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The properties of low-density neutron matter are important for the understanding of neutron star crusts and
the exterior of large neutron-rich nuclei. We examine various properties of dilute neutron matter using quantum
Monte Carlo methods, with s- and p-wave terms in the interaction. Our results provide a smooth evolution of
the equation of state and pairing gap from extremely small densities, where analytic expressions are available,
up to the strongly interacting regime probed experimentally and described theoretically in cold atomic systems,
where kF ≈ 0.5 fm−1 and the pairing gap becomes of the order of magnitude of the Fermi energy. We also
present results for the momentum distribution and pair distributions, displaying the same evolution from weak
to strong coupling. Combined with previous quantum Monte Carlo and other calculations at moderate densities,
these results provide strong constraints on the neutron matter equation of state up to saturation densities.
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I. INTRODUCTION

The equation of state and the pairing gap of neutron
matter at low densities are important for describing the
properties of the inner crusts of neutron stars and provide
significant constraints for density-functional theories of large
neutron-rich nuclei. Equation of state results at larger densities
(ρ � 0.04 fm−3) have been used for some time to constrain
Skyrme and other density functional approaches to large
nuclei [1,2]. More recently, the density-dependence of the
1S0 gap in low-density neutron matter has been used to
constrain Skyrme-Hartree-Fock-Bogoliubov treatments and
especially their description of neutron-rich nuclei [3]. At
extremely low densities the equation of state and pairing gap
can be expressed as analytically known functions of (kF a),
the product of the Fermi momentum and the neutron-neutron
scattering length. Our results provide a smooth connection
between these analytic results and previous calculations of
neutron matter at larger densities, where the gaps become
smaller and the superfluid properties are less relevant to the
equation of state.

The properties of low-density neutron matter are
particularly important for describing the inner crust of a
neutron star, which is composed of a lattice of neutron-rich
nuclei along with a gas of neutrons and electrons. The neutron
gas at low densities is expected to be superfluid; the evolution
of the equation of state and the pairing gap will impact
the static and dynamic properties of the inner crust of the
neutron star. A cold neutron star will have a temperature from
106 K to 109 K (∼0.1 keV to 0.1 MeV); hence the low-density
neutron gas is superfluid because the critical temperature is
expected to be larger, approximately 1010 K (∼1 MeV). The
most basic aspects of a superfluid gas embedded in a lattice of
nuclei are described by zero-temperature infinite pure neutron
matter. Corrections to this picture include gradient terms in the
density induced by the ionic lattice. While these corrections
are also important for density-functional theories of nuclei, we
leave their study to future investigations.

Superfluidity in neutron matter is often connected to
cooling observations of neutron stars: the specific heat in
a superfluid is exponentially suppressed, a fact which is
consistent with observations of cooling quiescent neutron
stars [4]. Furthermore, in the presence of a neutron 1S0 gap,
the neutron-neutron bremsstrahlung reaction rate is also sup-
pressed. Cooper-pair breaking/formation neutrino emission
processes that occur near the transition temperature are also
relevant to the cooling of neutron stars during the crust’s
thermal relaxation [5,6]. While many of these phenomena are
not critically dependent on the magnitude of the gap, recent
heat-conduction mechanisms in magnetars require superfluid
phonons and their interaction with the lattice ions [7]. These
may be more sensitive to the magnitude of the gap.

The neutron matter equation of state [8–17] and pairing
gap [18–30] have been the subject of many studies over
the years, with quite different results, particularly for the
pairing gap. Now, however, cold-atom experiments can mimic
the properties of dilute neutron matter, giving nearly direct
constraints on its properties. In cold atoms the interaction can
be tuned through Feshbach resonances to produce a specific
scattering length a, while the effective range re between the
atoms is nearly zero. In low-density neutron matter, on the
other hand, the particle-particle interaction has a scattering
length which is very large, ≈ −18.5 fm, much larger than
the typical separation between neutrons. The effective range
is much smaller than the scattering length, re ≈ 2.7 fm, so
|re/a| ≈ 0.15, but only at very low densities is the effective
range much smaller than the interparticle spacing. We directly
compare results in neutron matter and cold atoms to try to
understand the impact of the effective range theoretically; it
may also be possible to use narrow and wide resonances in
cold atoms to study this experimentally [31].

In a recent article [32], we examined the similarities of
cold atoms with neutron matter by calculating the T = 0
equations of state and pairing gaps. The interaction used for
the cold atoms had an infinitesimal range and the scattering

0556-2813/2010/81(2)/025803(9) 025803-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.025803


ALEXANDROS GEZERLIS AND J. CARLSON PHYSICAL REVIEW C 81, 025803 (2010)

length was varied to obtain results from kF a = −1 to −10.
For the case of neutron matter, we took the s-wave part of
the AV18 [33] interaction that fits s-wave nucleon-nucleon
scattering very well at both low- and high-energies. In this
work, we extend our approach to include p-wave interactions,
examining their effects on the equation of state and superfluid
pairing gap. Additional corrections due to higher partial waves
and three-nucleon interactions are expected to be quite small
in this density regime. We also calculate additional proper-
ties of neutron matter, including the quasiparticle excitation
spectrum, the momentum distribution, and pair-distribution
functions.

