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Neutrino emission from triplet pairing of neutrons in neutron stars
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Neutrino emission resulting from the pair breaking and formation processes in the bulk triplet superfluid in
neutron stars is investigated taking into account anomalous weak interactions. I consider the problem in the BCS
approximation discarding Fermi-liquid effects. By this approach I derive self-consistent equations for anomalous
vector and axial-vector vertices of weak interactions taking into account 3P2-3F2 mixing. Further, I simplify the
problem and consider pure 3P2 pairing with mj = 0, as is adopted in the minimal-cooling paradigm. As was
expected because of current conservation, I have obtained a large suppression of neutrino emissivity in the vector
channel. More exactly, the neutrino emission through the vector channel vanishes in the nonrelativistic limit
VF = 0. The axial channel is also found to be moderately suppressed. Total neutrino emissivity is suppressed by
a factor of 1.9 × 10−1 relative to original estimates using bare weak vertices.
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I. INTRODUCTION

Thermal excitations in superfluid baryon matter of neutron
stars, in the form of broken Cooper pairs, can recombine into
the condensate by emitting neutrino pairs via neutral weak cur-
rents [1]. It is generally accepted that, for temperatures near the
associated superfluid critical temperatures, emission from pair
breaking and formation (PBF) processes dominates neutrino
emissivities in many cases. Recently [2], it has been found,
however, that the existing theory of PBF processes based
on bare weak vertices violates conservation of vector weak
current. Correct evaluations including anomalous interactions
have shown the neutrino emission by a nonrelativistic singlet
superfluid is substantially suppressed. Consistent estimates
of the inhibition factor can be found in Refs. [2–4]. The
suppression of neutrino emissivity from the 1S0 PBF processes
was studied also in Refs. [5–8], although these studies are
controversial (see discussion in Refs. [3,4]).

Quenching of the neutrino emission found in the case of
1S0 pairing leads to higher temperatures that can be reached
in the crust of an accreting neutron star. This could explain
the observed data of superburst triggering [9,10], which was
in dramatic contrast with the previous theory of crust cooling.
Numerical simulations of neutron star cooling in the minimal
scenario [11] have shown that the suppression of the PBF
processes in the crust of a neutron star has a significant effect
at early times (t < 1000 years) and results in warmer crusts
and increased crust relaxation times.

I now turn to PBF neutrino emission from bulk superfluid
neutron matter, which is caused mostly by triplet neutron
pairing. Neutrino energy losses due to triplet PBF processes
have been initially derived in Ref. [12], ignoring anomalous
weak interactions. From analogy with the singlet case, it is
clear that conservation of the vector weak current is violated in
this approach and thus neutrino emission in the vector channel,
as obtained in Ref. [12], is a subject of inconsistency [13].
Moreover, in the triplet superfluid, the order parameter is sen-
sitive also to the axial weak field. Therefore, the self-consistent
axial response of the triplet superfluid must incorporate the
anomalous contributions in the same degree of approximation

as the vector response. This effect was not investigated until
now.

In present article, I perform the corresponding self-
consistent calculation. Formally, my approach is a develop-
ment of the Larkin-Migdal-Leggett theory [14,15] to the triplet
case. However, I discard residual particle-hole interactions
because the Landau parameters are unknown for dense
asymmetric baryon matter. Another reason is that the influence
of the particle-hole interactions is not very significant in
the PBF processes [4].

The article is organized as follows. Section II contains
some preliminary notes. I discuss the order parameter and the
quasiparticle propagators for the triplet pair-correlated system
with strong interactions. I also recast the standard gap equation
to the form convenient for considering the processes occurring
in the vicinity of the Fermi surface. In Sec. III, I formulate a set
of BCS equations for the calculation of the anomalous vertices
and correlation functions of the triplet superfluid Fermi liquid
at finite temperature involving a mixing of the 3P2 and 3F2

channels [16,17]. In Sec. IV, I present the general expression
for the emissivity of the neutron PBF processes formulated in
terms of the imaginary part of the current-current correlator.
A widely used expression for the neutrino emissivity caused
by the triplet pairing of neutrons was obtained in Ref. [12]
with the aid of the Fermi “golden” rule. Therefore, before
proceeding to the self-consistent calculation of the neutrino
energy losses in Sec. V, I reproduce this formula using
the calculation technique developed in present article so
that an apposite comparison with Ref. [12] can be made.
In Sec. VI, I consider the anomalous vertices and the
self-consistent superfluid response in both the vector and the
axial channels. Here I focus on the 3P2 pairing with mj = 0,
as is adopted in the minimal-cooling paradigm [11]. Finally,
in Sec. VI B, I evaluate the self-consistent neutrino energy
losses from the PBF processes in the triplet neutron superfluid.
Section VII contains a short summary of my findings and the
conclusion.

In this work I use the standard model of weak interactions,
the system of units h̄ = c = 1, and the Boltzmann constant
kB = 1.
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II. PRELIMINARY NOTES AND NOTATION

A. The order parameter and Green’s functions

The order parameter, D̂ ≡ Dαβ , arising because of triplet
pairing of quasiparticles, represents a 2 × 2 symmetric matrix
in spin space, (α, β =↑,↓). The spin-orbit interaction among
quasiparticles is known to dominate in nucleon matter of high
density. Therefore, it is conventional to represent the triplet
order parameter of the system D̂ = ∑

lmj
�lmj

�
(j lmj )
αβ as a

superposition of standard spin-angle functions of the total
angular momentum (j,mj ),

�
(j lmj )
αβ (n) ≡

∑
ms+ml=mj

(
1

2

1

2
αβ|sms

)
(slmsml|jmj )Yl,ml

(n).

