtained in Ref. [6] were discussed (and criticized)
in Ref. [9].

It is convenient to calculate the response functions by using
the kinetic equation. For that one has to formulate the kinetic
equation that correctly describes (a) possible superfluidity of
neutrons and protons and (b) various Fermi-liquid effects
connected with interactions between neutrons and protons.
For a one-component Fermi liquid such an equation was
derived, for example, by Betbeder-Matibet and Nozieres [24]
(see also Ref. [25]). By neglecting the Fermi-liquid effects
the superfluid kinetic equation was thoroughly examined, for
example, in Refs. [26–30] (see also references therein).

There exist a number of papers exploring the transport
properties of superfluid matter in the cores of neutron stars
(see, e.g., Refs. [31–35]). However, to my best knowledge, the
kinetic equation satisfying both conditions (a) and (b) has not
yet been proposed.

Partially, this is because most studies in the literature have
been devoted to kinetics of electron gas, in particular to
electron kinetic coefficients. To calculate these coefficients
the kinetic equations for nucleons are not required since one
usually neglects the interaction between neutrons and electrons
and considers protons only as scatterers. Yet another reason
is the one-component Fermi liquid (for example, electrons in
metals or liquid helium-3), for which the Fermi-liquid effects
are well known to play no major role in a variety of kinetic
phenomena.

Here it is demonstrated that the situation with the superfluid
mixtures is different and that the Fermi-liquid effects can
be more pronounced there. To a large extent this is due
to the mean-field interaction between neutron and proton
quasiparticles. In the hydrodynamics of superfluid mixtures
[36–41] this interaction leads to entrainment of neutrons by
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the superfluid motion of protons and vice versa (the so-called
entrainment effect). It will be shown that the similar effects
are important for the kinetics of superfluid mixtures.

In the present paper the collisionless kinetic equation, sat-
isfying both conditions (a) and (b), is formulated. Employing
this equation, we can calculate and analyze the response of
the system to a vector (electromagnetic) perturbation (more
precisely, we can calculate the longitudinal and transverse
polarization functions). To describe the superfluid mixture we
use the framework of the Landau theory of Fermi liquids,
extended by Larkin and Migdal [42,43] and by Leggett [23,44]
to allow for superfluidity. For simplicity, we shall assume that
in thermodynamic equilibrium both particle species pair in the
spin-singlet 1S0 state (which is indeed a simplification since,
according to microscopic calculations [2], neutrons in the cores
of neutron stars pair in the spin-triplet 3P2 state).

In the collisionless approximation, in which we are in-
terested here, the electrons interact with the nucleons only
through a self-consistent electromagnetic field. Thus, in what
follows, the electrons can be safely ignored; this does not
change our results.

The paper is organized as follows. In Sec. II we derive
the kinetic equation describing, in the linear approximation,
mixtures of superfluid Fermi liquids. In Sec. III we calculate
and analyze the longitudinal and transverse polarization
functions for mixtures. In Sec. IV a nonlinear kinetic equation
describing superfluid mixtures in the quasiclassical limit is
proposed. Section V presents the summary.

In the following, unless otherwise stated, the system of units
used is one in which the Planck constant h̄, the speed of light
c, the Boltzmann constant kB, and the normalization volume
V equal unity: h̄ = c = kB = V = 1.

II. THE KINETIC EQUATION FOR SUPERFLUID
FERMI MIXTURES

A. Thermodynamic equilibrium

To establish notation, let us briefly consider a strongly
interacting degenerate homogeneous Fermi liquid in thermo-
dynamic equilibrium at some temperature T . We assume that
the liquid has two components and is composed of particles
of two species, i = 1 and i = 2. Here and in the following the
indices i and j refer to these species.

Weakly excited states of our system can be described in
terms of quasiparticles. According to the Landau theory of
Fermi liquids, in normal (nonsuperfluid) matter, the energy
ε

(i)
k of a quasiparticle i with momentum k is a functional

of quasiparticle distribution functions N (j=1,2)
k (see, e.g.,

Refs. [45,46]),

ε
(i)
k

[
N (j )

k

] = ε
(i)
k0 +

∑
k′σ ′j

f ij (k, k′)
[
N (j )

k′ − θ
(j )
k′
]
. (1)

For nonsuperfluid matter in thermodynamic equilibrium the
distribution function N (i)

k is denoted n
(i)
k0 and is given by

n
(i)
k0 = 〈

a
(i)†
kσ a

(i)
kσ

〉 = 1

1 + e(ε(i)
k [n(j )

k0 ]−µi )/T
. (2)

In Eqs. (1) and (2) ε
(i)
k0 is the quasiparticle energy at T = 0;

σ and σ ′ = ±1 are spin indices; θ
(i)
k = θ (kFi − k), where

θ (x) is the step function, and kFi is the Fermi momentum.
Furthermore, a

(i)
kσ = a

(i)
k↑ or a

(i)
k↓ is the annihilation operator of

a quasiparticle in a state (kσ ) and µi is the chemical potential.
Finally, f ij (k, k′) in Eq. (1) is the Landau quasiparticle
interaction. In the present paper we only deal with spin-
unpolarized matter and do not consider forces that rotate
spin. This allows us to disregard the spin dependence of
the interaction function, assuming that f ij (k, k′) is already
averaged over spin variables. We also suppress spin indices
in formulas, whenever possible. Notice, however, that the
kinetic equation (19), obtained later, can be used, with minor
modifications, to study transport properties of spin-polarized
matter [then, of course, one should take into account the spin
dependence of f ij (k, k′)].

In the vicinity of the Fermi surface the lengths of the
vectors k and k′ in the arguments of the function f ij (k, k′)
can be approximately set equal to k ≈ kFi and k′ ≈ kFj , and
the function itself can be expanded into Legendre polynomials
Pl(cosθ ),

f ij (k, k′) =
∑

l

f
ij

l Pl(cos θ ), (3)

where θ is the angle between k and k′, and f
ij

l are the
symmetric Landau parameters: f

ij

l = f
ji

l .
Assume now that both particles, i = 1 and i = 2, are

superfluid (and we are still in thermodynamic equilibrium at
a temperature T ). The spin 1/2 elementary excitations in the
superfluid Fermi liquid are the Bogoliubov excitations. In the
absence of superfluid currents in the system, their energy E

(i)
k

and the distribution function F (i)
k0 are (see, e.g., Ref. [47])

E
(i)
k =

√
ξ

(i)2
k + �2

i , (4)

F (i)
k0 = 1

1 + eE
(i)
k /T

, (5)

where ξ
(i)
k equals (see, e.g., Ref. [38])

ξ
(i)
k = ε

(i)
k

[
N (j )

k0

] − µi

= vFi(k − kFi) + O

[(
T

µj

)2

+
(

�i

µj

)2
]

≈ vFi(k − kFi). (6)

The function N (i)
k0 will be defined in Eq. (16); vFi = kFi/m∗

i

is the Fermi velocity and m∗
i is the effective mass. In the

nonrelativistic limit m∗
i can be found from the equation [37,

38,48]

mi

m∗
i

= 1 −
∑

j

mjGij

ni

, (7)

where

ni = p3
Fi

3π2
(8)
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is the number density; mi is the bare mass; and the symmetric
matrix Gij is defined as

Gij ≡ 1

9π4
p2

Fip
2
Fj f

ij

1 . (9)

Furthermore, �i in Eqs. (4)–(6) is the energy gap in
thermodynamic equilibrium. Because we assume the singlet-
state 1S0 pairing of quasiparticles, the gap �i depends only on
k = |k|. It can be found from the standard equation

�i(k) = −
∑

k′
V (i)(k, k′)�i(k

′)F (i)
k′ . (10)

Here we define

F
(i)
k ≡ 1

2E
(i)
k

tanh

(
E

(i)
k

2T

)
. (11)

In Eq. (10) V (i)(k, k′) is the pairing potential for particles i. In
analogy with the function f ij (k, k′) [see Eq. (3)], we expand
it into Legendre polynomials,

V (i)(k, k′) =
∑

l

V
(i)
l Pl(cos θ ). (12)

Near the Fermi surface a smoothly varying function �i(k)
can be approximated as �i(k) ≈ �i(kFi) (see, e.g., Ref. [24]).
Then, combining Eqs. (10) and (12), one obtains the following
equation for �i :

1 = −V
(i)

0

∑
k′

F
(i)
k′ . (13)

As follows from Eq. (5), the distribution function F (i)
k0 for

Bogoliubov excitations is a scalar quantity. In contrast, the
distribution function n(i)

kσ0 for Landau quasiparticles in super-
fluid matter is a matrix rather than a scalar. In thermodynamic
equilibrium it can be written as (see, e.g., Ref. [24])

n(i)
kσ0 =

( 〈
a

(i)†
kσ a

(i)
kσ

〉 〈
a

(i)†
kσ a

(i)†
−k−σ

〉
〈
a

(i)
−k−σ a

(i)
kσ

〉 〈
a

(i)
−k−σ a

(i)†
−k−σ

〉
)

= 1

2

(
1̂ − 2ε

(i)
kσ0F

(i)
k

)
,

(14)

where 1̂ is the unit matrix. The “energy matrix” ε
(i)
kσ0 in

Eq. (14) equals

ε
(i)
kσ0 =

(
ξ

(i)
k σ�i

σ�i −ξ
(i)
k

)
. (15)

For superfluid matter in the absence of superfluid currents the
average equilibrium number N (i)

k0 of Landau quasiparticles in

a state (kσ ) is given by the element 〈a(i)†
kσ a

(i)
kσ 〉 of the matrix

n(i)
kσ0,

N (i)
k0 ≡ 〈

a
(i)†
kσ a

(i)
kσ

〉 = 1
2

(
1 − 2ξ

(i)
k F

(i)
k

)
(16)

[which can be compared with the corresponding Eq. (2) for
normal matter].