All calculations are performed using quantum Monte Carlo
(QMC) techniques (Sec. III), including variational Monte
Carlo (VMC) and Green’s function Monte Carlo (GFMC)
methods. We compare our results to analytic calculations at
very low densities (Sec. II A) and to BCS calculations over
the range of densities we consider (Sec. II B). The BCS
calculations are also used to try to understand and estimate
the finite-size effects in the QMC simulations. Although the
BCS results are not expected to be quantitatively accurate,
they do provide a useful benchmark for comparisons and
for understanding physical effects beyond the mean-field
treatment of pairing.

II. ANALYTIC RESULTS

A. Weak coupling

At extremely low densities (|kF a| � 1) the effective
coupling between neutrons is weak and neutron matter
properties can be calculated analytically. The ground-state
energy of normal (i.e., nonsuperfluid) matter in this regime
was calculated by Lee and Yang in 1957: [34]

E

EFG
= 1 + 10

9π
kF a + 4

21π2
(11 − 2 ln 2) (kF a)2, (1)

where EFG is the energy of a free Fermi gas at the same
density as the interacting gas. While this expression ignores the
contributions of superfluidity, these are exponentially small in
(1/kF a). In the next section we compare these results to QMC
calculations for |kF a| � 1.

The pairing gap at weak coupling is also known analytically.
The mean-field BCS approach described below [Eq. (8)]
reduces in this limit to:

�0
BCS(kF ) = 8

e2

h̄2k2
F

2m
exp

(
π

2akF

)
. (2)

However, as was shown in 1961 by Gorkov and Melik-
Barkhudarov [35], the BCS result acquires a finite polarization
correction even at weak coupling, yielding a reduced pairing
gap:

�0(kF ) = 1

(4e)1/3

8

e2

h̄2k2
F

2m
exp

(
π

2akF

)
. (3)

The polarization corrections reduce the mean-field BCS result
by a factor of 1/(4e)1/3 ≈ 0.45. Interestingly, if one treats the
polarization effects at the level of sophistication used in the
work of Gorkov and Melik-Barkhudarov, this factor changes

with kF a [36], though there is no a priori reason to expect such
an approach to be valid at stronger coupling (kF a of order 1 or
more). Calculating the pairing gap in this region has been an
onerous task, as can be seen from the multitude of publications
devoted to this subject in the past few decades [18–30].

B. BCS in the continuum and in a box

As the coupling strength increases, we expect the BCS
mean-field theory to become more accurate. In the BCS-BEC
transition studied in cold atoms, the BCS theory goes correctly
to the two-body bound state equation in the deep BEC regime.
Though we do not expect BCS results to be precise, BCS
theory provides a standard basis of comparison for our ab
initio results and also allows us to analyze finite-size effects
in the QMC simulations in a simple way. Within the BCS
formalism the wave function is:

|ψ〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓)|0〉, (4)

where u2
k + v2

k = 1. A variational minimization of the expec-
tation value of the Hamiltonian for an average partice number
(or density) leads to the gap equation:

�(k) = −
∑

k′
〈k|v|k′〉 �(k′)

2E(k′)
, (5)

where the elementary quasiparticle excitations of the system
have energy:

E(k) =
√

ξ (k)2 + �(k)2 (6)

and ξ (k) = ε(k) − µ, where the chemical potential is µ and
ε(k) = h̄2k2

2m
is the single-particle energy of a particle with

momentum k. The chemical potential is found by solving
the gap equation together with the equation that provides the
average particle number:

〈N〉 =
∑

k

[
1 − ξ (k)

E(k)

]
. (7)

When interested in the 1S0 gap for neutron matter, it is cus-
tomary to perform partial-wave expansions of the potential and
the gap functions, as well as an angle-average approximation.
Thus, Eq. (5) takes the form:

�(k) = − 1

π

∫ ∞

0
dk′k′2 v(k, k′)

E(k′)
�(k′), (8)

where the potential matrix element is:

v(k, k′) =
∫ ∞

0
drr2j0(k′r)V (r)j0(kr). (9)

Similarly, Eq. (7) becomes:

ρ = 1

2π2

∫ ∞

0
dkk2

[
1 − ξ (k)

E(k)

]
. (10)