(1)

For my calculations it will be more convenient to use vector
notation that involves a set of mutually orthogonal complex
vectors blmj

(n) defined as

blmj
(n) = − 1

2 Tr
(
ĝσ̂ �̂jlmj

)
, (2)

where σ̂ = (σ̂1, σ̂2, σ̂3) are Pauli spin matrices and ĝ = iσ̂2. I
will use the normalization condition∫

dn
4π

b∗
l′m′

j
blmj

= δll′δmj m
′
j
. (3)

If the most attractive channel of interactions is assumed in
the states with s = 1, j = 2, and l = j ± 1 (in the case of
tensor forces), the order parameter can be written in the form

D̂(n) =
∑
lmj

�lmj
(σ̂blmj

)ĝ. (4)

We are mostly interested in the values of quasiparticle mo-
menta p near the Fermi surface p � pF , where the partial gap
amplitudes, �lmj

(p) � �lmj
(pF ), are almost constants and

the angular dependence of the order parameter is represented
by the unit vector n = p/p, which defines the polar angles
(θ, ϕ) on the Fermi surface.

The ground state (4) occurring in neutron matter has a
relatively simple structure (unitary triplet) [16,17],∑

lmj

�lmj
blmj

(n) = �b̄(n), (5)

where � is a complex constant (on the Fermi surface) and b̄(n)
is a real vector that we normalize by the condition∫

dn
4π

b̄2(n) = 1. (6)

Thus, the triplet order parameter can be written as

D̂(n) = �b̄σ̂ ĝ. (7)

I will use the adopted graphical notation for the ordinary
and anomalous propagators, as shown in Fig. 1.

The analytic form of the propagators can be found in
the standard way [18,19], using the general form (7) of the
gap matrix. Because the matter is assumed to be in thermal
equilibrium at some temperature, I employ the Matsubara

G = G  = F   =(2)F   =(1), , ,

FIG. 1. Diagrams depicting the ordinary and anomalous propa-
gators of a quasiparticle.

calculation technique. Then

Ĝ (pm, p) = aG(pm, p)δαβ,

Ĝ− (pm, p) = aG−(pm, p)δαβ,
(8)

F̂ (1) (pm, p) = aF (pm, p)b̄σ̂ ĝ,

F̂ (2) (pm, p) = aF (pm, p)ĝσ̂ b̄,

where a � 1 is the usual Green’s-function renormalization
constant, pm ≡ iπ (2m + 1)T with m = 0,±1,±2, . . . is the
Matsubara’s fermion frequency, and the scalar Green’s func-
tions are of the form

G(pm, p) = −ipm − εp

p2
m + E2

p
, G−(pm, p) = ipm − εp

p2
m + E2

p
,

(9)
F (pm, p) = −�

p2
m + E2

p
.

Here

εp = p2

2M∗ − p2
F

2M∗ � pF

M∗ (p − pF ), (10)

with M∗ = pF /VF being the effective mass of a quasiparticle.
The quasiparticle energy is given by

Ep ≡
√

ε2
p + 1

2
TrD̂(n)D̂†(n) =

√
ε2

p + �2b̄2, (11)

where the (temperature-dependent) energy gap, �b̄(n), is
anisotropic. Here it is assumed that, in the absence of external
fields, the gap amplitude � is real.

Green functions of a quasiparticle (8) involve the renor-
malization factor a � 1 independent of ω, q, and T (see,
e.g., Ref. [19]). The final outcomes are independent of this
factor; therefore, to shorten the equations, I will drop the
renormalization factor by assuming that all the necessary
physical values are properly renormalized.

The following notation will be used. I designate as
LX,X(ω, q; p) the analytical continuation onto the upper-half
plane of complex variable ω of the following Matsubara sums:

LXX′
(
ωn, p+q

2
; p−q

2

)
= T

∑
m

X
(
pm + ωn, p+q

2

)
X′

(
pm, p−q

2

)
, (12)

where X,X′ ∈ G,F,G− and ωn = 2iπT n, with n =
0,±1,±2, . . . .

It is convenient to divide the integration over the momentum
space into an integration over the solid angle and an integration
over the energy according to∫

d3p

(2π )3
. . . = ρ

∫
dn
4π

1

2

∫ ∞

−∞
dεp . . . (13)

and operate with integrals over the quasiparticle energy:

IXX′(ω, n, q; T ) ≡ 1

2

∫ ∞

−∞
dεpLXX′

(
ω, p+q

2
, p−q

2

)
. (14)
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These are functions of ω, q and the direction of the quasi-
particle momentum p = pn. Here and subsequently, ρ =
pF M∗/π2 is the density of states near the Fermi surface.

The loop integrals (14) possess the following properties,
which can be verified by a straightforward calculation:

IG−G = IGG−, IGF = −IFG,
(15)

IG−F = −IFG− ,

IG−F + IFG = ω

�
IFF , (16)

IG−F − IFG = −qv
�

IFF . (17)

For arbitrary ω, q, and T , one can obtain also

IGG− + b̄2IFF = A + ω2 − (qv)2

2�2
IFF , (18)

where v is a vector with the magnitude of the Fermi velocity
VF and the direction of n, and

A(n) ≡ [IG−G(n) + b̄2(n)IFF (n)]ω=0,q=0. (19)

In the case of triplet superfluid, the key role in the response
theory belongs to the loop integrals IFF and (IGG ± b̄2IFF ).
For further usage, I indicate the properties of these functions
in the case of ω > 0 and q → 0. A straightforward calculation
yields

IFF (ω, q = 0) = −2�2
∫ ∞

0

dε

E

1

(ω + i0)2 − 4E2
tanh

E

2T

(20)

and

(IGG + b̄2IFF )q→0 = 0, (21)

(IGG − b̄2IFF )q→0 = −2b̄2IFF (ω, 0). (22)

The imaginary part of IFF arises from the poles of the
integrand in Eq. (20) at ω = ±2E:

ImIFF (ω > 0, q = 0)

= (ω2 − 4b̄2�2)
π�2

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
, (23)

where (x) is Heaviside step function.