B. The system of kinetic equations

To obtain the kinetic equation let us slightly perturb the
system. Since our aim in this section is to determine the
kinetic equation in the linear approximation, we may assume,
without any loss of generality, that the perturbation varies
with coordinate r and time t as ei(qr−ωt), where q and ω are
the perturbation wave vector and frequency, respectively. To
use the Landau theory of Fermi liquids we have to assume, in
addition, that q � kFi and ω � µi .

The only nonzero matrix elements, induced by the pertur-
bation, can be written in a compact form as (see, e.g., [24])

δn(i)
kσ (q) =

⎛⎝ 〈
a

(i)†
k−σ a

(i)
k+σ

〉 〈
a

(i)†
k−σ a

(i)†
−k+−σ

〉
〈
a

(i)
−k−−σ a

(i)
k+σ

〉 〈
a

(i)
−k−−σ a

(i)†
−k+−σ

〉
⎞⎠

≡
(

δn
(i)
kσ11 δn

(i)
kσ12

δn
(i)
kσ21 δn

(i)
kσ22

)
. (17)

Here and in the following we use the notation

k− = k − q
2
, k+ = k + q

2
. (18)

The matrix δn(i)
kσ (q) with the elements δn

(i)
kσ11, . . . , δn

(i)
kσ22,

defined in Eq. (17), can be interpreted as a small deviation
from the equilibrium distribution function n(i)

kσ0, caused by the
perturbation. The collisionless kinetic equation for δn(i)

kσ (q)
can be found following the derivation of Ref. [24]. The result
is

ωδn(i)
kσ = δn(i)

kσ ε
(i)
k+σ0 − ε

(i)
k−σ0δn(i)

kσ + n(i)
k−σ0δε

(i)
kσ − δε

(i)
kσ n(i)

k+σ0.

(19)

In this equation δε
(i)
kσ is a matrix, describing local deviation of

the quasiparticle energy from its equilibrium value ε
(i)
kσ0. It is

the sum of two terms,

δε
(i)
kσ = λ

(i)
kσ + �

(i)
kσ , (20)

where the term λ
(i)
kσ describes the change of the quasiparticle

energy with the distribution function,

λ
(i)
kσ

=
⎛⎝∑k′σ ′j f ij (k, k′)δn(j )

k′σ ′11

∑
k′ V (i)(k, k′)δn(i)

k′σ12∑
k′ V (i)(k, k′)δn(i)

k′σ21

∑
k′σ ′j f ij (k, k′)δn(j )

k′σ ′22

⎞⎠,

(21)

and the term �
(i)
kσ is responsible for the interaction of

quasiparticles with the self-consistent electromagnetic field,

�
(i)
kσ =

(
eiV − αi

k A
mi

0

0 −eiV − αi
k A
mi

)
. (22)

Here V and A are the scalar and vector electromagnetic
potentials, respectively. It is assumed that in the unperturbed
system V = 0 and A = 0.

Equations (19)–(22) are trivial generalizations to the case of
superfluid mixtures of the corresponding equations presented
in Ref. [24]. The only nontrivial point is the expression for
the coefficient αi . In Ref. [24] αi is equal to the quasiparticle
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electric charge ei . This result is valid only for a one-component
Fermi liquid. As is demonstrated in Appendix A, for a mixture
of Fermi liquids one should instead write

αi = mi

ni

∑
j

ejYij , (23)

where Yij is the relativistic entrainment matrix at zero
temperature, given by [48,49]

Yij = ni

m∗
i

δij + Gij . (24)

In this equation δij is the Kronecker symbol and the matrix
Gij is defined in Eq. (9).

The kinetic equation (19) consists of four coupled integral
equations. Their solution determines the matrix δn(i)

kσ (q) [i.e.,
the four functions δn

(i)
kσ11, . . . , δn

(i)
kσ22].

The system (19) can be substantially simplified by intro-
ducing a new set of variables

δn
(i)
kσ+ = δn

(i)
kσ11 + δn

(i)
kσ22, (25)

δn
(i)
kσ− = δn

(i)
kσ11 − δn

(i)
kσ22, (26)

δs
(i)
kσ+ = σ

[
δn

(i)
kσ12 + δn

(i)
kσ21

]
, (27)

δs
(i)
kσ− = σ

[
δn

(i)
kσ12 − δn

(i)
kσ21

]
, (28)

with the obvious symmetry properties [see Eq. (17)]

δn
(i)
kσ+ = −δn

(i)
−k−σ+, (29)

δn
(i)
kσ− = δn

(i)
−k−σ−, (30)

δs
(i)
kσ+ = δs

(i)
−k−σ+, (31)

δs
(i)
kσ− = δs

(i)
−k−σ−. (32)

By using these variables, the system of kinetic equations (19)
can be rewritten in the form

ω δn
(i)
kσ+ = [

F
(i)
k+ ξ

(i)
k+ − F

(i)
k− ξ

(i)
k−

]
V

(i)
kσ + [

ξ
(i)
k+ − ξ

(i)
k−

]
δn

(i)
kσ−

+�i

[
F

(i)
k+ − F

(i)
k−

]
O

(i)
kσ+, (33)

ω δn
(i)
kσ− = [

F
(i)
k− ξ

(i)
k− − F

(i)
k+ ξ

(i)
k+

]
A

(i)
kσ + [

ξ
(i)
k+ − ξ

(i)
k−

]
δn

(i)
kσ+

+ 2�iδs
(i)
kσ− + �i

[
F

(i)
k− + F

(i)
k+

]
O

(i)
kσ−, (34)

ω δs
(i)
kσ− = �i

[
F

(i)
k− + F

(i)
k+

]
V

(i)
kσ + 2�iδn

(i)
kσ− − [

ξ
(i)
k− + ξ

(i)
k+

]
× δs

(i)
kσ+ − [

F
(i)
k− ξ

(i)
k− + F

(i)
k+ ξ

(i)
k+

]
O

(i)
kσ+, (35)

ω δs
(i)
kσ+ = �i

[
F

(i)
k− − F

(i)
k+

]
A

(i)
kσ − [

ξ
(i)
k− + ξ

(i)
k+

]
δs

(i)
kσ−

− [
F

(i)
k− ξ

(i)
k− + F

(i)
k+ ξ

(i)
k+

]
O

(i)
kσ−, (36)

where O
(i)
kσ+ and O

(i)
kσ− are given by

O
(i)
kσ+ =

∑
k′

V (i)(k, k′)δs(i)
k′σ+, (37)

O
(i)
kσ− =

∑
k′

V (i)(k, k′)δs(i)
k′σ−, (38)

and the functions V
(i)
kσ and A

(i)
kσ are defined as

V
(i)
kσ = 2eiV +

∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′−, (39)

A
(i)
kσ = 2αi

k A
mi

−
∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′+. (40)

The system of Eqs. (33)–(36) contains all information to calcu-
late the linear gauge-invariant response of the two-component
superfluid Fermi liquid to a vector (e.g., electromagnetic)
perturbation.

C. The particle current density

Let us sum Eq. (34) over k and σ . Then, using Eq. (13)
one obtains that, with an accuracy up to quadratic terms
in q/kFi � 1, the last two terms in the right-hand side of
Eq. (34) cancel out and we are left with

ω
∑
kσ

δn
(i)
kσ−

=
∑
kσ

[
N (i)

k+0 − N (i)
k−0

]
A

(i)
kσ +

∑
kσ

[
ξ

(i)
k+ − ξ

(i)
k−

]
δn

(i)
kσ+.

(41)

Here we also made use of Eq. (16). To proceed further, we
expand ξ

(i)
k± in a Taylor series,

ξ
(i)
k± = ξ

(i)
k ± qvi

2
+ O

[(
q

kFi

)2
]

, (42)

where vi ≡ vFi(k/k) is the velocity of Landau quasiparticles
on the Fermi surface.

Equation (41) can be additionally simplified with the help
of Eq. (40) and the expansion (42). Neglecting all terms of
the second and higher orders in q/kFi , one obtains the particle
conservation law

ωδni = q j i (43)

with

δni = 1

2

∑
kσ

δn
(i)
kσ−, (44)

j i = 1

2

∑
kσ

⎡⎣viδn
(i)
kσ+ + N (i)

k0

∂

∂k

∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′+

⎤⎦
−αi

ni

mi

A. (45)

BecauseN (i)
k0 is the isotropic equilibrium distribution function,

one has ∂N (i)
k0/∂k = [∂N (i)

k0/∂k](k/k), so that Eq. (45) can be
rewritten as

j i = 1

2

∑
kσ

⎡⎣viδn
(i)
kσ+ −

∑
k′σ ′j

∂N (i)
k0

∂k
f

ij

1

k(kk′)
k2k′ δn

(j )
k′σ ′+

⎤⎦
−αi

ni

mi

A, (46)

where the second term in square brackets was integrated by
parts and we made use of the expansion (3).

The quantities δni and j i in Eqs. (43)–(46) can be
interpreted as the number density perturbation and particle
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current density, respectively. To prove that this is really so, we
employ Eqs. (25) and (26) and the symmetry relations (29)
and (30), and rewrite Eqs. (44) and (45) in the familiar form

δni =
∑
kσ

δn
(i)
kσ11, (47)

j i =
∑
kσ

⎡⎣viδn
(i)
kσ11 + N (i)

k0

∂

∂k

∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′11

⎤⎦
−αi

ni

mi

A. (48)

One sees that δni is indeed the number density perturbation.
Thus, as follows from the continuity equation (43), j i is the
particle current density. Notice that j i is formally given by the
same expression as for normal (nonsuperfluid) Fermi liquid
(see, e.g., Refs. [45,46]). For a one-component Fermi liquid
this was first demonstrated by Leggett [44].