These equations are one dimensional and thus simple to treat
numerically. The density equation can be decoupled from the
gap equation only when �/µ � 1; this is not the case for the
density regime we are considering.
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We have solved Eq. (8) in tandem with Eq. (10) for the
1S0 channel of the Argonne v18 [33] potential that contains
a strong short-range repulsion. This calculation is greatly
simplified if one uses the method described in Ref. [37],
thereby transforming the problem into a quasilinear one. We
have also solved Eq. (8) together with Eq. (10) for a modified
Pöschl-Teller potential:

v(r) = −v0
2h̄2

m

ν2

cosh2(νr)
, (11)

where v0 and ν are parameters which we tuned so that this
potential reproduces the neutron-neutron scattering length
a ≈ −18.5 fm and effective range re ≈ 2.7 fm. The potential
in Eq. (11) clearly has no repulsive core, making it more
amenable to a straightforward iterative solution. In Fig. 1 we
show the results for these two potentials. For all the densities
considered in this work, the results of solving Eqs. (8) and
(10) with these two potentials are virtually indistinguishable.
For treatments beyond the mean field, though, more care must
be taken. A simple purely attractive interaction with finite
positive effective range will produce a collapse to a system
size of the range of the potential. The repulsive core avoids
this collapse in QMC calculations, but the details of the core
interaction are not important at the low densities considered
here.

The modified Pöschl-Teller potential can also be used in a
calculation for finite average particle number. We have solved
Eqs. (5) and (7) for 〈N〉 from 20 to 200, in periodic boundary
conditions in a cubic box of volume L3:

kn = 2π

L
(nx, ny, nz). (12)

The solution to this problem for many values of 〈N〉 at a fixed
density of kF a = −10 was given in Ref. [32]. There it was
found that 〈N〉 = 66 is very close to the thermodynamic limit.
We have performed similar calculations for other densities,
finding that they all exhibit the same trend. We have also
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FIG. 1. (Color online) BCS neutron-matter pairing gap � divided
with the Fermi energy EF , versus the Fermi momentum kF for AV18
(solid line) and a modified Pöschl-Teller potential (dashed line) tuned
to have the same scattering length and effective range as AV18. At
low density the two curves are identical for practical purposes. Also
shown is the solution of the BCS problem in a periodic box using the
modified Pöschl-Teller potential for 66 particles (dotted line).

performed similar computations with generalized boundary
conditions including separate phase shifts for spin up and down
particles at the box boundary [38]. In Fig. 1 we show the
results of solving the BCS gap equation Eq. (5) in a periodic
box along with the particle-number conserving Eq. (7) for
〈N〉 = 66. We do not expect this procedure to be sufficient
for very weak coupling, |kF a| < 1, as the pair size becomes
larger than the simulation volume. A more detailed study is
warranted to attempt to extract pairing gaps in this regime. In
the rest of this work, when we mention BCS results in a box
we will refer to the 〈N〉 = 66 case.

We have also calculated, both in the continuum and in a
periodic box, the momentum distribution, which in BCS is
given by the following expression

n(k) = 1

2

[
1 − ξ (k)

E(k)

]
, (13)

as well as the energy of the quasiparticle excitations, which
follows from Eq. (6). These are given in subsections III E and
III F.

III. QUANTUM MONTE CARLO

A. Hamiltonian

The Hamiltonian for neutron matter at low densities is:

H =
N∑

k=1

(
− h̄2

2m
∇2

k

)
+

∑
i<j ′

v(rij ′). (14)

where N is the total number of particles. The neutron-neutron
interaction is generally quite complicated, having one-pion
exchange at large distances, an intermediate range spin-
dependent attraction by two-pion exchange, and a short-range
repulsion. In the regime of interest, though, the scattering
length and the effective range are most crucial to the physical
properties of the system. For the purposes of our simulation,
a short-range repulsive core is also important so as to avoid a
collapse to a higher-density state.

In Ref. [32] we used the 1S0 potential as the interaction
between all opposite-spin pairs. A perturbative correction was
added to correct for the fact that the S = 1,MS = 0 pairs
must be in a relative p state (or higher) due to antisymmetry.
The p-wave interaction was neglected in those calculations.
Here we improve this treatment by explicitly including p-
wave interactions in the same-spin pairs and perturbatively
correcting the S = 1,MS = 0 pairs to the correct p-wave
interaction. We use the AV4 potential to determine the p-wave
interactions [39].

The AV4 interaction for neutrons can be simplified to

v4(r) = vc(r) + vσ (r)σ 1 · σ 2, (15)

which in the case of the S = 0 singlet pairs gives

vS(r) = vc(r) − 3vσ (r). (16)

In this article we add the contribution from spin 1 (triplet)
pairs:

vP (r) = vc(r) + vσ (r). (17)
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The same-spin potential contribution is small even at the
highest density considered. While still keeping the potential
of Eq. (16) in the propagator of our QMC method for the
opposite-spin pairs, we have corrected perturbatively using
the general case described in Eq. (15), which can be written as
(see, e.g., Ref. [40]):

v4(r) = vc(r) + vσ (r)(−2P M − 1) (18)

in terms of the Majorana exchange operator.