B. Gap equation

The block of the interaction diagrams irreducible in the
channel of two quasiparticles, �αβ,γ δ , is usually generated by
the expansion over spin-angle functions (1). Using the vector
notation, the most attractive channel of pairing interactions
with j = 2 can be written as

ρ�αβ,γ δ(p, p′)

= −
∑
l′lmj

Vll′ (p, p′)
[
blmj

(n)σ̂ ĝ
]
αβ

[
ĝσ̂b∗

l′mj
(n′)

]
γ δ

, (24)

where Vll′ (p, p′) are the corresponding interaction amplitudes
and |l − l′| � 2 in the case of tensor forces.

In vector notation, the set of equations for the triplet partial
amplitudes �lmj

is of the form

�lmj
(p) = −

∑
l′

1

2ρ

∫
dp′p′2Vll′ (p, p′)�(p′)

×
∫

dn′

4π
b∗

l′mj
(n′)b̄(n′)T

∑
m

1

p2
m + E2

p′
, (25)

where

b̄(n) = 1

�

∑
lmj

�lmj
blmj

(n), (26)

as defined in Eq. (5). These equations can be reduced to the
standard form [17] with the aid of the identity

T
∑
m

1

p2
m + E2

p′
≡ 1

2E(p′)
tanh

E(p′)
2T

(27)

and the relation
1
2 Tr

(
�̂jlmj

�̂∗
j l′mj

) = blmj
(n) · b∗

l′mj
(n). (28)

We are interested in the processes occurring in the vicinity
of the Fermi surface. Therefore, one can recast the gap equation
to a more convenient form. We notice that

1

p2
m + E2

p
≡ G(pm, p)G−(pm, p) + b̄2F (pm, p)F (pm, p);

(29)

that is, Eq. (25) can be written as

�lmj
(p) = − 1

2ρ

∑
l′

∫
dp′p′2Vll′ (p, p′)�(p′)

×
∫

dn′

4π
b∗

l′mj
(n′)b̄(n′)T

∑
m

[G(pm, p′)

×G−(pm, p′) + b̄2F (pm, p′)F (pm, p′)]. (30)

To eliminate the integration over the regions far from
the Fermi surface, one can renormalize the interaction as
suggested in Ref. [15]:

V
(r)
ll′ (p, p′; T )=Vll′(p, p′) − Vll′(p,p′)(GG−)nV

(r)
ll′ (p,p′;T ).

(31)

Here the loop (GG−)n is evaluated in the normal (nonsuper-
fluid) state. In terms of V

(r)
ll′ , the gap equation becomes

�lmj
(p) = − 1

2ρ

∑
l′

∫
dp′p′2V (r)

ll′ (p, p′)�(p′)

×
∫

dn′

4π
b∗

l′mj
(n′)b̄(n′)

× T
∑
m

[GG− − (GG−)n + b̄2FF ]pm,p′ , (32)

and we may everywhere substitute V
(r)
ll′ for Vll′ provided

that at the same time we understand by the GG− element
the subtracted quantity GG− − (GG−)n. [(GG−)n is to be
evaluated for ω = 0, q = 0 in all cases.] In the following, I
will do this and drop the superscript r on V

(r)
ll′ .
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Because the function GG− + b̄2FF decreases rapidly
along with a distance from the Fermi surface, we may replace
Eq. (32) with

�lmj
= − 1

ρ

∑
l′

Vll′�

∫
dn
4π

b∗
l′mj

(n)b̄(n)

× 1

2

∫
dpp2T

∑
m

(GG− + b̄2FF )pm,p, (33)

assuming that in the narrow vicinity of the Fermi surface
the smooth functions �lmj

(p), Vll′ (p, p′), and �(p′) may be
replaced with constants �(p) � �(pF ) ≡ �, etc.

The function (19) is now to be understood as

A(n) → [IG−G − I(G−G)n + b̄2IFF ]ω=0,q=0, (34)

and the gap equations (33) become

�lmj
= −�

∑
l′

Vll′

∫
dn
4π

b∗
l′mj

(n)b̄(n)A (n) . (35)

The function (34) can be found explicitly after performing the
Matsubara’s summation:

A(n) = 1

4

∫ ∞

−∞
dε

(
1√

ε2 + �2b̄2
tanh

√
ε2 + �2b̄2

2T

− 1

ε
tanh

ε

2T

)
. (36)

III. EFFECTIVE VERTICES AND THE CORRELATION
FUNCTIONS

The field interaction with a superfluid should be described
with the aid of four effective three-point vertices, as shown in
Fig. 2.

There are two ordinary effective vertices corresponding
to creation of a particle and a hole by the field that differ
by direction of fermion lines. I denote these 2 × 2 matrices
as τ̂ (n;ω, q) ≡ ταβ(n;ω, q) and τ̂−(n;ω, q) ≡ τβα(−n;ω, q),
respectively. The anomalous vertices correspond to the cre-
ation of two particles or two holes. I denote these matrices as
T̂ (1)(n;ω, q) and T̂ (2)(n;ω, q), respectively.

Given by the sum of the ladder-type diagrams [14], the
anomalous vertices are to satisfy Dyson’s equations, depicted
symbolically in Fig. 3.

Analytically, the equations reduce to the following
(for brevity I omit the dependence of functions on ω

FIG. 2. Diagrams of the ordinary and anomalous vertices for the
quasiparticle interacting with the external field shown by the dash
line.

