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Superfluidity of � hyperons in neutron stars
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We study the 1S0 superfluidity of � hyperons in neutron star matter and neutron stars. We use the relativistic
mean field (RMF) theory to calculate the properties of neutron star matter. In the RMF approach, the meson-
hyperon couplings are constrained by reasonable hyperon potentials that include the updated information from
recent developments in hypernuclear physics. To examine the 1S0 pairing gap of � hyperons, we employ several
�� interactions based on the Nijmegen models and used in double-� hypernuclei studies. It is found that the
maximal pairing gap obtained is a few tenths of a MeV. The magnitude and the density region of the pairing gap
are dependent on the �� interaction and the treatment of neutron star matter. We calculate neutron star properties
and find that whether the 1S0 superfluidity of � hyperons exists in the core of neutron stars mainly depends on
the �� interaction used.
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I. INTRODUCTION

Neutron stars are natural laboratories for studying the
physics of dense matter. They are associated with some of
the most exotic environments in the universe. Our knowledge
of neutron star interiors is still uncertain. The central density
of neutron stars can be extremely high, and many possibilities
for such dense matter have been suggested [1–3]. For densities
below twice normal nuclear matter density (ρ0 ∼ 0.15 fm−3),
the matter consists of only nucleons and leptons. When the
density is higher than 2ρ0, the equation of state (EOS) and
composition of matter are much less certain. The presence
of hyperons in neutron stars has been studied by many
authors [4–8]. K− condensation in dense matter was suggested
by Kaplan and Nelson [9] and has been extensively discussed
in many works [2,4,10]. It has been suggested that the quark
matter may exist in the core of massive neutron stars, and
the hadron-quark phase transition can proceed through a
mixed phase of hadronic and quark matter [1,2,6,11]. If
deconfined quark matter does exist inside stars, it is likely
to be in a color superconducting phase [1,6], and various color
superconducting phases have been intensively investigated in
recent years [12–14].

Baryon pairing is believed to play an important role in the
evolution of neutron stars [2,15,16]. The presence of neutron
superfluidity in the crust and the inner part of neutron stars can
be considered well established [15]. The neutron fluid in the
crust probably forms a 1S0 superfluid. With increasing density,
the 1S0 interaction turns repulsive, and the neutrons in the outer
core mainly form a 3P2 superfluid. On the other hand, one can
expect 1S0 proton pairing in the outer core because the small
proton fraction brings about a low proton density in this region.
In the inner core of neutron stars, hyperons may appear through
the weak interaction because of the fast rise of the baryon
chemical potentials with density. It is widely accepted that
hyperons appear around 2ρ0. The presence of hyperons tends to
soften the EOS at high density and lower the maximum mass of
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neutron stars [4–8] as well as increase the neutron star cooling
rate [16,17]. In general, the first hyperon to appear is �, which
is the lightest one with an attractive potential in nuclear matter.
The potential of � hyperons is now considered to be repulsive;
therefore �− appears at a higher density than � in neutron
star matter [18,19]. The 1S0 superfluidity of � hyperons is
suggested to occur in the same way as that of neutrons arising
from the attractive �� interaction in the 1S0 channel [20–24].
It is known that hyperon pairing can significantly affect the
thermal evolution of neutron stars by suppressing neutrino
emission from the hyperon direct Urca process [24–26]. Young
neutron stars cool primarily by neutrino emission from the
interior. As discussed in Refs. [27–29], the neutrino emissivity
in superfluid matter is exponentially suppressed when the
temperature T is much lower than the superfluid critical
temperature Tc. On the other hand, superfluidity initiates a
specific neutrino emission from the Cooper pair breaking and
formation process, which is forbidden in nonsuperfluid matter.
This process is exponentially suppressed when T � Tc, and
it is much less efficient than the direct Urca process [29,30].
Hence the presence of baryon superfluidity can drastically
suppress the neutrino emission, which may play a key role in
neutron star cooling. We are mainly interested in the possibility
of 1S0 superfluidity of � hyperons in neutron stars. So far, the
1S0 pairing gap of � hyperons is still uncertain because it can
be significantly influenced by both the properties of matter
and the �� interaction. More studies are needed to determine
these uncertain factors using available information from recent
developments in hypernuclear physics.