B. Variational and Green’s function Monte Carlo

We employ standard variational and Green’s function
Monte Carlo methods to calculate the properties of dilute
neutron matter. VMC calculations use Monte Carlo integration
to minimize the expectation value of the Hamiltonian:

〈H 〉VMC =
∫

dR	V (R)H	V (R)∫
dR|	V (R)|2 � E0. (19)

thereby optimizing the variational wave function 	V .
Fixed-node GFMC simulations project out the lowest-

energy eigenstate 	0 from a trial (variational) wave function
	V . This they do by treating the Schrödinger equation as
a diffusion equation in imaginary time τ and evolving the
variational wave function up to large τ .

The ground state is evaluated from:

	0 = exp[−(H − ET )τ ]	V

=
∏

exp[−(H − ET )�τ ]	V , (20)

evaluated as a branching random walk. The short-time propa-
gator is usually taken as

exp[−H�τ ] = exp[−V �τ/2] exp[−T �τ ] exp[−V δτ/2],

(21)

which is accurate to order (�τ )2. For the lowest densities
considered, we include the two-body propagator exactly:

exp[−H�τ ] = exp[−T �τ ]
exp[−H2�τ ]

exp[−H0�τ ]
, (22)

where the two-body Hamiltonian H2 includes the pair relative
kinetic energy and the pair potential and H0 is the pair kinetic
term only. At lowest order in (�τ ) this is equivalent to
Eq. (21). However it includes multiple scattering for a pair and
allows accurate calculations with larger time steps �τ . This
is particularly important for very dilute systems where these
multiple-scattering contributions of individual pairs dominate.

The fixed node calculation gives a wave function 	0 that is
the lowest-energy state with the sames nodes (surface where
	 = 0) as the trial state 	V . The resulting energy E0 is an upper
bound to the true ground-state energy. The variational wave
function 	V has a Jastrow-BCS form (see next subsection)
and contains a variety of parameters, many of which affect the
nodal surfaces. Since the fixed-node energy is an upper bound
to the true ground state, these parameters can be optimized to
give the best approximation to the ground-state wave function.
In order to optimize these variational parameters, we include
them as slowly diffusing coordinates in a preliminary GFMC

calculation. The parameters evolve slowly in imaginary time,
equilibrating around the lowest-energy state consistent with
the chosen form of the trial wave function [41].

The ground-state energy E0 can be obtained from:

E0 = 〈	V |H |	0〉
〈	V |	0〉 = 〈	0|H |	0〉

〈	0|	0〉 . (23)

Expectation values of quantities that do not commute with
the Hamiltonian can be calculated using a combination of the
mixed and variational estimate:

〈	0|Ŝ|	0〉 ≈ 2〈	0|Ŝ|	V 〉 − 〈	V |Ŝ|	V 〉, (24)

where Ŝ is the operator corresponding to the relevant physical
quantity, and the error in this expression is of second order in
	0 − 	V . Such a combination of estimates is often called the
“extrapolated estimate.”

C. Trial wave function

We take the trial wave function to be of the Jastrow-BCS
form with fixed particle number:

	V =
∏
i �=j

fP (rij )
∏
i ′ �=j ′

fP (ri ′j ′ )
∏
i,j ′

f (rij ′)A

⎡
⎣∏

i<j ′
φ(rij ′)

⎤
⎦ (25)

and periodic boundary conditions. The primed (unprimed)
indices correspond to spin-up (spin-down) neutrons. The
pairing function φ(r) is a sum over the momenta compatible
with the periodic boundary conditions. In the BCS theory the
pairing function is:

φ(r) =
∑

n

vkn

ukn

eikn·r =
∑

n

αne
ikn·r, (26)

and here it is parametrized with a short- and long-range part
as in Ref. [41]:

φ(r) = β̃(r) +
∑

n,I�IC

αI e
ikn·r, (27)

where I = n2
x + n2

y + n2
z using the parameters defined in

Eq. (12). The Jastrow part is taken from a lowest-order-
constrained-variational method [42] calculation described by
a Schrödinger-like equation:

− h̄2

m
∇2f (r) + v(r)f (r) = λf (r) (28)

for the opposite-spin f (r) and by the corresponding equation
for the same-spin fP (r). Since the f (r) and fP (r) we get
are nodeless, they do not affect the final result apart from
reducing the statistical error. The fixed-node approximation
guarantees that the result we obtain for one set of pairing
function parameters in Eq. (27) will be an upper bound to
the true ground-state energy of the system. As in previous
works [32,41] the parameters are optimized in the full QMC
calculation, providing the best possible nodal surface, in the
sense of lowest fixed-node energy, with the given form of trial
function. We utilize this upper-bound property to get as close
to the true ground-state energy as possible.
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FIG. 2. (Color online) Normalized neutron-matter variationally
optimized pairing function φ(r) for kF a = −10 (solid lines) and
kF a = −1 (dotted lines) for different directions in the periodic
simulation volume (in terms of rising expanse they correspond to
the 001, 011, and 111 directions in the box).