Since the quantities δni and j i are observables, they must
be invariant under gauge transformations. This property of δni

and j i is very important for the consideration in the following.
For a one-component Fermi liquid the gauge invariance of δni

and j i , defined in Eqs. (44)–(48), was explicitly demonstrated
by Betbeder-Matibet and Nozieres [24] [see their Eq. (28)].

III. LANDAU FERMI-LIQUID EFFECTS AND
GAUGE INVARIANCE

In this section we study the response of the system to
an applied harmonic electromagnetic field. Our aim will
be to express the exact polarization tensor for a strongly
interacting two-component Fermi liquid through that of a
noninteracting liquid [for which the Landau quasiparticle
interaction f ij (k, k′) = 0].

A. Gauge-invariant expressions for δni and j i

Assume that V and A are some self-consistent (not external)
vector and scalar electromagnetic potentials in an arbitrary
gauge. The vector potential A can be presented in the form

A = Al + Atr, (49)

where Al = q(q A)/q2 is the longitudinal component of A di-
rected along q and Atr = A − Al is the transverse component.

Performing a gauge transformation

Ṽ = V + ∂φ

∂t
= V − iωφ, (50)

Ã = A − ∇φ = A − iqφ, (51)

one can choose the new potentials Ṽ and Ã in such a way
that Ãl = 0 (i.e., φ = −iAl/q). In this new gauge the relation
between δni , j i and Ṽ , Ã can generally be written as

δni = P
(i)
00 Ṽ , (52)

j i = P
(i)
tr Ãtr + q

ω
P

(i)
l Ṽ , (53)

where P
(i)
l and P

(i)
tr are, respectively, the exact longitudinal

and transverse polarization functions for a strongly interacting

Fermi mixture. The function P
(i)
00 is related to P

(i)
l by the

continuity equation (43),

P
(i)
l = ω2

q2
P

(i)
00 . (54)

A direct (but not easy) way to obtain the quantities P
(i)
00 , P

(i)
l ,

and P
(i)
tr is to solve the system of integral kinetic equations

(33)–(36) for δn
(i)
kσ− and δn

(i)
kσ+, and then to make use of

Eqs. (44) and (45).
Employing Eqs. (50) and (51), one can rewrite Eqs. (52)

and (53) in the original gauge as

δni = P
(i)
00

(
V − ω

q
Al

)
, (55)

j i = P
(i)
tr Atr + q

ω
P

(i)
l

(
V − ω

q
Al

)
. (56)

Clearly, these expressions are gauge-invariant. Knowledge of
P

(i)
00 , P

(i)
l , and P

(i)
tr allows one to determine the longitudinal εl

and transverse εtr dielectric functions of the liquid,

εl = 1 − 4π

ω2

∑
i

eiP
(i)
l = 1 − 4π

q2

∑
i

eiP
(i)
00 , (57)

εtr = 1 − 4π

ω2

∑
i

eiP
(i)
tr . (58)

For a noninteracting Fermi liquid, for which f ij (k, k′) = 0,
Eqs. (55) and (56) take the form

δni = �
(i)
00

(
V − ω

q
Al

)
, (59)

j i = �
(i)
tr Atr + q

ω
�

(i)
l

(
V − ω

q
Al

)
, (60)

where the exact polarization functions of noninteracting matter
are denoted as �

(i)
00, �

(i)
l , and �

(i)
tr . These quantities have been

carefully analyzed in the literature (see, e.g., Refs. [9,50–52]);
they depend on a number of parameters, in particular, on the
particle Fermi momentum pFi and on the mass mi .

B. Landau quasiparticle interaction and the polarization
functions

Let us calculate the exact polarization functions P
(i)
00 , P

(i)
l ,

and P
(i)
tr under the simplified assumption that all the Landau

parameters except for f
ij

0 and f
ij

1 vanish (f ij

l = 0 for l � 2).
Equations (39) and (40) can then be rewritten as

V
(i)
kσ = 2eiV + 2

∑
j

f
ij

0 δnj ≡ 2eiV
(i)

eff , (61)

A
(i)
kσ = 2αi

k A
mi

−
∑

j

k
kFikFj

f
ij

1

∑
k′σ ′

k′δn(j )
k′σ ′+ ≡ 2ei

k A(i)
eff

m∗
i

,

(62)

where we employed Eqs. (29), (30), and (44) and introduced
the effective scalar V

(i)
eff and vector A(i)

eff electromagnetic poten-
tials. One can express them in terms of real electromagnetic

025804-5



MIKHAIL E. GUSAKOV PHYSICAL REVIEW C 81, 025804 (2010)

potentials V and A and observables δni and j i by making use
of Eqs. (44) and (45), respectively. The result is

V
(i)

eff = V + 1

ei

∑
j

f
ij

0 δnj , (63)

A(i)
eff = A + 1

ei

∑
j

γij j j . (64)

To obtain Eq. (64) we use Eq. (7) for the effective mass m∗
i and

the expression (23) for αi . The detailed derivation of Eq. (64)
for a one-component Fermi liquid is given in Appendix B. The
matrix γij in Eq. (64) depends on the Landau parameters f

ij

1
and equals

γii = m2
i

Si

(
GiiGijmi + G2

ijmj − Giinj

)
, (65)

γij = mimj

Si

Gij (Giimi + Gijmj − ni), (66)

with

Si = (Giimi + Gijmj − ni)(Gijmini + Gijmjnj − ninj ).

(67)

Here the symmetric matrix Gij is defined by
Eq. (9). In Eqs. (65)–(67) the indices i and j belong to
different particle species, i �= j . For instance, if i = 1 then
j = 2 and vice versa.

Now, let us return to Eqs. (61) and (62). The quantities V
(i)
kσ

and A
(i)
kσ , entering the kinetic equations (33)–(36), depend on

the effective potentials V
(i)

eff and A(i)
eff in exactly the same way

as in the absence of Landau quasiparticle interaction [when
f ij (k, k′) = 0]. The only difference is that in all equations
one should replace the bare mass mi with the effective mass
m∗

i , or, equivalently, replace mi with pFi/vFi . Moreover, as
follows from Eqs. (63) and (64), the gauge transformation
properties of V

(i)
eff and A(i)

eff coincide with that of, respectively,
V and A [see Eqs. (50) and (51)]. Consequently, the relation
between δni , j i and V

(i)
eff , A(i)

eff in an arbitrary gauge is given
by the same expressions as for a noninteracting Fermi liquid
[compare with Eqs. (59) and (60)],

δni = �
(i)
00

(
V

(i)
eff − ω

q
A

(i)
eff,l

)
, (68)

j i = �
(i)
tr A(i)

eff,tr + q
ω

�
(i)
l

(
V

(i)
eff − ω

q
A

(i)
eff,l

)
. (69)

It should be emphasized once again that here the quantities
�

(i)
00, �

(i)
l , and �

(i)
tr should be understood as functions of pFi

and m∗
i (or pFi and vFi = pFi/m∗

i ) rather than as functions of
pFi and mi . These two sets of variables are equivalent only for
a noninteracting Fermi liquid, when m∗

i = mi .
Now we are ready to find the polarization functions P

(i)
00 ,

P
(i)
l , and P

(i)
tr for a two-component, strongly interacting Fermi

liquid. For that, we compare the general expressions (55) and
(56) for δni and j i with the corresponding equations (68)
and (69). Taking into account that V

(i)
eff and A(i)

eff are given by
Eqs. (63) and (64), we obtain

P
(i)
00 = �

(i)
00

(
eiej + ejχij�

(j )
00 − eiχjj�

(j )
00

)
eiej − eiχjj�

(j )
00 − ejχii�

(i)
00 − χijχji�

(i)
00�

(j )
00 + χiiχjj�

(i)
00�

(j )
00

, (70)

P
(i)
tr = �

(i)
tr

(
eiej + ejγij�

(j )
tr − eiγjj�

(j )
tr

)
eiej − eiγjj�

(j )
tr − ejγii�

(i)
tr − γij γji�

(i)
tr �

(j )
tr + γiiγjj�

(i)
tr �

(j )
tr

, (71)

while P
(i)
l can be found from Eq. (54). Here

χij = f
ij

0 − (ω2/q2)γij and the indices i and j refer to
different particle species, i �= j . Equations (70) and (71) will
be analyzed in a subsequent section.

Here it is convenient to make a few comments concerning
the scheme of calculation of the polarization functions just
suggested. First, in principle it would be possible to extend
this scheme by taking into account the Landau parameters
f

ij

l with l � 2. However, for that one needs to know how
the “noninteracting” system [with f ij (k, k′) = 0] responds to
a general perturbation (not just to the electromagnetic field).
This is a complex problem without any simple solution, such
as in the case of l < 2.

Second, the approach described here can be easily gener-
alized to calculate the axial-vector response of the system.
For that one needs to introduce the spin-dependent part of the
Landau quasiparticle interaction in the kinetic equation (19).
For a one-component superfluid Fermi liquid, the axial-vector
polarization functions were calculated by Leinson [9] under

the simplified assumption that the only nonzero Landau
parameters are g0 and g1 (see Ref. [9] for the definition of
g0 and g1). The generalization of his results to the case of
mixtures is straightforward. The more difficult problem would
be to estimate the effect of tensor quasinucleon interactions
on the axial-vector response of the system. I hope to address
this problem in a subsequent publication.