=
+ + +

=
+ + +

FIG. 3. Dyson’s equations for the anomalous vertices. The shaded
rectangles represent pairing interaction.

and q):

T
(1)
αβ (n) =

∑
lmj

(
σ̂blmj

(n
)
ĝ)αβ

∑
l′

Vll′

∫
dn′

8π
Tr

[
IGG− ĝ

× (
σ̂b∗

l′mj

)
T̂ (1) − IFF

(
σ̂b∗

l′mj

)
(σ̂ b̄)ĝT̂ (2)(σ̂ b̄)

− IGF (σ̂ b̄)
(
σ̂b∗

l′mj

)
τ̂ + IFG−

(
σ̂b∗

l′mj

)
(σ̂ b̄)

× (ĝτ̂−ĝ)
]

n′ , (37)

T
(2)
αβ (n) =

∑
lmj

(
ĝσ̂b∗

lmj
(n)

)
αβ

∑
l′

Vll′

∫
dn′

8π
Tr

[
IG−G

× (
σ̂bl′mj

)
ĝT̂ (2) − IFF

(
σ̂bl′mj

)
(σ̂ b̄)T̂ (1)ĝ(σ̂ b̄)

+ IG−F

(
σ̂bl′mj

)
ĝτ̂−ĝ(σ̂ b̄) − IFG

(
σ̂bl′mj

)
(σ̂ b̄)τ̂

]
n′ .

(38)

To obtain these equations, I used the identity ĝĝ = −1̂ and a
cyclic permutation of the matrices under the trace signs.

In general, the ordinary effective vertex is also to be found
by ideal summation of the ladder diagrams incorporating
residual particle-hole interactions. Unfortunately, the Landau
parameters for these interactions in asymmetric nuclear matter
are unknown; therefore, I simply neglect the particle-hole in-
teractions and consider the pair correlation function in the BCS
approximation. Thus, if the 2 × 2 matrix in spin space ξ̂ (n,k) is
some vertex of a free particle, the ordinary vertices of a quasi-
particle and a hole in the BCS approximation are to be taken as

τ̂ (n,k) = ξ̂ (n,k), τ̂−(n,k) = ξ̂ T (−n,k). (39)

Discarding the particle-hole interactions, I nevertheless
assume that the “bare” vertices are properly renormalized [14]
to get rid of the integration over regions far from the Fermi
surface, ε2

p � �2. As mentioned earlier in this article, I omit
the renormalization factor everywhere.

Variation of the Green’s function of a quasiparticle under
the action of external field U ,

Ĝ′ = δG̃

δU
, (40)

is given by the diagrams [19] shown in Fig. 4 and can be
written analytically as

G′ = GGτ̂ + FF (σ̂ b̄)ĝτ̂−ĝ(σ̂ b̄) + GFT̂ (1)ĝ(σ̂ b̄)

+FG(σ̂ b̄)ĝT̂ (2), (41)

where GG ≡ G(pm + ωn, p + q/2)G(pm, p − q/2), etc.
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G' = + ++

FIG. 4. Correction to the ordinary propagator of a quasiparticle
in an external field.

The medium response onto an external field is given by the
pair correlation function which can be found as the analytic
continuation of the following Matsubara sum:

�τ (ωn, q) = T
∑
m

∫
d3p
8π3

Tr (τ̂ Ĝ′). (42)

IV. GENERAL APPROACH TO NEUTRINO
ENERGY LOSSES

The PBF processes are kinematically allowed, thanks to
the existence of a superfluid energy gap, which admits the
quasiparticle transitions with timelike momentum transfer
k = (ω, q), as required by the final neutrino pair, k = k1 + k2.
I consider the standard model of weak interactions. After
integration over the phase space of escaping neutrinos and
antineutrinos, the total energy that is emitted into neutrino pairs
per unit volume and time is given by the following formula
(see details, e.g., in Ref. [20]):

ε = −G2
FNν

192π5

∫ ∞

0
dω

∫
d3q

ω(ω − q)

exp
(

ω
T

) − 1
Im�

µν

weak(ω, q)

× (kµkν − k2gµν), (43)

where Nν = 3 is the number of neutrino flavors, GF is the
Fermi coupling constant, and (x) is the Heaviside step
function. �

µν

weak is the retarded weak polarization tensor of
the medium.

In general, the weak polarization tensor of the medium is
a sum of the vector-vector, axial-axial, and mixed terms. The
mixed axial-vector polarization has to be an antisymmetric
tensor, and its contraction in Eq. (43) with the symmetric
tensor kµkν − k2gµν vanishes. Thus, only the pure-vector and
pure-axial polarizations should be taken into account. We
then obtain Im�

µν

weak � C2
VIm�

µν

V + C2
AIm�

µν

A , where CV and
CA are vector and axial-vector weak coupling constants of a
neutron, respectively.

V. PRESENT STATUS OF THE PROBLEM

The widely used expression for the neutrino emissivity
caused by the triplet pairing of neutrons was obtained in
Ref. [12] with the aid of the Fermi “golden” rule. Therefore,
before proceeding to the self-consistent calculation of the
neutrino energy losses, it is instructive to reproduce this
formula using the calculation technique developed in present
article. I will prove that the result of Ref. [12] can be obtained
from my Eqs. (43) and (42) if to remove the field interactions
through anomalous vertices [the two last terms in Eq. (41)]. I
will label the corresponding results with tilde.