In this article, we focus on the 1S0 superfluidity of �

hyperons in neutron star matter, which is composed of a chem-
ically equilibrated and charge-neutral mixture of nucleons,
hyperons, and leptons. To calculate the pairing gap, we need
to specify how to treat the neutron star matter and the ��

interaction. In this article, we use the relativistic mean field
(RMF) theory to calculate the properties of neutron star matter.
The RMF theory has been successfully and widely used for the
description of nuclear matter and finite nuclei [31–35]. It has
also been applied to providing the EOS of dense matter for use
in supernovae and neutron stars [36]. In the RMF approach,

0556-2813/2010/81(2)/025801(8) 025801-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.025801


Y. N. WANG AND H. SHEN PHYSICAL REVIEW C 81, 025801 (2010)

baryons interact through the exchange of scalar and vector
mesons. The meson-nucleon coupling constants are generally
determined by fitting to some nuclear matter properties
or ground-state properties of finite nuclei. To examine the
influence of the RMF parameters, we employ two successful
parameter sets, TM1 [37] and NL3 [38], which have been
widely used in many studies of nuclear physics [11,35–39]. As
for the meson-hyperon couplings, there are large uncertainties
because of limited experimental data in hypernuclear physics.
Generally, one can use the coupling constants derived from
the quark model or the values constrained by reasonable
hyperon potentials. The meson-hyperon couplings play an
important role in determining the properties of neutron star
matter [8,40]. We use the values constrained by reasonable
hyperon potentials that include the updated information from
recent developments in hypernuclear physics. We take into ac-
count the two additional hidden-strangeness mesons, σ ∗ and φ,
which were originally introduced to obtain the strong attractive
�� interaction deduced from the earlier measurement [41].
A recent observation of the double-� hypernucleus 6

��He,
called the Nagara event [42], has had a significant impact
on strangeness nuclear physics. The Nagara event provides
unambiguous identification of 6

��He production with a pre-
cise �� binding energy value B�� = 7.25 ± 0.19+0.18

−0.11 MeV,
which suggests that the effective �� interaction should be
considerably weaker (�B�� � 1 MeV) than that deduced
from the earlier measurement (�B�� � 4–5 MeV). The
weak hyperon-hyperon (YY ) interaction suggested by the
Nagara event has been used to reinvestigate the properties
of multistrange systems, and it has been found that the
change of YY interactions affects the properties of strange
hadronic matter dramatically [11,43–45]. We would like to
examine whether the 1S0 superfluidity of � hyperons exists in
neutron star matter, and how large the pairing gap can be if
it does, by considering recent developments in hypernuclear
physics.

The aim of this article is to investigate the possibility of
forming a � superfluid in neutron stars. It has been suggested
that hyperon superfluidity could significantly suppress the
neutrino emission in the core of a neutron star and play a
key role in neutron star cooling [24,25]. Over the last decade,
there has been some discussion in the literature about hyperon
pairing in dense matter [20–24,46]. In the work of Balberg and
Barnea [20], the 1S0 superfluidity of � hyperons has been stud-
ied by using an effective �� interaction based on a G matrix
calculation and an approximation of nonrelativistic effective
mass obtained from single-particle energies. Their calculation
predicts a gap energy of a few tenths of a MeV for � Fermi
momenta up to about 1.3 fm−1. In Refs. [21,22], Takatsuka
and Tamagaki studied � superfluidity using two types of
bare �� interactions based on the one-boson-exchange (OBE)
model and two types of hyperon core models. They found that
� superfluidity could exist in a density region between 2ρ0

and (2.6–4.6)ρ0, depending on the pairing interaction and the
hyperon core model. A study of �� pairing in a pure neutron
background has been presented by Tanigawa et al. [23] using
the relativistic Hartree-Bogoliubov model, where the ��

pairing gap was found to decrease with increasing background
density and decreasing �� attraction. Both � and �−

superfluidities in neutron star matter have been investigated by
Takatsuka et al. [24] using three pairing interactions based on
the OBE model and several nonrelativistic EOS with different
incompressibilities. It was found that both � and �− are
superfluid as soon as they begin to appear at around 4ρ0,
although the pairing gap and the density region depend on
the pairing interaction and the EOS of neutron star matter.
The effect of the Nagara event on � superfluidity has been
discussed in Refs. [23,24], where the weak attractive ��

interaction suggested by the Nagara event leads to very small
pairing gap in dense neutron matter [23] or the disappearance
of � superfluidity in neutron star matter [24]. All these studies
indicate that the �� pairing gap in dense matter depends both
on the �� interaction and on the EOS of matter. The key
role of � superfluidity in neutron star cooling motivates us to
investigate the possibility of forming a � superfluid in neutron
stars by carefully considering the pairing interaction and the
description of neutron star matter with the updated information
from recent developments in hypernuclear physics.

This article is arranged as follows. In Sec. II, we briefly
describe the RMF theory for the calculation of neutron star
matter properties. In Sec. III, we discuss the �� interaction
used in the gap equation. We present the numerical results in
Sec. IV. Section V is devoted to a summary.

II. RELATIVISTIC MEAN FIELD THEORY

We use the RMF theory to describe the neutron star
matter, which is composed of a chemically equilibrated and
charge-neutral mixture of nucleons, hyperons, and leptons.
In the RMF approach, baryons interact through the exchange
of scalar and vector mesons. The baryons considered in this
work are nucleons (p and n) and hyperons (�, �, and �). The
exchanged mesons include isoscalar scalar and vector mesons
(σ and ω), an isovector vector meson (ρ), and two additional
hidden-strangeness mesons (σ ∗ and φ). The total Lagrangian
density of neutron star matter takes the form

LRMF =
∑
B

ψ̄B

[
iγµ∂µ−mB −gσBσ − gσ ∗Bσ ∗ − gωBγµωµ

− gφBγµφµ − gρBγµτiBρ
µ

i

]
ψB + 1

2
∂µσ∂µσ

− 1

2
m2

σ σ 2 − 1

3
g2σ

3 − 1

4
g3σ

4 − 1

4
WµνW

µν

+ 1

2
m2

ωωµωµ + 1

4
c3(ωµωµ)2 − 1

4
RiµνR

µν

i

+ 1

2
m2

ρρiµρ
µ

i + 1

2
∂µσ ∗∂µσ ∗ − 1

2
m2

σ ∗σ
∗2

− 1

4
SµνS

µν + 1

2
m2

φφµφµ +
∑

l

ψ̄l[iγµ∂µ−ml]ψl,

(1)

where ψB and ψl are the baryon and lepton fields, respectively.
The index B runs over the baryon octet (p, n, �, �+, �0,
�−, �0, �−), and the sum on l is over electrons and muons
(e− and µ−). The field tensors of the vector mesons, ω, ρ,
and φ, are denoted by Wµν , Riµν , and Sµν , respectively. In
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the RMF approach, the meson fields are treated as classical
fields, and the field operators are replaced by their expectation
values. The meson field equations in uniform matter have the
following form:

m2
σ σ + g2σ

2 + g3σ
3 = −

∑
B

gσB

π2

∫ kB
F

0

m∗
B√

k2 + m∗2
B

k2dk,

(2)

m2
ωω + c3ω

3 =
∑
B

gωB

(
kB
F

)3

3π2
, (3)

m2
ρρ =

∑
B

gρBτ3B

(
kB
F

)3

3π2
, (4)

m2
σ ∗σ

∗ = −
∑
B

gσ ∗B

π2

∫ kB
F

0

m∗
B√

k2 + m∗2
B

k2dk,

(5)

m2
φφ =

∑
B

gφB

(
kB
F

)3

3π2
, (6)

where σ = 〈σ 〉, ω = 〈ω0〉, ρ = 〈ρ30〉, σ ∗ = 〈σ ∗〉, and φ =
〈φ0〉 are the nonvanishing expectation values of meson fields in
uniform matter; m∗

B = mB + gσBσ + gσ ∗Bσ ∗ is the effective
mass of the baryon species B, and kB

F is the corresponding
Fermi momentum.