C. Various limiting cases for P (i)
00 and P (i)

tr

We consider first a one-component Fermi liquid. The par-
ticle species indices can then be suppressed. The polarization
function P00 for a one-component Fermi liquid was studied by
Leggett [23] in the limit of qvF � � and ω � �. Both polar-
ization functions P00 and Ptr were studied in the recent paper by
Leinson [9] at arbitrary qvF � µ and ω � µ. In his analysis,
Leinson took into account only the harmonic V0 of the pairing
interaction and assumed that Vl = 0 for l > 0. The results here
will be compared with the results of these two authors.
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For a one-component Fermi-liquid Eqs. (70) and (71) are
essentially simplified to

P00 = e�00

e − χ�00
, (72)

Ptr = e�tr

e − γ�tr
, (73)

with

γ = −mm∗

k2
F

f1, (74)

χ = f0 − ω2

q2
γ. (75)

To obtain Eqs. (72) and (73) we put f
ij

0 = 0 and f
ij

1 = 0 for
i �= j in Eqs. (70) and (71) and then suppress the particle
species indices.

Equation (72) coincides with Eq. (68) of Leggett [23] and
with Eq. (63) of Leinson [9] in the limit of qvF � � and
ω � �. In the other limiting case, when qvF � � and ω >

2�, we reproduce the result of Leinson [9] [see his Eq. (82)].
However, at arbitrary qvF and ω our Eq. (72) differs from the
general equation (55) for P00 suggested by Leinson [9]. His
Eq. (55) depends on two complicated combinations of inte-
grals, Q and P , that can be easily expressed through each other
only in the limits discussed here. In contrast, our Eq. (72) de-
pends solely on the polarization function �00(pF, vF) of a non-
interacting one-component Fermi liquid, which is the direct
consequence of gauge invariance of the quantities δn and j .

Now let us examine Eq. (73) for Ptr. Knowledge of Ptr

allows one to calculate the transverse-current autocorrelation
function KT ,

KT = Ptr

e
+ n

m
. (76)

This quantity was derived by Leinson (see Eq. (86) of Ref. [9]).
Notice that his Eq. (86) contains a misprint [53]; one should
replace VF with pF/m in this equation. After correcting the
misprint, Eq. (86) of Leinson coincides with our Eq. (76).

To further check Eq. (73), we look at the static limit of
Ptr, assuming that ω = 0 and qvF � �. In the static limit the
particle current density j is generated solely by a motion of
superfluid liquid component (i.e., the normal component is at
rest). It is given by [47]

j = ρs

m
V s, (77)

where ρs is the superfluid density and V s is the superfluid
velocity. The velocity V s depends on the gauge-invariant
combination of the phase ϕ of the Cooper-pair condensate
wave function and on the electromagnetic potential A (see,
e.g., Ref. [47] and Sec. IV for more details),

V s = 1

2m
(∇ϕ − 2eA). (78)

In the transverse gauge in which Al = (q A)/q = 0, the phase
ϕ = 0, because it can only depend on the scalar (q A) = 0.
Then it follows from Eqs. (77) and (78) that

j = −eρs

m2
Atr. (79)

For a one-component noninteracting Fermi liquid

ρs = mn[1 − �(T )], (80)

where �(T ) is a function of temperature [for more details see,
e.g., Ref. [44], where this function was denoted by f (T )].
Using Eqs. (60), (79), and (80), one obtains

�tr(pF, vF) = −en vF(1 − �)

pF
. (81)

This equation together with Eqs. (7) and (73) gives

Ptr = − e n(1 − �)

m(1 + F1�/3)
, (82)

where F1 = (m∗pF/π
2)f1. Comparing Eqs. (79) and (82), one

can determine the superfluid density ρs for an interacting Fermi
liquid,

ρs = −m2

e
Ptr = mn[1 − �(T )]

1 + F1�(T )/3
. (83)

This coincides with the corresponding Eq. (72) of Leggett
[44]. (Notice that Leggett calculated the “normal” density ρn ≡
mn − ρs.) Thus, we demonstrate that in the static limit our
Eq. (73) reproduces the well-known result of Ref. [44].

We now turn our attention to the two-component Fermi
liquid and discuss first the static limit (ω = 0 and qvFi � �j ).
To obtain P

(i)
tr in this limit one should use Eq. (71) with �

(i)
tr

given by an expression similar to Eq. (81),

�
(i)
tr (pFi , vFi) = −einivFi(1 − �i)

pFi

, (84)

where �i is the same function of temperature as � (for more
details, see Ref. [38]).

From another point of view, in the static limit the general
hydrodynamics of superfluid mixtures is applicable, which
means that, in the absence of normal current (see, e.g., Ref.
[36]),

j i =
∑

j

ρij

mi

V sj . (85)

Here ρij is the entrainment matrix (also termed the Andreev-
Bashkin or mass-density matrix) and V si is the superfluid
velocity for the ith particle species. It can be expressed through
the phase ϕi by an equation similar to Eq. (78),

V si = 1

2mi

(∇ϕi − 2ei A). (86)

Again, as for a one-component liquid, in the transverse gauge
ϕi = 0 and from Eqs. (85) and (86) we have

j i = −
(

eiρii

m2
i

+ ejρij

mimj

)
Atr, (87)

or, in view of Eq. (56),

P
(i)
tr = −

(
eiρii

m2
i

+ ejρij

mimj

)
. (88)

In Eqs. (87) and (88) indices i and j refer to different particle
species, i �= j . Comparing Eq. (88) with Eq. (71) and taking
into account Eq. (84), one can determine the entrainment
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matrix ρij and verify that it coincides with the result of
Ref. [38], obtained in a quite different way. (It should be noted
that in Ref. [38] it is additionally demonstrated that the higher
harmonics f

ij

l with l � 2 do not contribute to ρij .)

The next interesting limiting case is realized if one particle
species, say, i = 1, is charged while the other is not (e2 = 0).
It follows then from general equation (70) that

P
(1)
00 = e1�̃

(1)
00

(
1 − χ22�̃

(2)
00

)
1 − χ22�̃

(2)
00 − χ11�̃

(1)
00 − χ12χ21�̃

(1)
00 �̃

(2)
00 + χ11χ22�̃

(1)
00 �̃

(2)
00

, (89)

P
(2)
00 = e1χ21�̃

(1)
00 �̃

(2)
00

1 − χ22�̃
(2)
00 − χ11�̃

(1)
00 − χ12χ21�̃

(1)
00 �̃

(2)
00 + χ11χ22�̃

(1)
00 �̃

(2)
00

. (90)

Here the function �̃
(i)
00 is independent of the electric charge ei ,

�̃
(i)
00 ≡ �

(i)
00/ei . Analogous expressions for P

(1)
tr and P

(2)
tr can

be obtained with the help of Eq. (71). One sees from Eqs. (89)
and (90) [and from the corresponding equations for P

(i)
tr ] that

neutral particles not only modify the polarization function
P

(1)
00,tr of charged particles but also respond themselves to the

electromagnetic field, because P
(2)
00,tr �= 0. However, the neutral

particles do not contribute to the dielectric functions of the
liquid, since, as follows from Eqs. (57) and (58), εl and εtr are
given by

εl = 1 − 4π

q2
e1P

(1)
00 , (91)

εtr = 1 − 4π

ω2
e1P

(1)
tr . (92)

Finally, we mention another interesting property of the
general solution (70) and (71). Assume that the polarization
functions �

(i=1,2)
00 [or �

(i=1,2)
tr ] of a noninteracting Fermi liquid

are small so that one can neglect the terms of the order of
�

(i)
00�

(j )
00 [or �

(i)
tr �

(j )
tr ]. Then, as follows from Eqs. (70) and

(71), in the linear approximation,

P
(i)
00 ≈ �

(i)
00

[
or P

(i)
tr ≈ �

(i)
tr

]
. (93)

That is, the polarization functions are not modified by the
first two harmonics f

ij

0 and f
ij

1 of the Landau quasiparticle
interaction. In the next section we demonstrate that in some
cases this conclusion is correct even if we take into account
all harmonics f

ij

l with l � 0.

D. Transverse polarization function in the Pippard limit

In the Pippard limit we have qvFj 
 �i , qvFj 
 ω, and
qvFj � µi . It is especially important to know the polarization
functions P

(i)
00 and P

(i)
tr in this limit because they are required,

for instance, for calculating the kinetic coefficients of a
multifluid Fermi mixture in neutron-star cores [33,34].

In the first approximation, P
(i)
00 does not depend on the gap

�i and the frequency ω and agrees with the corresponding

expression for normal matter, describing the ordinary static
screening of particles. It can be easily obtained from Eq. (70)
if we notice that for a normal one-component noninteracting
Fermi liquid one has (see, e.g., Ref. [45])

�
(i)
00 = − eip

2
Fi

π2vFi

. (94)

Strictly speaking, Eq. (70) that we employ was derived under
the assumption that the only harmonics f

ij

0 and f
ij

1 of the
Landau quasiparticle interaction are nonzero. However, one
can easily verify that, for a normal Fermi liquid, P

(i)
00 is still

given (at small q and ω) by Eq. (70) even if we allow for higher
harmonics f

ij

l with l � 2. For a one-component Fermi liquid
this was demonstrated, for example, in Ref. [45].

Now let us consider the transverse polarization function
P

(i)
tr . In the Pippard limit the polarization function �

(i)
tr is small:

�
(i)
tr = O[�i/(qvFi) + ω/(qvFi)]. It follows then, from the

discussion at the end of the preceding section, that the first two
harmonics f

ij

0 and f
ij

1 of the Landau quasiparticle interaction
have no influence on P

(i)
tr , so that it is given by Eq. (93).