The authors of Ref. [12] state that the weak current of
nonrelativistic neutrons is caused mostly by the temporal
component of the vector current, Ĵ0 = �+1̂�, and by the

space components of the axial-vector current, Ĵi = �+σ̂i�.
Consequently, to reproduce their result, we need to evaluate
the temporal component of the polarization tensor in the vector
channel and the spatial part of the axial polarization. Omitting
the anomalous contributions for the temporal component of
the vector polarization, we have to substitute for

τ̂ = τ̂− → 1̂, T̂ (1,2) → 0, (44)

where 1̂ is a unit 2 × 2 matrix in spin space. Equation (42) is
valid for each of the tensor components. Inserting the temporal
component of the vector vertex into Eqs. (41) and (42), we find
after a little algebra

�̃00
V (ω, q) = 4ρ

∫
dn
4π

1

2
(IGG − b̄2IFF ). (45)

In obtaining this expression I used Eqs. (12) and (14) and the
identity (σ̂ b̄)(σ̂ b̄) = b̄2.

Only small transferred momenta, q < ω ∼ T , contribute
into the neutrino energy losses. Because the transferred mo-
mentum comes in the polarization function in a combination
qVF  ω,� (Fermi velocity VF is small in a nonrelativistic
system), to the lowest accuracy, we may evaluate the polariza-
tion tensor in the limit q = 0. (In the same approximation the
previously mentioned authors evaluate the matrix elements of
a quasiparticle transition.) Then using Eqs. (22) and (23) we
find

Im�̃00
V (ω > 0, q = 0)

= −4πρ

∫
dn
4π

b̄2�2 (ω − 2b̄�)

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
. (46)

The polarization tensor in the axial channel can be evaluated
in the same way. In this case, omitting the anomalous
contributions we have to take

τ̂ (n,k) → σ̂i , τ̂−(n,k) → σ̂ T
i , T̂ (1,2) → 0. (47)

Then we find after some algebraic manipulations

�̃
ij

A (ω, q) = 4ρ

∫
dn
4π

[
1

2
(IGG − b̄2IFF )δij + IFF b̄i b̄j

]
.

(48)

In obtaining this I used the identities ĝσ̂ T ĝ = σ̂ and σ̂ (σ̂ b̄) =
2b̄ − (σ̂ b̄)σ̂ .

With the aid of Eqs. (22) and (23), we find

Im�̃
ij

A (ω > 0, q = 0) = −4πρ

∫
dn
4π

(
δij − b̄i b̄j

b̄2

)

× b̄2�2 (ω2 − 4b̄2�2)

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
.

(49)

Inserting the imaginary part of the polarization tensor into
Eq. (43), we calculate the contraction of Im�̃

µν

weak with the
symmetric tensor kµkν − k2gµν to obtain

Im�̃
µν

weak(kµkν − k2gµν)

= −4πρ

∫
dn
4π

b̄2�2 (ω − 2b̄�)

2ω
√

ω2 − 4b̄2�2
tanh

ω

4T

× {
C2

V(q2
‖ + q2

⊥) + C2
A[2(ω2 − q2

‖ ) − q2
⊥]

}
, (50)
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where q‖ and q⊥ are defined as

q2
‖ = 1

b̄2
(qb̄)2, q2

⊥ = q2 − q2
‖ . (51)

After a little algebra, we obtain the neutrino emissivity in the
form

ε̃ = G2
FNν

120π5
pF M∗

∫
dn
4π

�2
n

∫ ∞

2�n

dω
ω5(

1 + exp ω
2T

)2

× 1√
ω2 − 4�2

n

(
C2

V + 2C2
A

)
, (52)

where �n ≡ �b̄(n).
With the aid of the change ω = 2T

√
x2 + �2

n/T 2, one can
recast this expression to the form obtained in Ref. [12],

ε̃ = εYKL ≡ 4G2
FNν

15π5
pF M∗(C2

V + 2C2
A

)
T 7

∫
dn
4π

�2
n

T 2

×
∫ ∞

0
dx

z4

(1 + exp z)2
, (53)

where z = √
x2 + �2

n/T 2.
Apparently, the contribution of the vector channel in this ex-

pression is a subject of inconsistency because conservation of
the vector current in weak interactions requires ω�00

V (ω, q) =
qi�

i0
V (ω, q), and thus one should expect �00

V (ω > 0, q = 0) =
0 for the correct result instead of Eq. (46). This, however, was
not proved explicitly for the case of triplet pairing. I now focus
on this calculation.

VI. ANOMALOUS CONTRIBUTIONS

A. Vector channel

The self-consistent longitudinal polarization function
�00

V (ω > 0, q) incorporates the anomalous contributions. At
finite transferred space momentum, the problem of deter-
mining the vertex corrections is very complicated. Typically,
massless Goldstone modes that arise due to symmetry breaking
play a crucial role in conserving the vector current. In the
anisotropic 3P2 phase, rotational symmetry is broken and
three Goldstone modes arise (termed angulons in Ref. [21]).
However, because we are interested in the specific case of
q = 0, the temporal component of the anomalous vertex T̂µ

(µ = 0, 1, 2, 3) can be retrieved from the Ward identity, which
requires [3,19]

ωT̂
(1,2)

0 (n;ω, q) − qT̂
(1,2)

(n;ω, q) = ±2D̂(n). (54)

From this identity we immediately find

T̂
(1)

0 (n;ω, q = 0) = 2�

ω
b̄σ̂ ĝ (55)

and

T̂
(2)

0 (n;ω, q = 0) = −2�

ω
ĝb̄σ̂ . (56)

In the BCS approximation, the ordinary scalar vertices are
to be taken, as given by Eq. (44). Inserting the previously
mentioned vertices into Eqs. (41) and (42), we obtain after a

little algebra

� 00
V (ω, q = 0)

= 4ρ

∫
dn
4π

[
1

2
(IGG − b̄2IFF ) + 2�

ω
b̄2IFG

]
q=0

. (57)

Using Eqs. (16) and (17) yielding

IFG = ω + qv
2�

IFF , (58)

we finally find

�00
V (ω, q = 0) = 2C2

Vρ

∫
dn
4π

(IGG + b̄2IFF )q=0. (59)

Comparing this with Eq. (21), we obtain �00
V (ω, q = 0) = 0,

as is required by the current conservation condition. Thus, the
neutrino emissivity through the vector channel vanishes in the
limit q = 0. This proves explicitly that the neutrino emissivity
via the vector channel, as obtained in Eq. (53), is a subject of
inconsistency.