The meson-baryon coupling constants play an important
role in determining the properties of neutron star matter. To
examine the influence of the RMF parameters, we employ
two successful parameter sets, TM1 [37] and NL3 [38], in the
present calculation. These parameters have been determined
by fitting to some ground-state properties of finite nuclei,
and they can provide a good description of nuclear matter
and finite nuclei, including unstable nuclei. With the TM1
(NL3) parameter set, the nuclear matter saturation density
is 0.145 fm−3 (0.148 fm−3), the energy per nucleon is
−16.3 MeV (−16.3 MeV), the symmetry energy is 36.9 MeV
(37.4 MeV), and the incompressibility is 281 MeV (272 MeV)
[37,38]. As for the meson-hyperon couplings, we take the naive
quark model values for the vector coupling constants:

1

3
gωN = 1

2
gω� = 1

2
gω� = gω�,

gρN = 1

2
gρ� = gρ�, gρ� = 0, (7)

2gφ� = 2gφ� = gφ� = −2
√

2

3
gωN, gφN = 0.

The scalar coupling constants are chosen to give reasonable
hyperon potentials. We denote the potential depth of the
hyperon species i in the matter of the baryon species j by
U

(j )
i . It is estimated from the experimental data of single-�

hypernuclei that the potential depth of a � in saturated
nuclear matter should be around U

(N)
� � −30 MeV [47].

For � hyperons, the analysis of � atomic experimental
data suggests that �-nucleus potentials have a repulsion
inside the nuclear surface and an attraction outside the

nucleus with a sizable absorption. In recent theoretical works,
the � potential in saturated nuclear matter is considered to be
repulsive with a strength of about 30 MeV [18,47]. Some recent
developments in hypernuclear physics suggest that � hyperons
in saturated nuclear matter have an attraction of around
15 MeV [18,48]. In this article, we adopt U

(N)
� = −30 MeV,

U
(N)
� = +30 MeV, and U

(N)
� = −15 MeV to determine the

scalar coupling constants. We obtain, for the TM1 (NL3)
parameter set, gσ� = 6.228 (6.323), gσ� = 4.472 (4.709), and
gσ� = 3.114 (3.161), respectively. The hyperon couplings to
the hidden-strangeness meson σ ∗ are restricted by the relation
U

(�)
� ≈ U

(�)
� ≈ 2U

(�)
� ≈ 2U

(�)
� obtained in Ref. [49]. The

weak YY interaction implied by the Nagara event suggests
U

(�)
� � −5 MeV, and hence we obtain gσ ∗� = 5.499 (5.678)

and gσ ∗� = 11.655 (11.899) for the TM1 (NL3) parameter
set. We assume gσ ∗� = gσ ∗� and take mσ ∗ = 980 MeV and
mφ = 1020 MeV in this article.

For neutron star matter consisting of a neutral mixture of
baryons and leptons, the β-equilibrium conditions without
trapped neutrinos are given by

µp = µ�+ = µn − µe, (8)

µ� = µ�0 = µ�0 = µn, (9)

µ�− = µ�− = µn + µe, (10)

µµ = µe, (11)

where µi is the chemical potential of species i. At zero
temperature, the chemical potentials of baryons and leptons
are given by

µB =
√

kB
F

2 + m∗2
B + gωBω + gφBφ + gρBτ3Bρ, (12)

µl =
√

kl
F

2 + m2
l , (13)

respectively. The electric charge neutrality condition is ex-
pressed by

ρp + ρ�+ = ρe + ρµ + ρ�− + ρ�− , (14)

where ρi = (ki
F )3/(3π2) is the number density of species

i. We solve the coupled Eqs. (2)–(6), (8)–(11), and (14)
self-consistently at a given baryon density ρB . Then we can
calculate the EOS and the composition of neutron star matter
as well as the effective mass and the Fermi momentum of �

hyperons, which are crucial in the study of �� pairing.

III. GAP EQUATION AND �� INTERACTION

We study the 1S0 superfluidity of � hyperons in neutron
star matter. The crucial quantity in determining the onset of
superfluidity is the energy gap function � (k), which can be
obtained by solving the gap equation

�(k) = − 1

4π2

∫
k′2dk′ V (k, k′)�(k′)√[

E (k′) − E
(
k�
F

)]2 + �2 (k′)
,

(15)

where E (k) is the single-particle energy of � with momentum
k. For � hyperons in neutron star matter, the single-particle
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energy in the RMF approach is given by

E (k) =
√

k2 + m∗2
� + gω�ω + gφ�φ.