In the following we demonstrate that this result remains
correct even if we take into account other harmonics f

ij

l

with l � 2. In the static limit (ω = 0) this was first shown
by Leggett [44]. More precisely, we prove that the transverse
polarization function for a noninteracting system coincides
with the function for a system with an arbitrary harmonic f

ij

l

(l � 2) switched on.
We consider first the simplified situation in which the

pairing potential V (i)(k, k′) is a constant; the generalization
of our results to the case of an arbitrary V (i)(k, k′) is briefly
discussed at the end of the present section. In other words, we
take into account only the first term V

(i)
0 in the expansion (12)

of V (i)(k, k′) in Legendre polynomials and neglect all other
terms, V

(i)
l = 0 for l � 1. In that case the functions O

(i)
kσ+ and

O
(i)
kσ− in Eqs. (33)–(36) are some constants depending on the

scalars q A and V (see, e.g., Ref. [47]). In the transverse gauge,
where q A = q Atr = 0, and in the absence of scalar electro-
magnetic potential V , they vanish (O(i)

kσ+ = O
(i)
kσ− = 0). The

solution to the system of equations (33)–(36) is then simplified
and we have for δn

(i)
kσ+(q, ω,�i) and δn

(i)
kσ−(q, ω,�i)

δn
(i)
kσ+(q, ω,�i) = [

qviA
(i)
kσ − ωV

(i)
kσ

]M1

D
, (95)
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δn
(i)
kσ−(q, ω,�i) = ωA

(i)
kσ

M1

D
+ V

(i)
kσ

M2

D
, (96)

where

M1 = 1
2 qvi

[
4ξ

(i)2
k − ω2

][
F

(i)
k+ + F

(i)
k−

]
+ ξ

(i)
k

[
4ξ

(i)2
k + 4�2

i − ω2][F (i)
k+ − F

(i)
k−

]
, (97)

M2 = 1
2

[
4�2

i ω
2 − 4(qvi)

2ξ
(i)2
k + (qvi)

2ω2
][

F
(i)
k+ + F

(i)
k−

]
+ qviξ

(i)
k

[
4ξ

(i)2
k − ω2

][
F

(i)
k− − F

(i)
k+

]
, (98)

D = (
E

(i)
k− − E

(i)
k+ − ω − i0

)(
E

(i)
k− + E

(i)
k+ − ω − i0

)
×(

E
(i)
k− − E

(i)
k+ + ω + i0

)(
E

(i)
k− + E

(i)
k+ + ω + i0

)
.

(99)

In Eqs. (95) and (96) V
(i)
kσ and A

(i)
kσ are the smooth functions of

k, defined in Eqs. (39) and (40), respectively. For our problem
they can be rewritten as

V
(i)
kσ =

∑
k′σ ′j

f
ij

l Pl(cos θ )δn(j )
k′σ ′−(q, ω,�j ), (100)

A
(i)
kσ = 2αi

k A
mi

−
∑
k′σ ′j

f
ij

l Pl(cos θ )δn(j )
k′σ ′+(q, ω,�j ),

(101)

where θ is the angle between k and k′ and l � 2.
As already mentioned, Leggett [44] showed that the

static function P
(i)
tr (q, 0,�i) is not affected by the Landau

quasiparticle interaction. Therefore, it is sufficient to analyze
the difference P

(i)
tr (q, ω,�i) − P

(i)
tr (q, 0,�i) and prove that it

is independent of f
ij

l . Using Eq. (46), we obtain

j i(q, ω,�i) − j i(q, 0,�i)

= [
P

(i)
tr (q, ω,�i) − P

(i)
tr (q, 0,�i)

]
Atr

= 1

2

∑
kσ

k
mi

[
δn

(i)
kσ+(q, ω,�i) − δn

(i)
kσ+(q, 0,�i)

]
.

(102)

The function δn
(i)
kσ+(q, ω,�i) − δn

(i)
kσ+(q, 0,�i) is nonzero

only in a narrow region near the Fermi surface, when k ∼ kFi .
Furthermore, because of the denominator D [see Eq. (99)],
this function has a sharp maximum at qvi <∼ (ω + �j ).
By introducing the longitudinal kl‖q and transverse ktr⊥q
components of the vector k = kl + ktr, this inequality can be
rewritten as

kl <∼
mi(ω + �i)

q
� ktr ∼ kFi . (103)

The main contribution to the integral (102) comes from kl sat-
isfying Eq. (103). By keeping this in mind, it is straightforward
to verify (see, e.g., Ref. [51]) that for a noninteracting Fermi
liquid one has

j i(q, ω,�i) − j i(q, 0,�i) = O

(
ω + �i

qvFi

)
. (104)

Now let us analyze whether the Landau quasiparticle
interaction influences this result. For this purpose we inspect
the terms in the function δn

(i)
kσ+(q, ω,�i) − δn

(i)
kσ+(q, 0,�i)

that depend on f
ij

l . From Eqs. (95), (100), and (101) it follows
that they have the form

I =
∑
k′σ ′

f
ij

l Pl

(
kk′

kFikFj

)
δn

(j )
k′σ ′+ and

(105)

II =
∑
k′σ ′

f
ij

l Pl

(
kk′

kFikFj

)
δn

(j )
k′σ ′−.

By demonstrating that these integrals are quadratic in (ω +
�j )/(qvFi) we prove that P

(i)
tr = �

(i)
tr (pFi , vFi) in the Pippard

limit. In the following we consider in detail the first term in
Eq. (105); the analysis of the second term is similar.

The first term can be presented as

I =
∑
k′σ ′

f
ij

l Pl

(
kk′

kFikFj

) [
δn

(j )
k′σ ′+(q, ω,�j )

− δn
(j )
k′σ ′+(q, 0,�j )

] +
∑
k′σ ′

f
ij

l Pl

(
kk′

kFikFj

)
×[

δn
(j )
k′σ ′+(q, 0,�j ) − δn

(j )
k′σ ′+(q, 0, 0)

]
+

∑
k′σ ′

f
ij

l Pl

(
kk′

kFikFj

)
δn

(j )
k′σ ′+(q, 0, 0). (106)

One can easily verify that the last integral here vanishes at l �= 1
and thus can be omitted. Furthermore, for the same reasons as
those discussed after Eq. (102), the main contribution to the
first two integrals in Eq. (106) comes from a region of k′ such
that

k′
l <∼

mj (ω + �j )

q
� k′

tr ∼ kFj . (107)

From symmetry arguments it follows that the functions in
square brackets in these integrals can generally be written in
the form

[. . .] = (k′ A)G(k′q, k′), (108)

where G(k′q, k′2) is a scalar function.
Now, using Eqs. (103), (107), and (108), one may write∑

k′σ ′
f

ij

l Pl

(
kk′

kFikFj

)
[. . .]

=
∑
k′σ ′

f
ij

l Pl

(
klk

′
l + ktrk

′
tr

kFikFj

)
(k′ A)G(k′q, k′)

=
∑

k′
l k

′
trσ

′
f

ij

l Pl

(
ktrk

′
tr

kFikFj

)
(k′

tr Atr)G(k′
lq, k′)

+O

(
(ω + �i)

qvFi

(ω + �j )

qvFj

)
= O

(
(ω + �i)

qvFi

(ω + �j )

qvFj

)
. (109)

Here we used the fact that the integral over directions of
k′

tr vanishes for l �= 1. Thus, we demonstrate that I ∼ (ω +
�i)/(qvFi) × (ω + �j )/(qvFj ) and, consequently, the Landau
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quasiparticle interaction has no influence on P
(i)
tr in the Pippard

limit.
The consideration of this section is simplified since we take

into account only the harmonic V
(i)

0 of the pairing potential.
However, it seems plausible (though it has not been checked
in detail) that the inclusion of other harmonics V

(i)
l with l � 1

will not change the result. In principle, a proof of this more
general statement should be similar to the proof presented here,
but the equations to be analyzed are much more complicated.
In particular, the function δn

(i)
kσ+ will depend, in addition, on

the integrals O
(i)
kσ+ and O

(i)
kσ− [see Eqs. (37) and (38)].

Finally, a comment concerning the coefficients f
ij

1 and
V

(i)
1 of the first harmonic is in order. From the analysis just

presented it is clear that the coefficient f
ij

1 plays a very special
role, because the integrals in Eqs. (106) and (109) do not vanish
at l = 1. One might think that the situation with the coefficient
V

(i)
1 of the pairing potential is analogous, so that the integrals∑

k′σ

V
(i)

1 P1(cos θ )δs(i)
k′σ−(q, ω,�i) and

(110)∑
k′σ

V
(i)

1 P1(cos θ )δs(i)
k′σ+(q, ω,�i)

are nonzero. However, this is not the case; they vanish owing
to the symmetry relations (31) and (32).

IV. A PHENOMENOLOGICAL APPROACH TO THE
KINETIC EQUATION AT SMALL q AND ω

In this section the kinetic equation in the “quasiclassical”
limit, qvFi � �j and ω � �j , are analyzed (see, e.g.,
Refs. [24,44]). This limit is especially important for vari-
ous applications, for instance, to study low-frequency long-
wavelength collective modes propagating in superfluid matter
and to calculate kinetic coefficients.