B. Axial channel

I now focus on the axial channel of the weak polarization.
The order parameter in the triplet superfluid varies under
the action of axial-vector external field. Therefore, the self-
consistent axial polarization tensor also must incorporate
anomalous contributions. Then from Eqs. (41) and (42) we
obtain after simple algebraic manipulations

�
ij

A (ω) = 4ρ

∫
dn
4π

{
1

2
(IGG − b̄2IFF )δij + b̄2IFF

b̄i b̄j

b̄2

− ω

2�
IFF

1

4
Tr

[
σ̂i T̂

(1)
j ĝ(σ̂ b̄) − σ̂i(σ̂ b̄)ĝT̂

(2)
j

]}
.

(60)

I again focus on the case q = 0 and for brevity omit the
dependence on n and ω. The anomalous axial-vector vertices
T̂

(1,2)
j (j = 1, 2, 3) are to be found from Eqs. (37) and (38),

where the ordinary vertices are given by Eq. (47).
Up to this point I have not discussed the n dependence of

blmj
(n). This makes Eq. (59) valid in the case of tensor forces

resulting in the 3P2-3F2 mixing, because the general form of
Eqs. (37) and (38) for the anomalous vertices takes into account
not only spin-orbit interactions but the tensor interactions in
the channel of two quasiparticles. Now I simplify the problem
according to approximation adopted in simulations of neutron
star cooling [11] and consider the case of paring in the 3P2

channel, when l = 1 and Vll′ = δll′V and the vectors bmj
(n)

are given by

b0 =
√

1

2
(−n1,−n2, 2n3),

b1 = −b∗
−1 = −

√
3

4
(n3, in3, n1 + in2), (61)

b2 = b∗
−2 =

√
3

4
(n1 + in2, in1 − n2, 0),
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NEUTRINO EMISSION FROM TRIPLET PAIRING OF . . . PHYSICAL REVIEW C 81, 025501 (2010)

where n1 = sin θ cos ϕ, n2 = sin θ sin ϕ, n3 = cos θ . From
here on I drop the subscript l = 1 by assuming bmj

≡ b1,mj
,

�m ≡ �1,mj
, etc.

I will focus on the p-wave condensation into the state
3P2 with mj = 0, which is conventionally considered as the
preferable one in the bulk matter of neutron stars. In this case,
Eq. (5) implies

b̄(n) = b0(n), � = �0 (62)

and the gap equation (35) reads

1 = −V

∫
dn
4π

b̄2(n)A(n). (63)

From Eqs. (37) and (38) we obtain the vertex equations of
the following form (i = 1, 2, 3):

T̂
(1)
i (n) = V

∑
mj

σ̂bmj
(n)ĝ

∫
dn′

8π

{
IGG−Tr

[
ĝ
(
σ̂b∗

mj

)
T̂

(1)
i

]
− IFF Tr

[(
σ̂b∗

mj

)
(σ̂ b̄)ĝT̂

(2)
i (σ̂ b̄)

]
− ω

�
IFF 2i

(
b∗

mj
×b̄

)
i

}
n′ , (64)

T̂
(2)
i (n) = V

∑
mj

ĝσ̂b∗
mj

(n)
∫

dn′

8π

{
IG−GTr

[(
σ̂bmj

)
ĝT̂

(2)
i

]
−IFF Tr

[(
σ̂bmj

)
(σ̂ b̄)T̂ (1)

i ĝ(σ̂ b̄)
]

− ω

�
IFF 2i

(
bmj

×b̄
)
i

}
n′ . (65)

In obtaining the last line in these equations I used σ̂ (σ̂ b̄) =
2b̄ − (σ̂ b̄)σ̂ along with Tr [(σ̂b∗

mj
)(σ̂ b̄)σ̂ ] = 2i(b∗

mj
×b̄) and

Eqs. (15) and (16).
Inspection of the equations reveals that the anomalous axial-

vector vertices can be found in the following form:

T̂(1)(n, ω) =
∑
mj

B(1)
mj

(ω)
(
σ̂bmj

)
ĝ, (66)

T̂(2)(n, ω) =
∑
mj

B(2)
mj

(ω)ĝ
(
σ̂b∗

mj

)
. (67)

These general expressions can be simplified because the
function IFF (n; ω) given by Eq. (20) is axial-symmetric and
the last (free) term in Eqs. (64) and (65) can be averaged over
the azimuth angle to give∫

dϕ

2π
(b∗

0 × b̄) =
∫

dϕ

2π
(b∗

2 × b̄) =
∫

dϕ

2π
(b∗

−2 × b̄) = 0,

(68)

and

i

∫
dϕ

2π
(b∗

1 × b̄) = −e

√
6

4
b̄2,

(69)

i

∫
dϕ

2π
(b∗

−1 × b̄) = −e∗
√

6

4
b̄2,

where e = (1,−i, 0) is a constant complex vector in spin
space. The following relations can be also verified with a

straightforward calculation,∫
dϕ

2π
b∗

mj
bm′

j
= δmj m

′
j
b∗

mj
bmj

, (70)∫
dϕ

2π

(
b̄b∗

mj

)(
b̄bm′

j

) = δmj m
′
j

(
b̄b∗

mj

)
(b̄bmj

). (71)

Relations (68) and (69) make it possible to conclude that
B(1,2)

0 = B(1,2)
±2 = 0, and

T̂(1)(n) = [
B(1)

1 (σ̂b1) + B(1)
−1(σ̂b−1)

]
ĝ,

T̂(2)(n) = ĝ
[
B(2)

1 (σ̂b∗
1) + B(2)

−1(σ̂b∗
−1)

]
.