The effective mass m∗
� and the Fermi momentum k�

F are
computed self-consistently at a given baryon density ρB within
the RMF approach.

For the �� pairing interaction in the 1S0 channel, the
potential matrix element can be written as

V (k, k′) = 〈k| V��(1S0)|k′〉
= 4π

∫
r2dr j0(kr)V�� (r) j0(k′r), (16)

where j0(kr) = sin(kr)/(kr) is the spherical Bessel function
of order zero and V�� (r) is the 1S0 �� interaction potential
in coordinate space. Because of large uncertainties in the ��

interaction, we adopt several �� potentials. Most of them
are based on the Nijmegen models and are used in double-�
hypernuclei studies, which are of the three-range Gaussian
form

V��(r) =
3∑

i=1

vi exp
(−r2/β2

i

)
. (17)

The short-range term provides for a strong soft-core repulsion,
whereas the medium-range and long-range terms provide
for attraction. The parameters vi and βi are taken from
Refs. [50–53], and we list them in Table I. The ND1 potential
was given in Ref. [50] as an effective soft-core interaction fitted
to the Nijmegen model D (ND) hard-core interaction. Another
simulation of the ND interaction, called ND2 in this article,
was obtained in Ref. [51]. The ESC00, NSC97b, NSC97e,
and NSC97f potentials given in Ref. [51] were obtained
by changing the strength of the medium-range attractive
component of the three-range Gaussian potential such that they
could reproduce the scattering length and the effective range
as close to values by the corresponding Nijmegen models. It
is well known that the Nagara event provides unambiguous
identification of 6

��He production with a precise �� binding
energy value B�� and has had a significant impact on
strangeness nuclear physics. The NFs and NSC97s potentials
given in Refs. [52,53] were obtained by adjusting parameters
to reproduce the experimental value of B��(6

��He) from the

TABLE I. Parameters of 1S0 �� interaction defined in Eq. (17),
taken from Refs. [50–53]. The size parameters are the same for all
cases, which are β1 = 1.342 fm, β2 = 0.777 fm, and β3 = 0.350 fm.
The strength parameters are in MeV.

v1 v2 v3

ND1 −21.92 −283.5 4745
ND2 −21.49 −379.1 9324
ESC00 −21.49 −456.6 9324
NSC97b −21.49 −182.1 9324
NSC97e −21.49 −207.1 9324
NSC97f −21.49 −177.1 9324
NFs −10.96 −141.8 2137
NSC97s −21.49 −250.1 9324
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FIG. 1. (Color online) 1S0 �� interaction potentials used in this
article.

Nagara event. We have also chosen an Urbana-type potential
that has been successfully used to explain the experimental
values of hypernuclei. The Urbana potential could be found in
Ref. [54].

We plot in Fig. 1 all �� potentials considered in the present
work. The strongest �� interaction is the ESC00 potential,
whereas the weakest �� interaction is the NSC97f potential.
We note that the NFs, NSC97s, and Urbana potentials simulate
the experimental value of B��(6

��He) from the Nagara event.

IV. RESULTS AND DISCUSSION

In this section, we investigate the 1S0 superfluidity of �

hyperons in neutron star matter and neutron stars. We employ
the RMF model with the parameter sets TM1 and NL3 to
calculate the properties of neutron star matter, which is known
to provide excellent descriptions of the ground states of
finite nuclei, including unstable nuclei. The meson-hyperon
couplings play an important role in determining the properties
of neutron star matter. We use the values constrained by
reasonable hyperon potentials that include the updated infor-
mation from recent developments in hypernuclear physics. As
for the �� pairing interaction used in the gap equation, we
adopt several �� potentials that have been used in double-�
hypernuclei studies. Some simulate the experimental value of
B��(6

��He) from the Nagara event. With the effective mass
and the Fermi momentum of � hyperons obtained in the RMF
approach, the gap equation [Eq. (15)] is solved numerically.