For a one-component Fermi liquid the quasiclassical limit
of the matrix kinetic equation (19) was thoroughly examined
in Ref. [24]. It was demonstrated that Eq. (19) can be sub-
stantially simplified by introducing the concept of Bogoliubov
excitations. In particular, the kinetic equation for Bogoliubov
excitations acquires a scalar (rather than matrix) form. For a
two-component Fermi mixture the analysis is quite similar.
Here no attempt to perform it is made; the interested reader is
referred to Ref. [24] for more details. Instead, we follow a more
intuitive phenomenological approach, allowing us to formulate
the kinetic equation in the nonlinear regime (in contrast to
Ref. [24], where the kinetic equation is studied only in the
linear approximation). This regime is nonlinear in a sense
that, for instance, it allows us to study the nonequilibrium
variations of the energy gap, which are comparable to �i .
However, because we use the Landau theory of Fermi liquids,
we still assume that the quasiparticle distribution only slightly
differs (in the vicinity of the Fermi surface) from the step
function. Our results will be discussed and compared with
those available in the literature in the end of the present section.

In the previous sections the quasiparticle momentum was
denoted as k. In Appendix A it is demonstrated that in the

presence of electromagnetic field k is actually a generalized
momentum. To distinguish between k and the real momentum,
the latter will be denoted by p. It is more convenient to use p
instead of k in the following consideration.

A. Local analysis

In the quasiclassical limit one can assume that a Landau
quasiparticle (or a Bogoliubov excitation) with a certain
momentum p possesses, at the same time, a certain coordinate
r . Consequently, such quantities as the distribution of Landau
quasiparticles (Bogoliubov excitations), their energy, or the
energy gap can be considered as functions of p and r . To find
how these quantities are related to each other it is sufficient to
analyze the system locally.

Let us consider a two-component Fermi liquid out of
thermodynamic equilibrium. To simplify the problem we
neglect for a while the electromagnetic field, assuming that the
liquid is composed of neutral particles. The electromagnetic
effects will be taken into account in Sec. IV C. Our aim will
be to calculate the energy density E of superfluid matter
in the neighborhood of a point r . In the vicinity of this
point the matter is almost homogeneous. Thus, it can be
approximately described by a uniform Hamiltonian H (see,
e.g., Refs. [38,44,49]),

H −
∑

i

µ̆iNi = HLF + Hpairing, (111)

where Ni is the number density operator, µ̆i is the nonequilib-
rium analog of the chemical potential µi to be determined in
the following, HLF is the Fermi-liquid Hamiltonian,

HLF =
∑
pσ i

(
ε

(i)
p0 − µ̆i

)(
a(i)†

pσ a(i)
pσ − θ (i)

p

) + 1

2

∑
p p′σσ ′ij

f ij ( p, p′)

×(
a(i)†

pσ a(i)
pσ − θ (i)

p

)(
a

(j )†
p′σ ′a

(j )
p′σ ′ − θ

(j )
p′
)
, (112)

and Hpairing is the pairing Hamiltonian. In the presence of
superfluid currents the pairing Hamiltonian is given by (see,
e.g., Ref. [38])

Hpairing =
∑
p p′i

V
(i)
Qi

( p, p′)a(i)†
p′+ Qi↑a

(i)†
− p′+ Qi↓a

(i)
− p+ Qi↓a

(i)
p+ Qi↑.

(113)

Here, 2 Qi = 2miVsi is the momentum of a Cooper pair in
the condensate. It is related by Eqs. (143) and (145) to the
quantity O

(i)
kσ−, introduced in Sec. II B. The matrix element

V
(i)
Qi

( p, p′) in Eq. (113) describes scattering of a pair of Landau
quasiparticles from the states ( p + Qi ,↑), (− p + Qi ,↓) to
states ( p′ + Qi ,↑), (− p′ + Qi ,↓). In Ref. [38] it is argued
that V (i)

Qi
( p, p′) ≈ V (i)( p, p′) [up to small terms ∼ (Qi/kFj )2].

To find the energy density E one needs to diagonalize the
Hamiltonian (111). To do that, we rewrite Eq. (111) in terms
of Bogoliubov operators b

(i)
pσ , defined as (see, e.g., Ref. [38])

a
(i)
p+ Qi↑ = u(i)

p b
(i)
p+ Qi↑ + v(i)

p b
(i)†
− p+ Qi↓, (114)

a
(i)
p+ Qi↓ = u(i)

p b
(i)
p+ Qi↓ − v(i)

p b
(i)†
− p+ Qi↑, (115)
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where u
(i)
p and v

(i)
p are even functions of p,

u(i)
p = u

(i)
− p, v(i)

p = v
(i)
− p, (116)

normalized by the condition

u(i)2
p + v(i)2

p = 1. (117)

Generally, the coefficients u
(i)
p and v

(i)
p are complex. However,

at some moment of time they can be chosen to be real in the
vicinity of our point r by a suitable phase transformation.

Being expressed through the Bogoliubov operators, the
Hamiltonian (111) takes the diagonal form. Thus, one gets
the following expression for the energy density:

E −
∑

i

µ̆ini

=
∑
pσ i

[
ε

(i)
p+ Qi0

− µ̆i

](
N (i)

p+ Qi
− θ

(i)
p+ Qi

)
+ 1

2

∑
p p′σσ ′ij

f ij ( p + Qi , p′ + Qj )
(
N (i)

p+ Qi
− θ

(i)
p+ Qi

)
×(

N (j )
p′+ Qj

− θ
(j )
p′+ Qj

) +
∑
p p′i

V (i)( p, p′)u(i)
p v(i)

p u
(i)
p′ v

(i)
p′

×(
1 − F (i)

p+ Qi
− F (i)

− p+ Qi

)(
1 − F (i)

p′+ Qi
− F (i)

− p′+ Qi

)
.

(118)

Here F (i)
p+ Qi

is the distribution function for Bogoliubov
excitations with momentum ( p + Qi),

F (i)
p+ Qi

= 〈∣∣b(i)†
p+ Qi↑b

(i)
p+ Qi↑

∣∣〉 = 〈∣∣b(i)†
p+ Qi↓b

(i)
p+ Qi↓

∣∣〉, (119)

and N (i)
p+ Qi

is the average number of Landau quasiparticles in
a state ( p + Qi , σ ),

N (i)
p+ Qi

= 〈∣∣a(i)†
p+ Qi↑a

(i)
p+ Qi↑

∣∣〉 = 〈∣∣a(i)†
p+ Qi↓a

(i)
p+ Qi↓

∣∣〉
= v(i)2

p + u(i)2
p F (i)

p+ Qi
− v(i)2

p F (i)
− p+ Qi

. (120)

If we were in thermodynamic equilibrium we could easily
find the unknown functions F (i)

p+ Qi
and u

(i)
p in Eq. (118) by

requiring a minimum of the free energy F , F [F (i)
p+ Qi

, u
(i)
p ] ≡

E − µ̆1n1 − µ̆2n2 − T S, where the entropy S[F (i)
p+ Qi

] is the

functional of onlyF (i)
p+ Qi

(see Ref. [38] for more details). Since
we are not in thermodynamic equilibrium, the distribution
function for Bogoliubov excitations F (i)

p+ Qi
in our local

analysis should be considered as a given “input parameter”
[which can be found from the corresponding Boltzmann
kinetic equation (132); see Sec. IV B]. To determine u

(i)
p , we

assume that even out of equilibrium F still has a minimum
as the functional of u

(i)
p (at fixed F (i)

p+ Qi
). This assumption,

though plausible, cannot be proven in our phenomenological
approach. However, its validity can be justified by comparison
with the results of the strict microscopic theory (see Sec. IV C).

One obtains from the minimization procedure

u(i)2
p = 1

2

(
1 +

H
(i)
p+ Qi

+ H
(i)
− p+ Qi

2E
(i)
p+ Qi

+ H
(i)
− p+ Qi

− H
(i)
p+ Qi

)
, (121)

where

H (i)
p = ε(i)

p

[
N (j )

p

] − µ̆i (122)

[see Eq. (1) for the definition of ε
(i)
p ] and

E
(i)
p+ Qi

= 1

2

(
H

(i)
p+ Qi

− H
(i)
− p+ Qi

)
+
√

1

4

(
H

(i)
p+ Qi

+ H
(i)
− p+ Qi

)2 + D(i)2
p (123)

is the energy of a Bogoliubov excitation with momentum ( p +
Qi). To verify that E

(i)
p+ Qi

is indeed the energy, it is sufficient
to notice that it is given by the variational derivative of the
functional (E − ∑

i µ̆ini) with respect to F (i)
p+ Qi

,

E
(i)
p+ Qi

= δ
(
E − ∑

i µ̆ini

)
δF (i)

p+ Qi

. (124)

Finally, D(i)
p in Eq. (123) is the nonequilibrium energy gap.

It is defined by the equation,

D(i)
p = −

∑
p′

V (i)( p, p′)u(i)
p′ v

(i)
p′
(
1 − F (i)

p′+ Qi
− F (i)

− p′+ Qi

)
.

(125)

It can be demonstrated that, in the linear approximation of
Sec. II, the quantity δD(i)

p ≡ D(i)
p − �i is related to the integral

O
(i)
pσ+ [see Eq. (37)] by

δD(i)
p = O

(i)
pσ+
2

. (126)

Using Eq. (120) one can determine the nonequilibrium
chemical potential µ̆i from the requirement that the number
density ni is given by the sum over all occupied quasiparticle
states,

ni =
∑

pσ

N (i)
p+ Qi

. (127)

The quantities N (i)
p+ Qi

, E(i)
p+ Qi

, and D(i)
p can be easily found

from, respectively, Eqs. (120), (123), and (125), once the
distribution F (i)

p+ Qi
is specified. As shown in Ref. [38], in

thermodynamic equilibrium the function F (i)
p+ Qi

is given by
the standard Fermi-Dirac distribution,

F̃ (i)
p+ Qi0

= 1

1 + eE
(i)
p+ Qi

/T
. (128)

Here and in the following the equilibrium function F (i)
p is

denoted as F̃ (i)
p0, where tilde indicates that we allow for

superfluid currents in the system. The function F̃ (i)
p0 should

not be confused with the distribution F (i)
p0 [see Sec. II A and,

in particular, Eq. (5) for the definition ofF (i)
p0]. These functions

are equal only in the absence of superfluid currents ( Qi = 0):

F̃ (i)
p0 = F (i)

p0. (129)

In this case one also has for the system in thermodynamic
equilibrium

E(i)
p = E(i)

p , (130)
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D(i)
p = �i. (131)

The equalities of Eqs. (129)–(131) follow from Eqs. (4), (5),
and (10) of Sec. II A and Eqs. (120)–(128) of the present
section (see Ref. [38] for a detailed derivation).