Inserting these expressions into Eqs. (64) and (65), taking the
traces and using the orthogonality relations (3) along with
relations (70) and (71) and

b̄2 ≡ b2
0, b∗

1b1 = b∗
−1b−1, (72)

(b̄b∗
1)(b̄b1) = (b̄b∗

−1)(b̄b−1), (73)

we obtain the equations

B(1)
±1 = −V

∫
dn
4π

{
IGG−B(1)

±1(b1b∗
1) − IFF B(2)

∓1[(b∗
1b1)b̄2

− 2(b∗
1b̄)(b̄b1)] − ω

�
IFF e

√
6

4
b̄2

}
(74)

and

B(2)
±1 = −V

∫
dn′

4π

{
IG−GB(2)

±1(b1b∗
1) − IFF B(1)

∓1[(b1b∗
1)b̄2

− 2(b1b̄)(b̄b∗
1)] + ω

�
IFF e∗

√
6

4
b̄2

}
. (75)

Solution to Eqs. (74) and (75) can be found in the form

B(2)
1 = −B(1)

−1, B(2)
−1 = −B(1)

1 , (76)

where

B1 = ef (ω), B−1 = e∗f (ω), (77)

and the function f (ω) satisfies the equation

f = −V

∫
dn
4π

[
(IGG− + b̄2IFF )(b∗

1b1)f

− 2IFF (b∗
1b̄)(b̄b1)f − ω

�
IFF

√
6

4
b̄2

]
. (78)

Using Eq. (18) we can rewrite this as

f = −V

∫
dn
4π

[ (
A + ω2

2�2
IFF

)
(b∗

1b1)f

− 2IFF (b∗
1b̄)(b̄b1)f − ω

�
IFF

√
6

4
b̄2

]
. (79)

At this point it is convenient to recast the left-hand side of this
equation according to Eq. (63):

f = −Vf

∫
dn
4π

b̄2(n) A(n). (80)
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In this way we obtain the equation

f

∫
dn
4π

{
(b∗

1b1 − b̄2)A + 2

[
ω2

4�2
(b∗

1b1) − (b∗
1b̄)(b̄b1)

]
IFF

}

=
√

3

2

ω

2�

∫
dn
4π

b̄2IFF . (81)

Because the function IFF (n; ω) is axial-symmetric and

b̄2 = 1
2

(
1 + 3n2

3

)
, b∗

1b1 = 3
4

(
1 + n2

3

)
, (82)

(b̄b∗
1)(b̄b1) = 3

8n2
3

(
1 − n2

3

)
, (83)

Eq. (81) can be integrated over the azimuth angle, yielding the
solution

f (ω, q = 0) = 1

χ (ω, q = 0)

√
3

2

ω

2�

×
∫ 1

0
dn3

1

2

(
1 + 3n2

3

)
IFF (n3, ω, T ), (84)

where

χ (ω, q = 0) ≡
∫ 1

0
dn3

{
1

4

(
1 − 3n2

3

)
A(n3, T ) + 3

4

[
ω2

2�2

× (
1 + n2

3

) − n2
3

(
1 − n2

3

)]
IFF (n3, ω, T )

}
,

(85)

and the functions A(n3, T ) and IFF (n3, ω, T ) are given by
Eqs. (36) and (20).

Explicit evaluation of Eq. (84) for arbitrary values of ω and
T appears to require numerical computation. However, we
can get a clear idea of the behavior of this function using
the angle-averaged energy gap in the quasiparticle energy,
〈�2b̄2〉 ≡ �2. (Replacing angle-dependent quantities in the
gap equation with their angular average has been found to be a
good approximation [22].) In this approximation the functions
IFF (ω, T ) and A(T ) in Eqs. (84) and (85) can be moved
beyond the integrals. Using also the fact that

A

∫ 1

0
dn3

(
1 − 3n2

3

) = 0, (86)

we find

f =
√

3

2

�ω

ω2 − �2/5
. (87)

Thus, in an approximation of the average gap, the func-
tion f (ω) is real valued and is independent of the
temperature.

Poles of the vertex function correspond to collective
eigenmodes of the system. Therefore, the pole at ω2 =
�2/5 signals the existence of collective spin oscillations.
The decay of the collective oscillations into neutrino pairs
gives the additive contribution into neutrino energy losses.
However, examination of the collective modes deserves a
separate study, which is beyond the scope of this article.
Here I concentrate on the PBF processes discussed in the
Introduction.

In this case, ω > 2�b̄(θ ) �
√

2� and, to obtain a simple
analytic approximation, I omit a small term �2/5 in the

denominator of Eq. (87), thus obtaining the axial-vector
anomalous vertices in the following simple form:

T̂(1)(n) =
√

3

2

�

ω
[e(σ̂b1) + e∗(σ̂b−1)]ĝ, (88)

T̂(2)(n) =
√

3

2

�

ω
ĝ[e(σ̂b1) + e∗(σ̂b−1)]. (89)

Having obtained this simple result, we can evaluate the
axial polarization function. Inserting Eqs. (88) and (89) into
Eq. (60) gives

�
ij

A (ω) = 4ρ

∫
dn
4π

[
1

2
(IGG − b̄2IFF )δij + b̄2IFF

b̄i b̄j

b̄2

+ (δij − δi3δj3)
3

4
b̄2IFF

]
q=0

. (90)

The first line in Eq. (90) can be evaluated with the aid of
Eq. (22). We find

�
ij

A = −4ρ

∫
dn
4π

[
δij − b̄i b̄j

b̄2
− 3

4
(δij − δi3δj3)

]
× b̄2IFF (ω, q = 0). (91)

Using Eq. (23) we obtain the imaginary part of axial
polarization:

Im�
ij

A (ω > 0, q = 0)

= −4πρ

∫
dn
4π

[
δij − b̄i b̄j

b̄2
− 3

4
(δij − δi3δj3)

]
b̄2�2

× (ω2 − 4b̄2�2)

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
. (92)

VII. SELF-CONSISTENT NEUTRINO ENERGY LOSSES

As we have obtained Im�
µν

V (ω > 0, q = 0) = 0, using
Eqs. (23) and (91), we find

Im�
µν

weak = −δµiδνjC2
A4πρ

∫
dn
4π

[
δij − b̄i b̄j

b̄2
− 3

4

× (δij − δi3δj3)
]
b̄2�2 (ω2 − 4b̄2�2)

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
.