Given the finite-size analysis shown in Refs. [32,38], we
have performed all calculations for 66–68 particles in periodic
boundary conditions. The equation of state is determined from
the 66 particle results, and the pairing gap from the odd-even
staggering. We have separately optimized the wave-function
parameters at each density and show the results for φ(r)
(normalized each time to the value at zero separation) for the
largest and smallest density we have considered (kF a = −10
and kF a = −1) in Fig. 2.

D. Equation of state

We first examine the equation of state of low-density
neutron matter, in particular its evolution from the weak-
to strong-coupling regime and the impact of adding p-wave
interactions between the neutrons. In Fig. 3 we show the
equation of state for low-density neutron matter with the
s-wave interaction potential along with the new AV4 results.
It is clear that when the density is very low, the s-wave
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FIG. 3. (Color online) Equation of state for neutron matter using
different potentials. Shown are QMC results for the s-wave potential
(circles) and for the AV4 (squares). Also shown is the analytic
expansion of the ground-state energy of a normal fluid (line).
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FIG. 4. (Color online) Equation of state for neutron matter com-
pared to various previous results. Despite quantitative discrepancies,
all calculations give essentially similar results. Our lowest density
corresponds to kF a = −1.

contribution is dominant, and our results for the lowest
densities remain unchanged. At higher densities the energy
is higher with the contribution of the p-wave interaction.
For the highest density examined, kF a = −10, this change
is approximately 7%, while for kF a = −5 it is only 1%.
Nonperturbative corrections at the highest density considered
could reduce the difference between the s-wave interaction
and AV4 results slightly. The curve at lower densities shows
the analytic result [34] described in subsection II A. Our
calculations extend to lower densities than other microscopic
calculations and agree with the trend implied by the Lee-Yang
result.

We also compare our QMC AV4 results from Fig. 3 for
the ground-state energy to other calculations extending to
larger Fermi momenta. In Fig. 4 we compare our results to
(approximate) variational hypernetted-chain calculations by
Friedman and Pandharipande [8] and another calculation by
Akmal, Pandharipande, and Ravenhall (APR) [9]. We also
include two Green’s function Monte Carlo results for 14
neutrons with more complete Hamiltonians [10], a result
following from a Brueckner-Bethe-Goldstone expansion [13],
a difermion EFT result (shown are the error bands) [11],
the latest auxiliary-field diffusion Monte Carlo (AFDMC)
result (discussed below) [28], a Dirac-Brueckner-Hartree-Fock
calculation [12], a lattice chiral EFT method at next to leading
order [14] (see also Ref. [15]), and an approach that makes use
of chiral N2LO three-nucleon forces [16]. Of these, Refs. [9],
[28], and [16] include a three-nucleon interaction, though at the
densities we consider, these are not expected to be significant.
Qualitatively all of these results agree within 20%.

A series of ab initio calculations for neutron matter using the
AFDMC method have been published beginning in 2005 [25].
After our analysis of the finite-size effects—described for BCS
in Sec. II B and for QMC in Refs. [32,38]—was published in
late 2007, the AFDMC group repeated their calculations for
larger systems [28,30], bringing them closer to our results,
though still, as can be seen from Fig. 4 the results are distinct.
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Given the ab initio nature of the powerful AFDMC method,
[43] we have attempted to compare results more extensively.
The advantage of the AFDMC approach is that it includes
an interaction which is more complete than the simpler ones
used here. The disadvantage of the AFDMC approach is that it
does not provide a variational bound to the energy, and hence
the wave functions are chosen from another approach. In the
calculations of Refs. [25,28,30] the wave function was taken
from a correlated-basis function (CBF) approach that included
a BCS-like initial state. The pairing in that variational state is
unusually large and in fact increases as a fraction of EF when
the density is lowered.

The QMC AV4 results use a wave function that has been
variationally optimized. QMC thus gives energies that are
considerably lower than the AFDMC results. As both the wave
functions and the interactions are different in the previous
QMC and AFDMC results, we have repeated our calculations
using the same input wave function [44] used by the AFDMC
group (which comes from the same CBF calculation) at
kF = 0.4 fm−1 and at kF a = −10. We find that in QMC the
AV4 results for the optimized wave function [0.5866(6) MeV
and 0.5870(3) MeV, respectively] are consistently lower in
energy than those using the CBF as input [0.6254(9) MeV
and 0.6014(7) MeV, respectively]. This means that they are
closer to the true ground-state energy for the Hamiltonian
we consider. It would be worth studying in more detail the
differences arising from the different Hamiltonians; the most
important remaining differences are likely the spin-orbit and
pion-exchange terms in the p-wave interaction. Extensions of
previous GFMC calculations [10] to lower densities would
help to resolve these issues.

It is interesting to note that at the lowest densities consid-
ered, the AFDMC and QMC results are still distinct. At those
densities contributions of p- and higher partial waves in the
Hamiltonian should be very small, and thus the two methods
should give identical results. The three-nucleon interaction
included in the AFDMC calculations is one possible source
of the difference, though this appears unlikely at the smallest
densities considered. This suggests that the CBF wave function
at very low densities is problematic; additional studies with
Jastrow-BCS or other wave functions would be useful.