In Fig. 2, we show the resulting 1S0 pairing gap of �

hyperons at the Fermi surface, �F , as a function of the
baryon density, ρB , in neutron star matter. The results of
TM1 and NL3 are plotted in Fig. 2 (top) and Fig. 2 (bottom),
respectively. In the case of TM1 (NL3), the threshold density
of � is around 0.31 fm−3 (0.28 fm−3), and � hyperons form
a 1S0 superfluid as soon as they appear in neutron star matter.
With increasing baryon density, �F increases first, reaching
a maximum value at ρB ∼ 0.34 fm−3 (ρB ∼ 0.30 fm−3),
then decreases and finally vanishes at ρB < 0.46 fm−3

(ρB < 0.38 fm−3) for the case of TM1 (NL3) with the ESC00
potential. It is found that the maximal pairing gap is about
0.8 MeV with the ESC00 potential in the TM1 case. This
is because the ESC00 potential has the strongest attraction
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FIG. 2. (Color online) 1S0 pairing gap of � hyperons at the
Fermi surface �F as a function of baryon density ρB in neutron star
matter with the ND1, ND2, and ESC00 potentials: (top) TM1 and
(bottom) NL3.

among the �� interactions used here. The pairing gaps with
the ND1 and ND2 potentials are of the order of 0.1–0.2 MeV,
as shown in Fig. 2. In addition, we find that the pairing gaps
are of the order of 10−4 MeV (TM1) or absent (NL3) with the
NSC97e, NFs, NSC97s, and Urbana potentials. The � pairing
does not appear for the NSC97b and NSC97f potentials. We
present in Table II the maximal pairing gap at the Fermi
surface (�max

F ) and the corresponding baryon density (ρB),
effective � mass (m∗

�), and Fermi momentum (k�
F ) using

these potentials with the TM1 and NL3 parameter sets.
The � pairing gap �F depends not only on the ��

interaction but also on the properties of � hyperons in neutron
star matter. In Fig. 3, we show the particle fraction, Yi = ρi/ρB ,
as a function of the baryon density, ρB , using the RMF
model with the TM1 (Fig. 3, top) and NL3 (Fig. 3, bottom)
parameter sets. It is seen that � hyperons appear around
0.31 fm−3 (TM1) or 0.28 fm−3 (NL3) and then increase
rapidly with increasing density. We note that hyperon threshold
densities, fractions, and effective masses are dependent on the
RMF parameters used. This dependence has an effect on the
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Y
i
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FIG. 3. (Color online) Particle fraction Yi = ρi/ρB as a function
of baryon density ρB : (top) TM1 and (bottom) NL3.

resulting pairing gap, as shown in Fig. 2. Our results with
the ND1 potential can be compared with those in Table III
of Ref. [24], where the same �� interaction (called the
ND-Soft potential) was used. The difference is in the treatment
of neutron star matter, for which they use a nonrelativistic
G matrix-based effective interaction approach, whereas we
use the RMF approach. In our case of TM1 (NL3), the
maximal pairing gap at the Fermi surface is 0.17 MeV
(0.12 MeV), as given in Table II, where ρB = 0.344 fm−3

(ρB = 0.303 fm−3), Y� = 0.039 (Y� = 0.044), and m∗
� =

743 MeV (m∗
� = 706 MeV). Takatsuka et al. [24] obtained

the maximal pairing gap of 0.34 MeV at ρB = 4.5ρ0 for the
TNI6u EOS. The larger pairing gap at higher ρB given in
Ref. [24] is because of their smaller Y� and larger m∗

�. As
discussed in Refs. [20,23,24], the pairing gap is very sensitive
to the effective mass. Generally, a smaller effective mass leads
to a higher single-particle energy and then yields a smaller
pairing gap. In Fig. 4, we show the effective mass of �

hyperons, m∗
�, as a function of the baryon density, ρB , using the

RMF model with the TM1 (solid line) and NL3 (dashed line)
parameter sets. It is shown that m∗

� decreases with increasing

TABLE II. Maximal pairing gap at the Fermi surface �max
F obtained with several �� potentials; ρB is the total baryon density of neutron

star matter where �max
F is obtained, and k�

F and m∗
� are the corresponding Fermi momentum and effective mass of � hyperons, respectively.