B. Introducing dynamics

The relations between various nonequilibrium quantities
discussed here should be supplemented by the kinetic equation
for F (i)

p+ Qi
, the continuity equation, and the “superfluid”

equation describing the evolution of Qi with time t . The kinetic
equation for the Bogoliubov excitations takes the standard
form

∂F (i)
p+ Qi

∂t
+

∂E
(i)
p+ Qi

∂ p

∂F (i)
p+ Qi

∂ r
−

∂E
(i)
p+ Qi

∂ r

∂F (i)
p+ Qi

∂ p

= St
{
F (j=1,2)

p+ Qj

}
. (132)

The collision integral on the right-hand side of this equation
can be easily obtained once the interaction between the
excitations is known (see, e.g., Refs. [25–30,54]).

The continuity equation is written as

∂ni

∂t
+ div j i = 0, (133)

where the number density equals

ni =
∑

pσ

N p+ Qi
=
∑

pσ

[
v(i)2

p + u(i)2
p F (i)

p+ Qi
− v(i)2

p F (i)
− p+ Qi

]
,

(134)

and the particle current density is given by (see, e.g., Ref. [44])

j i =
∑

pσ

∂H
(i)
p+ Qi

∂ p
N (i)

p+ Qi
. (135)

Since N (i)
p+ Qi

differs from the equilibrium distribution N (i)
p0

only in the narrow region near the Fermi surface, Eq. (135)
can be linearized and rewritten in a form similar to Eq. (48)
or, after some algebra, to Eq. (46). Then, by using Eqs. (116)
and (120) and noticing that

N (i)
p+ Qi

− N (i)
− p+ Qi

= F (i)
p+ Qi

− F (i)
− p+ Qi

, (136)

Eq. (135) can be finally presented as

j i =
∑

j

Yij

[
Qj + 1

nj

∑
pσ

pF (j )
p+ Qj

]
, (137)

where the matrix Yij is given by Eq. (24). For a one-component
Fermi liquid Eq. (137) reduces to the well-known expression
(see, e.g., Refs. [28,54])

j = n Q
m

+
∑

pσ

p
m
F p+ Q . (138)

This formula was obtained by employing Eq. (7) and the
definitions of Eqs. (9) and (24).

It is important to emphasize that generally the mass current
density mi j i of the ith particle species is not equal to the

momentum density P i ,

P i =
∑

pσ

( p + Qi)N
(i)
p+ Qi

= ni Qi +
∑

pσ

pF (i)
p+ Qi

. (139)

However, using Eq. (7) one can check that, because of the
Galilean invariance of the system, the following equality holds:∑

i

mi j i =
∑

i

P i . (140)

Now let us discuss the “superfluid” equation. It has a natural
form (see, e.g., Refs. [24,28,29,54], where similar equations
are written for a one-component liquid) of

∂ Qi

∂t
= −∇µ̆i (141)

and coincides with the “superfluid” equation (4.9) of Ref. [28].
(The authors of Ref. [28] used different notation. In particular,
our quantity µ̆ is related to their invariant potential � by µ̆ =
µ − �, where µ is a constant from which the authors count
energy.) Equation (141) is also equivalent to the corresponding
equation in Khalatnikov’s superfluid hydrodynamics [55],

∂V s

∂t
= −∇

(
µKh + V 2

s

2

)
. (142)

To prove this, we notice that the Khalatnikov’s chemical
potential µKh (per particle mass m) is defined in a reference
frame in which V s = Q/m = 0, whereas our potential µ̆ is
defined in the laboratory frame. They are related by an obvious
formula, µ̆ = m

(
µKh + V 2

s /2
)
. Thus, Eqs. (141) and (142) are

indeed equivalent.
Notice that Eq. (141) will be automatically satisfied if we

express Qi and µ̆i through the wave function phase ϕi of the
Cooper-pair condensate (see, e.g., Refs. [28,47,54]),

Qi = 1

2
∇ϕi, (143)

−µ̆i = 1

2

∂ϕi

∂t
. (144)

One can verify that, in the linear theory considered in Sec. II,
the phase ϕi is related to the “zero harmonic” of the function
O

(i)
kσ− [see Eq. (38)] by the equation

ϕi = i

2�i

∑
k

V
(i)

0 δs
(i)
kσ−. (145)

All other harmonics of O
(i)
kσ− are small and can be neglected

in the quasiclassical limit [24].

C. Inclusion of the electromagnetic field and comparison
with previous works

Equations (116), (117), (120)–(123), (125), (127), (128),
(132), (133), (137), (139), (143), and (144) of Secs. IV A
and IV B fully describe the two-component superfluid neutral
Fermi liquid in the limit of small q and ω. The generalization of
these equations to the case of charged mixtures is straightfor-
ward (see, e.g., Refs. [28,54]). Namely, they remain essentially
the same if we redefine the quantities Qi and µ̆i [see Eqs. (143)
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and (144)] through the gauge-invariant combinations

Qi = 1

2
∇ϕi − ei A, (146)

−µ̆i = 1

2

∂ϕi

∂t
+ eiV . (147)

Notice, however, that the “superfluid” equation in the form
(141) is no longer valid. As follows from Eqs. (146) and (147),
it should be replaced by

∂ Qi

∂t
= −∇µ̆i + ei E, (148)

where E = −∂ A/∂t − ∇V is the self-consistent electric field,
which can be found with the help of the Maxwell equations.
The right-hand sides of Eqs. (146) and (147) are indeed gauge-
invariant since the phase ϕi transforms as ϕi → ϕi − 2eiφ

under the gauge transformation (50) and (51) (see, e.g.,
Refs. [24,47]).

The equations formulated in Sec. IV reproduce various
limiting cases that were studied in the literature. First for a
one-component Fermi liquid the equations here coincide with
those obtained by Betbeder-Matibet and Nozieres [24] and by
Aronov and Gurevich [54] (see also Refs. [28,29]). Betbeder-
Matibet and Nozieres worked in the linear approximation but
assumed the most general form of the Landau interaction
f (k, k′) and pairing potential V (k, k′). In contrast, Aronov
and Gurevich derived, from first principles, the fully nonlinear
system of equations, describing the superfluid Fermi liquid in
the quasiclassical regime. However, they completely neglected
the Landau interaction [f (k, k′) = 0] and took into account
only the zero harmonic V0 of the pairing interaction (Vl = 0
for l > 0).

The equations presented here for a two-component Fermi
liquid were compared only with the results of Sec. II since a
discussion in the literature on transport properties of strongly
interacting superfluid Fermi mixtures does not seem to be
available. It was checked that in the linear approximation the
equations presented here do reproduce the quasiclassical limit
of kinetic equations (33)–(36).

V. SUMMARY

This paper discusses transport properties of a mixture of
two superfluid strongly interacting Fermi liquids. A typical
example of such a mixture is the matter in the internal layers of
neutron stars. Describing the mixture made use of the Landau
theory of Fermi liquids generalized by Larkin and Migdal
[42,43] and by Leggett [23,44] to take into account the effects
of superfluidity.

The results are summarized as follows:

(i) Working in the linear approximation, one formulates
the system (33)–(36) of kinetic equations, describ-
ing the collisionless superfluid Fermi mixture in the
self-consistent electromagnetic field. To derive these
equations, one follows the approach of Betbeder-
Matibet and Nozieres [24], who obtained the kinetic
equation for a one-component superfluid Fermi liq-
uid. Generally, the system (33)–(36) is a straightfor-

ward generalization of the corresponding equations of
Ref. [24]. However, there is one nontrivial difference
concerning the form of interaction of Landau quasi-
particles with the electromagnetic vector potential [see
Eq. (22)]. For a one-component Fermi liquid, αi in
Eq. (22) is always equal to electric charge, αi = ei ,
which is a consequence of the Galilean invariance of
the system. In contrast, for a multicomponent mixture,
αi is generally given by Eq. (23), whereas Galilean
invariance requires only that Eq. (7) must be satisfied.

(ii) Using these kinetic equations, one can determine the
particle current density j i of the ith particle species
[see Eqs. (45), (46), or (48)] and show that it is given
by the same expression as for a nonsuperfluid matter.
For a one-component superfluid Fermi liquid this was
first shown by Leggett [44].

(iii) Assuming that the only two harmonics f
ij

0 and f
ij

1
of the Landau quasiparticle interaction f ij (k, k′) are
nonzero, one calculates the polarization functions P

(i)
00 ,

P
(i)
l , and P

(i)
tr [see Eqs. (54), (70), and (71)] and com-

pares them, in various limiting cases, with the results
available in the literature (see, e.g., Refs. [9,23,38,44]).
It is demonstrated that the functions P

(i)
00,l,tr can be

expressed through the Landau parameters and polar-
ization functions �

(i)
00,l,tr(pFi , vFi) of a noninteracting

Fermi liquid, for which f ij (k, k′) = 0. This result is
valid for any smooth pairing potential V (i)(k, k′) and
for all wave vectors q and frequencies ω such that
qvFi � µj and ω � µj .