E. Pairing gap and quasiparticle spectrum

We have also performed calculations for the zero-
temperature pairing gap using the AV4 interaction. These
follow from our knowledge of the ground-state energy, through
the use of the the odd-even staggering formula:

� = E(N + 1) − 1
2 [E(N ) + E(N + 2)], (29)

where N is an even number of particles. The results for the gap
are shown in Fig. 5. The main conclusion is that the gap
remains essentially unchanged with the inclusion of the
p-wave interactions. Even at the highest density examined,
kF a = −10, the gap is within statistical errors the same
comparing s-wave and AV4 interactions. This implies that
the dominant contributions to the gap come from the s-wave
part of the interaction.
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FIG. 5. (Color online) Superfluid pairing gap versus kF a for
neutron matter using different potentials. Shown are QMC results
for the s-wave potential (circles) and for the AV4 (squares). Also
shown is the mean-field BCS result (line).

Our results indicate that the gap is suppressed by approx-
imately a factor of two from the BCS value at kF a = −1,
roughly consistent with the Gorkov and Melik-Barkhudarov,
Eq. (3), polarization suppression. In cold atoms, this suppres-
sion from BCS is reduced as the density increases, with a
smoothly growing fraction of the BCS results as we move
from the BCS to the BEC regime. At unitarity the measured
pairing gaps [45–47] are 0.45(0.05) of the Fermi energy, for a
ratio �/�BCS ≈ 0.65, in agreement with predictions by QMC
methods [32,41,48]. In neutron matter, though, the finite range
of the potential reduces �/EF as the density increases. We
find a ratio �/�BCS that increases slightly from |kF a| = 1 to
2.5, but thereafter remains roughly constant.

We also used our AV4 calculations to compute the differ-
ence between s-wave and AV4 interaction gaps in perturbation
theory, in an attempt to isolate the effects of the addition of
the p-wave interaction. This perturbation theory may not be
accurate for the highest density considered, since the s-wave
and AV4 ground states are somewhat different in energy. It
should give an accurate picture at lower densities, though, and
in particular isolate the sign of the change arising from the p-
wave terms in the interaction. Using perturbation theory yields
much smaller statistical errors than comparing the separate
s-wave and AV4 calculations. Table I shows that the p-wave
interactions increase the pairing gap modestly over the range
of densities considered. The p-wave interactions apparently
decrease the magnitude of the polarization corrections, though
the change is only approximately 15% at the highest density
considered.

TABLE I. Gap differences at various kF a calculated in perturba-
tion theory. Perturbative estimates based on AV4 calculations.

kF a kF (fm−1) �(AV4) (MeV) �(AV4)-�(s) (MeV)

−5.0 0.27 0.48(0.04) 0.012(0.008)
−7.5 0.40 0.77(0.08) 0.11(0.03)
−10.0 0.54 1.05(0.11) 0.16(0.06)
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FIG. 6. (Color online) Superfluid pairing gap versus kF a for
neutron matter compared to previous results.

In Fig. 6 we compare our results to selected previous
results: a CBF calculation by Chen et al. [20], an extension
of the polarization-potential model by Wambach et al. [21],
a medium-polarization calculation by Schulze et al. [22], a
renormalization group calculation by Schwenk et al. [23], a
Brueckner calculation by Cao et al. [26], a determinantal lattice
QMC approach [29], and finally the newer CBF calculation
by Fabrocini et al. [25] that was used as an input wave
function in the two AFDMC calculations of 2005 and 2008
[25,28].

The results of our calculations are much larger than
most diagrammatic [20–22] and renormalization group [23]
approaches. As these approaches assume a well-defined
Fermi surface or calculate polarization corrections based on
single-particle excitations it is not clear how well they can
describe neutron matter in the strongly paired regime or the
similar pairing found in cold atoms. Reference [26], which
incorporates self-energy corrections and screening at the RPA
level within Brueckner theory, appears to give results similar to
ours. However, these values disagree with our lower-density
results and, perhaps more importantly, at the lowest density
reported the gap is larger than the mean-field BCS value (see
subsection II A). On a similar note, Refs. [21] and [23] make
use of a weak-coupling formula to calculate the pairing gap,
similarly to the Eqs. (2) and (3) we discussed in subsection
II A. The prefactor they use is justified based on predictions
in the theory of 3He. However, the concept itself of a Fermi
surface is not well-defined in these strongly paired systems:
in 3He, in contrast to the present case, the gap is considerably
smaller than the Fermi energy.