TM1 NL3

ρB k�
F m∗

� �max
F ρB k�

F m∗
� �max

F

(fm−3) (fm−1) (MeV) (MeV) (fm−3) (fm−1) (MeV) (MeV)

ND1 0.344 0.738 743 0.17 0.303 0.731 706 0.12
ND2 0.339 0.681 747 0.10 0.298 0.664 711 0.06
ESC00 0.349 0.789 740 0.81 0.305 0.762 704 0.62
NSC97b – – – – – – – –
NSC97e 0.329 0.548 753 1.2 × 10−4 – – – –
NSC97f – – – – – – – –
NFs 0.329 0.548 753 5.4 × 10−4 – – – –
NSC97s 0.329 0.548 753 4.0 × 10−4 – – – –
Urbana 0.329 0.548 753 5.5 × 10−4 – – – –
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FIG. 4. (Color online) Effective mass of � hyperons m∗
� as a

function of baryon density ρB .

ρB . When � hyperons appear around 0.31 fm−3 (TM1) or
0.28 fm−3 (NL3), the effective mass of � hyperons is about
762 MeV or 727 MeV. It is found that the effective masses of �

hyperons in the NL3 case are smaller than those of TM1, which
leads to a smaller pairing gap, as shown in Fig. 2. We note
that the effective mass of � hyperons is mainly determined
by the coupling constants gσ� and gσ ∗�. Here we use the
values constrained by reasonable hyperon potentials, which
are suggested by the experimental data of single-� hypernuclei
and by the Nagara event.

To examine whether the 1S0 superfluidity of � hyperons
exists in neutron stars, we solve the Tolman-Oppenheimer-
Volkoff (TOV) equation with the EOS of the RMF theory over
a wide density range. For the nonuniform matter at low density,
which exists in the inner and outer crusts of neutron stars, we
adopt a relativistic EOS based on the RMF theory with a
local density approximation [7,36]. The nonuniform matter
is modeled to be composed of a lattice of spherical nuclei
immersed in an electron gas with or without free neutrons
dripping out of nuclei. The low-density EOS is matched to the
EOS of uniform matter at the density where they have equal
pressure. The neutron star properties are mainly determined
by the EOS at high density. Using the EOS described in
Sec. II, we calculate the neutron star properties and find
that the maximum mass of neutron stars is about 1.70 M�
(2.06 M�) with the TM1 (NL3) parameter set. According to
the compilation of measured neutron star masses [3,55], some
massive neutron stars were reported to be observed recently.
However, the uncertainties in these mass measurements are
rather large, and the mass of PSR J0751 + 1807 was corrected
from (2.1 ± 0.2) M� to (1.26 ± 0.14) M� [56]. We note
that the EOS used here could not be ruled out by current
observations. In Figs. 5 and 6, we show the central baryon
density as a function of the neutron star mass. We find that
whether the 1S0 superfluidity of � hyperons exists in the core
of neutron stars depends on the �� interaction used. With
weaker �� interactions, such as NSC97b and NSC97f, the
� superfluidity does not appear inside neutron stars. For the
NSC97e, NFs, NSC97s, and Urbana interactions, although we
obtain the pairing gaps of the order of 10−4 MeV in the TM1
case, it is unlikely that � superfluidity can exist in observed
neutron stars because of its low superfluid critical temperature

0.5 1.0 1.5 2.0
0.0

0.5

TM1 (ND2)

ρ c
(f

m
-3
)

0.0

0.5

TM1 (ND1)

M (M )

0.0

0.5

1.0

TM1 (ESC00)

FIG. 5. Central baryon density ρc as a function of neutron star
mass M in the TM1 case. The region where only superfluid �

hyperons exist in the core of neutron stars is shaded.

Tc � 0.57�F /κB ∼ 106 K [24,29]. With stronger �� inter-
actions, such as ESC00, ND1, and ND2, the 1S0 superfluidity
of � hyperons may exist in massive neutron stars, as shown
in Figs. 5 and 6. In the case of TM1 (NL3) with the
ESC00 potential, � hyperons do not appear in neutron
stars with M < 1.37 M� (M < 1.50 M�). For neutron stars

0.5 1.0 1.5 2.0 2.5
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0.5
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m
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)
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0.5