(iv) It is shown that the transverse polarization function
P

(i)
tr does not depend on the Landau quasiparticle

interaction f ij (k, k′) in the Pippard limit, when qvFj 

�i and qvFj 
 ω. In this limit it is given by P

(i)
tr =

�
(i)
tr (pFi , vFi). For a one-component Fermi liquid and

ω = 0 the same result was obtained previously by
Leggett [44].

(v) Finally, a system of nonlinear equations describing the
nonequilibrium superfluid mixture in the quasiclas-
sical limit (qvFi � �j and ω � �j ) is formulated.
It consists of Eq. (125) for a nonequilibrium energy
gap, scalar kinetic equation (132) for Bogoliubov
excitations, continuity equation (133), and Eq. (148) for
the superfluid velocity. In the linear approximation this
system is completely equivalent to kinetic equations
formulated in Sec. II and in Ref. [24]. Moreover, it
is verified that it reproduces the nonlinear equations
derived from first principles by Aronov and Gurevich
[54] (see also Refs. [28,29]). To simplify the problem,
these authors neglected the Landau quasiparticle in-
teraction and assumed that the pairing potential is a
constant.

The results obtained in this paper can be useful in a variety
of applications. For example, the polarization functions can
be used to study low-frequency (ω � µi) long-wavelength
(qvFi � µj ) collective modes in superfluid matter of neutron
stars [see, e.g., recent papers [21,22] for an example of such
studies in normal matter].
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Also, the complex parts of the polarization functions
P

(i)
00 and P

(i)
tr determine energy losses in the Cooper-pairing

neutrino emission process. This process regulates thermal
evolution of neutron stars [3,56–58] and is especially important
in the crust of accreting neutron stars, exhibiting x-ray
superbursts [59,60].

Next, the kinetic equation derived in Sec. II can be used,
with minor modification, to study the axial-vector response of
a superfluid Fermi liquid (see Sec. III B for more details). This
problem is also important in application to the Cooper-pairing
neutrino emission process [4,6,8,9].

One needs the polarization functions in the Pippard limit
since they describe the plasma screening of the interaction
between charged particles (e.g., protons and electrons) in
the collision integrals, determining the kinetic coefficients of
neutron-star matter [33,34].

Finally, the equations presented in Sec. IV can be applied
to study the response functions and collective modes in
equilibrium and in nonequilibrium matter (under the condition
that qvFi � �j and ω � �j ). Furthermore, after specifying
the collision integral in Eq. (132) (see, e.g., Refs. [25–30,54]),
the equations of Sec. IV can be used to calculate the kinetic
coefficients for a superfluid mixture, in particular, the thermal
conductivity and shear and bulk viscosities. These coefficients
are crucial for modeling of the dynamics of neutron stars
[3,61].

The impetus for doing this work was its possible applica-
tions to neutron-star physics. However, the results obtained in
this paper can be applied to any mixture of strongly interacting
superfluid Fermi liquids, for instance, to ultracold Fermi-Fermi
mixtures, which have been realized recently [62,63].

ACKNOWLEDGMENTS

The author is very grateful to A. D. Kaminker and D. G.
Yakovlev for reading the draft of the paper and valuable com-
ments and to L. B. Leinson for correspondence. This research
was supported in part by RFBR (Grant No. 08-02-00837) and
by the Federal Agency for Science and Innovations (Grant
No. NSh 2600.2008.2). The author also acknowledges support
from the Dynasty Foundation, the Mianowski Foundation, and
the RF Presidential Program (Grant No. MK-4331.2010.2).

APPENDIX A

Let us derive Eq. (23) for the coefficient αi . This coefficient
enters the expression (22) for the matrix �

(i)
kσ , describing the

interaction of quasiparticles with the self-consistent electro-
magnetic field. Since this matrix is diagonal, it is sufficient
to consider a mixture of strongly interacting normal Fermi
liquids. The kinetic equation (19) then reduces to

ωδn
(i)
kσ

= (
ξ

(i)
k+ − ξ

(i)
k−

)
δn

(i)
kσ + (

n
(i)
k−0 − n

(i)
k+0

)∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′

+ (
n

(i)
k−0 − n

(i)
k+0

) (
eiV − αi

k A
mi

)
, (A1)

where n
(i)
k0 is given by Eq. (2) and we use the notation δn

(i)
kσ ≡

δn
(i)
kσ11 = 〈a(i)†

k−σ a
(i)
k+σ 〉.

The last term in the right-hand side of Eq. (A1) appears
because of the interaction of Landau quasiparticles with
the self-consistent electromagnetic field. The corresponding
interaction Hamiltonian has the form

Hem =
∑
pσ i

(
eiV − αi

k A
mi

)
a

(i)†
k+σ a

(i)
k−σ . (A2)

One can easily obtain this term using Hem and an equation of
motion for the operator a

(i)†
k−σ a

(i)
k+σ (see, e.g., Ref. [24]).

In the limit of small q, which is of our primary interest,
Eq. (A1) can be rewritten as

(ω − qvi)δn
(i)
kσ

= −∂n
(i)
k0

∂k
q

⎡⎣∑
k′σ ′j

f ij (k, k′)δn(j )
k′σ ′ + eiV − αi

k A
mi

⎤⎦ . (A3)

The kinetic equation (A3) [or (A1)] is not obviously gauge-
invariant. To make the gauge invariance explicit, one can notice
that k is actually a generalized momentum. It is related to the
real momentum p of a quasiparticle i by

k = p + ei A. (A4)

For a very pedagogical discussion of the validity of this
expression for Landau quasiparticles, see, for example
Chap. 3, Sec. 6 of Ref. [45].

Thus, we have two momenta, k and p, and our next step
will be to express the distribution functionN (i)

pσ ≡ n
(i)
p0 + δN (i)

pσ

for quasiparticles with momentum p through the distribution
function n

(i)
k0 + δn

(i)
kσ for quasiparticles with momentum k.

Because of the one-to-one correspondence between k and p,
one has

N (i)
pσ = n

(i)
k0 + δn

(i)
kσ . (A5)

In view of Eq. (A4), in the linear approximation,

n
(i)
k0 = n

(i)
p+ei A0 ≈ n

(i)
p0 + ∂n

(i)
p0

∂ p
ei A. (A6)

It follows then from Eq. (A5) that

δn
(i)
kσ = δN (i)

pσ − ∂n
(i)
p0

∂ p
ei A. (A7)

Substituting Eq. (A7) into the kinetic equation (A3) and
demanding that the terms that are noninvariant under gauge
transformations vanish, one obtains the condition

qvi

[
∂n

(i)
p0

∂ p
ei A

]

= ∂n
(i)
p0

∂ p
q

⎡⎣∑
p′σ ′j

f ij ( p, p′)
∂n

(j )
p′0

∂ p′ ej A + αi

pA
mi

⎤⎦ , (A8)
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or, after performing an integration, the expression (23) for αi .
For a one-component Fermi liquid Eq. (23) simplifies with the
help of Eq. (7) and one gets αi = ei .

By using Eq. (A8), the kinetic equation (A3) can be recast
in the well-known gauge-invariant form (see, e.g., Ref. [45])

(ω − qvi) δn(i)
pσ

= −∂n
(i)
p0

∂ p

⎡⎣q
∑
p′σ ′j

f ij ( p, p′)δn(j )
p′σ ′ + iei E

⎤⎦ , (A9)

where E = i(ωA − qV ) is the electric field.

APPENDIX B

Let us derive Eq. (64) directly for a one-component Fermi
liquid. In this case one has to put f

ij

0 = 0 and f
ij

1 = 0 for
i �= j in all equations. In what follows we suppress the particle
species indices to simplify notation. We start with Eq. (62),
which can be rewritten as

Akσ = 2e
k A
m

− k

k2
F

f1 I ≡ 2e
k Aeff

m∗ , (B1)

where we used the fact that α = e for a one-component Fermi
liquid (see Appendix A) and defined

I ≡
∑
k′σ ′

k′δnk′σ ′+. (B2)

The quantity I is not gauge-invariant. Our aim will be to
express I through the vector potential A and the gauge-
invariant particle current density j , which is given by
Eq. (46). In view of the definition (B2), Eq. (46) can be

rewritten as

j = 1

2

[
I

m∗ −
∑
kσ

∂N k0

∂k
f1

kαkβ

k3
F

Iβ

]
− e

n

m
A. (B3)

Here α and β are the space indices. The integral in Eq. (B3)
can be easily taken since the function ∂N k0/∂k has a sharp
maximum near the Fermi surface. As a result, we obtain

j = 1

2

[
1

m∗ + kFf1

3π2

]
I − e

n

m
A. (B4)

As follows from Eq. (7) for the effective mass, the expression
in square brackets equals 1/m. Thus, one finds

j = 1

2m
I − e

n

m
A (B5)

or

I = 2m
(

j + e
n

m
A
)

. (B6)

Substituting this formula into Eq. (B1), one gets

Akσ = 2e

(
1

m
− nf1

k2
F

)
k A − 2mf1

k2
F

k j ≡ 2e
k Aeff

m∗ . (B7)

Again, by using Eq. (7), it follows that the expression in
brackets equals 1/m∗. Equation (B7) can then be rewritten
as

Akσ = 2e

m∗ k A − 2mf1

k2
F

k j ≡ 2e
k Aeff

m∗ ; (B8)

that is,

Aeff = A − 1

e

mm∗

k2
F

f1 j . (B9)

This equation coincides with Eq. (64) if the latter is written
for a one-component Fermi liquid.
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