Our results are also somewhat different from the AFDMC
results of Ref. [28]. We have once again repeated our QMC
calculations for the gap using the CBF wave function as input.
We find something quite interesting: the QMC method using
the AV4 potential and the CBF input wave function at kF =
0.4 fm−1 (which gave an energy higher than the variationally
optimized input wave function, see subsection III D) gives a
gap of 1.21(17) MeV, thus reproducing the AFDMC result,
which uses the same input wave function and the much more
complicated AV8’+UIX interaction, this being 1.45(15) MeV.
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FIG. 7. (Color online) The neutron-matter energy of the quasipar-
ticle excitations of the system in QMC AV4 (squares) versus (k/kF )2

at kF a = −10. Also shown are the BCS continuum results (line) as
well as the QMC quasiparticle spectrum that follows from a simple
s-wave Hamiltonian (circles).

This too suggests that the most important contributions to
the gap come from the s-wave part of the interaction. On
the other hand, our results seem to qualitatively agree (at
least for the lowest densities considered) with a determinantal
quantum Monte Carlo lattice calculation [29] which, however,
only includes the s-wave component in the interaction. This
may imply that a consensus is emerging, in that both these
calculations find a gap that is suppressed with respect to the
mean-field BCS result but is still a substantial fraction of
the Fermi energy. Finally, let us note that, as mentioned before
when discussing Fig. 5, the AV4 results for the optimized
wave function are very similar to those using an s-wave
potential.

We have also calculated the quasiparticle excitation spec-
trum using the AV4 interaction. The minimum of these results
provides the pairing gap in Fig. 5. In Fig. 7 we show both
the s-wave Hamiltonian results, as well as the AV4 results.
In cold atoms at unitarity and beyond (the BEC regime) the
quasiparticle minimum energy is at a momentum significantly
smaller than the Fermi momentum. Here, though, the mini-
mum corresponds closely to the neutron Fermi momentum.
Although the QMC minimum (pairing gap) is much smaller
than the BCS minimum, the dispersion around the minima is
quite similar. Just like in the case of cold atoms, microscopic
results for the quasiparticle energy spectra [48] can be used to
constrain density functional calculations [49].

F. Distribution functions

Using the QMC AV4 interaction, we have also calculated
distribution functions. In Fig. 8 we show the momentum dis-
tribution at three densities, calculated as the Fourier transform
of the one-body density matrix, through:

n(k) ≡ N

L3

{∫
dδreik·(r′

n−rn) 	V (r1, . . . , r′
n)

	V (r1, . . . , rn)

}
, (30)
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FIG. 8. (Color online) The neutron-matter momentum distribu-
tion in QMC versus (k/kF )2 at kF a = −1 (squares), kF a = −5
(diamonds), and kF a = −10 (circles). Also shown are the continuum
BCS results at kF a = −1 (dashed line), kF a = −5 (dotted line), and
kF a = −10 (solid line).

where the curly brackets denote a stochastic integration over
the angles and we perform the integral over δr = |r′

n − rn| on
a line using Gaussian quadratures to avoid statistical errors due
to the oscillatory radial dependence.

As expected from standard BCS theory, we see that the
spread of the momentum distribution around µ is approxi-
mately 2�. For kF a = −1 the momentum distribution looks
very similar to that of a free Fermi gas. At large |kF a| (when the
gap is approximately half the Fermi energy) this fact implies
that there is no clearly defined Fermi surface. We note that in
Fig. 8 the results for kF a = −5 seems to be more “broadened”
than that of kF a = −10, even though as we can see in Fig. 6
the gap at kF a = −5 is considerably smaller than the one at
kF a = −10. This is easily resolved if one looks at the pairing
gap not in absolute units (MeV) but divided with the Fermi
energy, as shown in Fig. 5. The case of kF a = −5 has a bigger
gap in units of the Fermi energy, and that is what leads to the
observed behavior in the momentum distributions shown in
Fig. 8.

We have also computed the pair-distribution functions at
kF a = −10 using the AV4 potential and have plotted them in
Fig. 9. These are calculated from expectation values of the
form:

gP (r) = A
∑
i<j

〈	0|δ(rij − r)OP
ij |	V 〉, (31)

where we are initially interested in the case in which the
operator is simply unity, and the normalization factor A is such
that g1(r) ≡ gc(r) goes to one at large distances. These pair-
distribution functions provide sum rules related to density- and
other response functions versus density and momentum. The
solid line in the figure shows the pair-distribution function of
noninteracting (NI) fermions with parallel spins:

gNI
c (r) = 1 − 9

(kF r)6
[sin(kF r) − kF r cos(kF r)]2 . (32)
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FIG. 9. (Color online) The neutron-matter pair-distribution func-
tion in QMC as a function of the distance times the Fermi momentum
at kF a = −10. The distribution functions given are the gc(r) for
opposite-spin (circles) and same-spin pairs (squares), as well as the
gM (r) for opposite-spin pairs (triangles).