(93)

Contraction of this tensor with (kµkν − k2gµν) gives

Im�
µν

weak(kµkν − k2gµν)

= −1

4
C2

A[2(ω2 − q2
‖ ) − q2

⊥]4πρ

∫
dn
4π

b̄2�2

× (ω − 2b̄�)

ω
√

ω2 − 4b̄2�2
tanh

ω

4T
, (94)

where

q2
‖ = 1

b̄2
(qb̄)2, q2

⊥ = q2 − q2
‖ . (95)

The rest of the calculation is already performed in Sec. V.
The neutrino energy losses can be written immediately after
inspection of Eqs. (50) and (94). From this comparison it is
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clear that to obtain the correct neutrino energy losses, it is
necessary to replace the factor (C2

V + 2C2
A) with (1/2)C2

A in
Eq. (53). In this way, we obtain

ε � 2

15π5
G2

F C2
ANνpF M∗T 7

∫
dn
4π

�2
n

T 2

×
∫ ∞

0
dx

z4

(1 + exp z)2
, (96)

where �2
n ≡ �2b̄2(n) = 1

2 �2(1 + 3 cos2 θ ) and z =√
x2 + �2

n/T 2. Comparison of this expression with Eq. (53)
shows that the neutrino energy losses caused by the
3P2 pairing in neutron matter are suppressed by the
factor

1

2

C2
A(

C2
V + 2C2

A

) � 0.19, (97)

with respect to that predicted in Ref. [12].
For practical usage we reduce Eq. (96) to the traditional

form,

ε � 5.85 × 1020

(
M∗

M

) ( pF

Mc

)
T 7

9 NνC
2
AFt

erg

cm3s
, (98)

where M and M∗ are the effective and bare nucleon masses,
respectively, c is speed of light, and

Ft =
∫

dn
4π

�2
n

T 2

∫ ∞

0
dx

z4

(1 + exp z)2
. (99)

Notice the gap amplitude �(T ) is
√

2 times larger than the gap
amplitude �0(T ) used in Ref. [12], where the same anisotropic
gap �n is written in the form �2

n = �2
0(1 + 3 cos2 θ ). How-

ever, the function Ft , defined in Eq. (99), is independent of the
particular choice of the gap amplitude; therefore, the analytic
fit (B) suggested in Eq. (34) of Ref. [12], is valid and can be
used in practical computations.

VIII. SUMMARY AND CONCLUSION

In this article I have performed a self-consistent calculation
of the neutrino energy losses due to the PBF processes
in the triplet-correlated neutron matter that is generally
expected to exist in the interior of a neutron star. Because the
existing theory of anomalous weak interactions in the fermion
superfluid is well developed only for the case of 1S0 pairing,

I have generalized the corresponding equations for the triplet
pairing, including the case when the attractive tensor coupling
is operative.

Exact solution of the vertex equations is much complicated
because of anisotropy of the triplet order parameter. Fortu-
nately, only small values of the transferred space momenta are
significant for the considered processes in the nonrelativistic
approximation. Therefore, the weak vertices, as well as the
polarization functions, can be evaluated in the limit q = 0.

Before proceeding to the self-consistent calculation, I
reproduced the neutrino energy losses as obtained in Ref. [12],
using the calculation technique developed in present article.
I have shown that the result of Ref. [12] can be obtained in
the BCS approximation from my Eqs. (42) and (43) if one
removes the field interactions through anomalous vertices.

The exact solution I found for the vector part of the weak
polarization, �00

V (ω > 0, q = 0) = 0, is consistent with the
current conservation condition. This general result, which is
obtained including the tensor couplings and the Fermi-liquid
interactions, means that the neutrino emissivity in the vector
channel, as obtained in Ref. [12], is a subject of inconsistency.

The self-consistent consideration of the axial weak polar-
ization is more complicated. In this case, inclusion of the
tensor forces and the Fermi-liquid effects requires numerical
computations even in the limit of q = 0. Therefore, to obtain
a simple analytic result I have considered the 3P2 pairing in
the state with mj = 0, which is conventionally considered
as the preferable one in the minimal-cooling scenario of
neutron stars. I have also neglected the residual particle-hole
interactions because the Landau parameters are unknown for
the neutron matter at high density.

Finally, I used the self-consistent polarization functions for
evaluation of the neutrino energy losses due to PBF processes
in the 3P2 neutron superfluid with mj = 0. The obtained
self-consistent neutrino emissivity is given by Eq. (96). This
expression needs to be compared to the emissivity (53)
originally derived in Ref. [12], ignoring the anomalous weak
interactions. One can see the neutrino emissivity is strongly
suppressed because of the collective effects I have considered
in this article. The suppression factor is (1/2)C2

A/(C2
V +

2C2
A) � 0.19.
Because the neutron 3P2 pairing occurs in the core, which

contains more than 90% of the neutron star volume, the
found quenching of the neutrino energy losses from the PBF
processes can affect the minimal-cooling paradigm.
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