NL3 (ND1)
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0.0

0.5
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FIG. 6. Same as Fig. 5, but for the NL3 case.
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with 1.37 M� < M < 1.63 M� (1.50 M� < M < 1.82 M�),
� hyperons in the core of neutron stars form a 1S0 superfluid.
However, when M > 1.63 M� (M > 1.82 M�), not only
superfluid � but also normal (nonsuperfluid) � can exist in
the core of neutron stars because the central baryon density
exceeds the upper limit of the range where � superfluidity
exists. The presence of nonsuperfluid � hyperons in the core
of massive stars would lead to a more rapid cooling than
the case with only superfluid � hyperons. The mass region,
where only superfluid � hyperons exist in the core of neutron
stars, is shaded in Figs. 5 and 6. It is shown that the region
with the ESC00 potential is the widest among all cases in these
figures. This is because the ESC00 potential has the strongest
attraction, and its pairing gap covers the widest density range,
as shown in Fig. 2. We note that this region depends both on
the �� interaction and on the EOS of neutron star matter.

V. SUMMARY

We have studied the 1S0 superfluidity of � hyperons in
neutron star matter and neutron stars. In this article, we
employ the RMF model with the parameter sets TM1 and
NL3 to calculate the properties of neutron star matter, which
is composed of a chemically equilibrated and charge-neutral
mixture of nucleons, hyperons, and leptons. The RMF theory
has been successfully and widely used for the description of
nuclear matter and finite nuclei, including unstable nuclei. In
the RMF approach, baryons interact through the exchange
of scalar and vector mesons. The baryons considered in this
article are nucleons (p and n) and hyperons (�, �, and �).
The exchanged mesons include isoscalar scalar and vector
mesons (σ and ω), an isovector vector meson (ρ), and two
additional hidden-strangeness mesons (σ ∗ and φ). It is well
known that the meson-hyperon couplings play an important
role in determining the properties of neutron star matter. We
have used the couplings constrained by reasonable hyperon
potentials that include the updated information from recent
developments in hypernuclear physics. To examine the 1S0

pairing of � hyperons, we have adopted several �� potentials.
Most are based on the Nijmegen models and have been
used in double-� hypernuclei studies. NFs, NSC97s, and
Urbana potentials have simulated the experimental value of
B��(6

��He) from the Nagara event.

We have calculated the 1S0 pairing gap of � hyperons at
the Fermi surface, �F , using the �� potentials adopted in this
article. It is found that �F depends both on the �� interaction
and on the treatment of neutron star matter. The maximal �F

obtained in the present calculation is about 0.8 MeV with
the ESC00 potential in the TM1 case. This is because the
ESC00 potential has the strongest attraction among the ��

interactions used in this article. The ND1 and ND2 potentials
yield somewhat smaller �F of the order of 0.1–0.2 MeV.
For the NSC97e, NFs, NSC97s, and Urbana potentials, the
values of �F are of the order of 10−4 MeV (TM1) or absent
(NL3). The � pairing does not appear for the NSC97b and
NSC97f potentials. The difference in these results reflects
the dependence of �F on the �� interaction. On the other
hand, the magnitude and the threshold density of �F are also
dependent on properties of neutron star matter, especially on
the effective mass and particle fraction of � hyperons. In the
case of TM1 (NL3) with the ESC00 potential, the threshold
density of �F is around 0.31 fm−3 (0.28 fm−3), reaches a
maximum value at ρB ∼ 0.34 fm−3 (ρB ∼ 0.30 fm−3), and
finally vanishes at ρB < 0.46 fm−3 (ρB < 0.38 fm−3). By
solving the TOV equation, we have calculated neutron star
properties and found that whether the 1S0 superfluidity of �

hyperons exists in the core of neutron stars mainly depends
on the �� interaction used. With stronger �� interactions,
such as ESC00, ND1, and ND2, the � superfluidity may exist
in massive neutron stars. It is unlikely that � superfluidity
can exist in neutron stars with the NFs, NSC97s, and Urbana
interactions, which have simulated the experimental value of
B��(6

��He) from the Nagara event.
In this article, we have considered the updated informa-

tion from recent developments in hypernuclear physics and
used the weak attractive �� interactions suggested by the
Nagara event. However, there are still large uncertainties
in the hyperon-hyperon interaction and the EOS of neutron
star matter. A more precise study of the � pairing in
neutron stars requires further development in hypernuclear
physics.
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