The noninteracting result is very close to the QMC simulation
for same-spin particles. On the other hand, the value of
the opposite-spin distribution function is very small at short
distances, reflecting the repulsive core in the AV18 potential.
Since our interaction is more complicated than a simple s-wave
component, Eq. (31) can also be applied to the Majorana
exchange operator P M which was used in Eq. (18). The
distribution function for that operator is also shown in Fig. 9
for the density of interest. It tracks the behavior of the central
(unit operator) distribution function for short distances but
then reduces to approximately half the standard distribution at
kF r ≈ 1.7.

IV. CONCLUSIONS

To conclude, we have calculated the equation of state
and pairing gap of low-density neutron matter with the AV4
interaction from kF = 0.054 to 0.54 fm−1, corresponding
to |kF a| from 1 to 10. The calculated equation of state
and pairing gap match smoothly with the known analytic
results at low densities and provide important constraints
in the strong-coupling regime at large kF a. We have also
calculated the quasiparticle spectrum, momentum distribution,
and pair-distribution functions for low-density neutron matter.
The low-density equation of state can help constrain Skyrme
mean-field models of finite nuclei. The pairing gap for low-
density neutron matter is relevant to Skyrme-Hartree-Fock-
Bogoliubov calculations [3] of neutron-rich nuclei and to
neutron-star physics, since it is expected to influence the
behavior of the crust [6].

More specifically, a magnetic field in the neutron star crust
would have to be approximately 1017 G to overcome this gap
and thus polarize neutron matter; such a value of the magnetic
field is not implausible within the context of magnetars.
Similarly, the fact that the magnitude of the gap is not as
small as previously expected implies that a new mechanism
that makes use of superfluid phonons is competitive to the heat
conduction by electrons in magnetized neutron stars [7].
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Our results for the gap at the low-density regime, following
from a variationally optimized approach that includes the
dominant well-known terms in the Hamiltonian, can func-
tion as a benchmark with which other calculations can be
compared. Equally important, future experimental tests in
cold atoms, at least in the very low density regime up to
|kF a| = 2 appear to be within the reach of possibility. Similar
comparisons may be made with other observables including
the pair-distribution function and momentum distribution. We
believe that these calculations of the equation of state, pairing
gap, and quasiparticle dispersion can be used as constraints of
nuclear density functionals.

ACKNOWLEDGMENTS

The authors thank S. Gandolfi, A. Schwenk, and S. Reddy
for useful discussions. The work of A.G. and J.C. was
supported by the UNEDF SciDAC Collaboration under DOE
Grant No. DE-FC02-07ER41457, by the Nuclear Physics
Office of the US Department of Energy under Contract No. DE-
AC52-06NA25396, and by the LDRD program at Los Alamos
National Laboratory. Computing resources were provided at
LANL through the Institutional Computing Program and at
NERSC. The work of A.G. was supported in part by DOE
Grant No. DE-FG02-97ER41014 and by NSF Grant Nos.
PHY03-55014 and PHY07-01611.

[1] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[2] J. R. Stone, J. C. Miller, R. Koncewicz, P. D. Stevenson, and

M. R. Strayer, Phys. Rev. C 68, 034324 (2003).
[3] N. Chamel, S. Goriely, and J. M. Pearson, Nucl. Phys. A812, 72

(2008).
[4] E. F. Brown and A. Cumming, Astrophys. J. 698, 1020 (2009).
[5] A. W. Steiner and S. Reddy, Phys. Rev. C 79, 015802 (2009).
[6] D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner,

Astrophys. J. 707, 1131 (2009).
[7] D. N. Aguilera, V. Cirigliano, J. A. Pons, S. Reddy, and

R. Sharma, Phys. Rev. Lett. 102, 091101 (2009).
[8] B. Friedman and V. R. Pandharipande, Nucl. Phys. A361, 502

(1981).
[9] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev.

C 58, 1804 (1998).
[10] J. Carlson, J. Morales Jr., V. R. Pandharipande, and D. G.

Ravenhall, Phys. Rev. C 68, 025802 (2003).
[11] A. Schwenk and C. J. Pethick, Phys. Rev. Lett. 95, 160401

(2005).
[12] J. Margueron, E. van Dalen, and C. Fuchs, Phys. Rev. C 76,

034309 (2007).
[13] M. Baldo and C. Maieron, Phys. Rev. C 77, 015801 (2008).
[14] E. Epelbaum, H. Krebs, D. Lee, and U.-G. Meissner, Eur. Phys.

J. A 40, 199 (2009).
[15] E. Epelbaum, H.-W. Hammer, and U.-G. Meissner, Rev. Mod.

Phys. 81, 1773 (2009).
[16] K. Hebeler and A. Schwenk, arXiv:0911.0483 (2009).
[17] A. Rios, A. Polls, and I. Vidaña, Phys. Rev. C 79, 025802 (2009).
[18] U. Lombardo and H.-J. Schulze, Lecture Notes in Physics

(Springer-Verlag, Berlin, 2001), Vol. 578, p. 30.
[19] D. J. Dean and M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607

(2003).
[20] J. M. C. Chen, J. W. Clark, R. D. Davé, and V. V. Khodel, Nucl.
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