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Diffraction on nuclei: Effects of nucleon correlations
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The cross sections for a variety of diffractive processes in proton-nucleus scattering, associated with large gaps
in rapidity, are calculated within an improved Glauber-Gribov theory, where the inelastic shadowing corrections
are summed to all orders by employing the dipole representation. The effects of nucleon correlations, leading to a
modification of the nuclear thickness function, are also taken into account. Numerical calculations are performed
for the energies of the Hadron-Electron Ring Accelerator-B experiment, the Relativistic Heavy Ion Collider and
Large Hadron Collider, and for several nuclei. It is found that whereas the Gribov corrections generally make
nuclear matter more transparent, nucleon correlations act in the opposite direction and have important effects in
various diffractive processes.
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I. INTRODUCTION

In hadron-nucleus collisions at high energies, nuclei act
almost like “black” absorbers. Therefore the optical analogy
should be relevant, and diffraction appears to be an important
process. Experimentally, diffraction appears as large-rapidity
gap events, when the debris of the projectile hadron and the nu-
cleus occupy only small rapidity intervals close to the rapidities
of the colliding particles. The optical analogy is employed by
the Glauber theory [1] of hadron-nucleus interactions, which
assumes additivity of the scattering phases on different bound
nucleons. This is a single-channel approximation assuming
that absorption, that is, inelastic interactions, generates via the
unitarity relation only elastic scattering. In reality, diffractive
excitations of hadrons frequently happen, and the Glauber
approach was generalized to a multichannel case by Gribov [2].
The corresponding corrections to the Glauber approximation
are known as inelastic shadowing or Gribov corrections.
Unfortunately, the multichannel problem needs detailed ex-
perimental information, which is mostly unknown. One has to
know all diffractive amplitudes, diagonal and off-diagonal, for
different diffractive excitations of the hadron. Even the lowest
order correction contains an unknown attenuation factor for an
excited state propagating through the nucleus [3].

One can sum up the Gribov corrections to all orders by
switching to the interaction eigenstates [4], which were identi-
fied in Ref. [5] as color dipoles and where the dipole approach
to high-energy collisions was proposed. This phenomenology
needs lesser input, and the key ingredient, the dipole-nucleon
cross section, is flavor-independent and can be studied in
different processes.

This method can be applied also to lepton- or photon-
nucleus collisions [6–8], where leptons and photons dis-

play hadronic properties. A detailed study of the inelastic
shadowing corrections to different diffractive channels in
proton-nucleus collisions was performed, within the dipole
approach, in Refs. [9,10].

Here we are going to enhance the accuracy of the calcu-
lations presented in Ref. [10] by improving the model for
the nuclear wave function. Namely, most of calculations for
nuclear shadowing effects have relied so far on a simplified
model of an uncorrelated single-particle density distribution in
the nucleus. This model, in particular, ignores the well-known
experimental evidence for the existence of a strong repulsion
core between nucleons. Such a repulsion should lead to
short-range NN correlations in the nuclear density function,
which in turn should modify the effective nuclear thickness
function controlling diffractive processes.

The consideration of possible effects from nucleon-nucleon
(NN ) short-range correlations (SRC) appears to be partic-
ularly interesting in view of recent experimental data on
lepton and hadron scattering off nuclei at medium energy,
which provided quantitative evidence on SRC and their
possible effects on dense hadronic matter [11]. Moreover, a
recent calculation of the total neutron-nucleus cross section
at Fermilab energies has indeed shown relevant effects from
SRC even at high energies [12].

II. GLAUBER FORMALISM

The key assumption of the Glauber model is that the hadron-
nucleus partial elastic amplitude at impact parameter b has the
eikonal form [1]

�pA(�b; {�lj , zj }) = 1 −
A∏

k=1

[1 − �pN (�b − �lk)], (1)

0556-2813/2010/81(2)/025204(10) 025204-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.81.025204


M. ALVIOLI et al. PHYSICAL REVIEW C 81, 025204 (2010)

where {�lj , zj } denotes the coordinates of an ith target nucleon;
i�pN is the elastic scattering amplitude on a nucleon, normal-
ized as

σ
pN
tot = 2

∫
d2b Re�pN (b). (2)

Furthermore, one should calculate the matrix element of
the amplitude [Eq. (1)] with the nuclear wave function,
ψ0(�r1, �r2, . . . , �rA) = ψ0({�rj }) ≡ |0〉. Here we introduce new
notations,

GA(�b) = 〈0|�pA(�b; {�lj , zj })|0〉

= 1 − 〈0|
A∏

i=1

GpN (�b − �li)|0〉, (3)

where

GpN (�b − �li) = 1 − �pN (�b − �li). (4)

The main problem in evaluating nuclear effects is therefore the
choice of the nuclear wave function ψ0(1, . . . , A).

A. Single-particle approximation for the nuclear wave function

The most popular model for the square of the nuclear
wave function appearing in the Glauber formalism is the
approximation of single-particle nuclear density,1

|�A(�r1, . . . , �rA)|2 �
A∏

j=1

ρA(�lj , zj ), (5)

where

ρA(�l1, z1) =
∫ A∏

i=2

d3ri |�A({�rj })|2. (6)

Within such an approximation, the matrix element between
the nuclear ground states reads

〈0|�pA(�b; {�lj , zj })|0〉

= 1 −
[

1 − 1

A

∫
d2l�pN (l)

∫ ∞

−∞
dzρA(�b − �l, z)

]A

.

(7)

Correspondingly, the total pA cross section has the form

σ
pA
tot = 2Re

∫
d2b

{
1 −

[
1 − 1

A

∫
d2l�pN (l)TA(�b − �l)

]A
}

≈ 2
∫

d2b ×
{

1 − exp

[
−1

2
σ

pN
tot (1 − iαpN )T h

A (b)

]}
,

(8)

where αpN is the ratio of the real to imaginary parts of the
forward pN elastic amplitude,

T h
A (b) = 2

σ
pN
tot

∫
d2l Re�pN (l)TA(�b − �l), (9)

1We ignore the effect of motion of the center of gravity, assuming
the nucleus to be sufficiently heavy.

and

TA(b) =
∫ ∞

−∞
dz ρA(b, z) (10)

is the nuclear thickness function. We use the Gaussian form of
�pN (l):

Re�pN (l) = σ
pN
tot

4πB
pN

el

exp

(
−l2

2B
pN

el

)
. (11)

Notice that in Eq. (8) and in what follows, we use the
exponential approximation of large A only to simplify and
clarify the formulas. For numerical calculations throughout
the article, we always rely on the exact expressions such as the
first part of Eq. (8).

The Glauber approach is a single-channel model, and
therefore it is unable to consider diffractive excitation of
the proton. However, a part of diffractive excitation of the
nucleus occurs without excitation of the bound nucleons, when
the nucleus just breaks up into free nucleons and nuclear
fragments. Such events, pA → pF , are called quasielastic and
can be calculated within the Glauber approximation. Summing
up the final states of the nucleus |F 〉, applying the condition
of completeness, and extracting the contribution of the ground
state of the nucleus, one gets

σ
pA

qel ≡
∑
F

σ (pA → pF ) − σ
pA

el

=
∑
F

∫
d2b [〈0|�pA(b)|F 〉†〈F |�pA(b)|0〉

− |〈0|�pA(b)|0〉|2]

=
∫

d2b[〈0||�pA(b)|2|0〉 − |〈0|�pA(b)|0〉|2]. (12)

In the first order in nuclear density, the first term in this
expression, 〈0||�pA(b)|2|0〉, contains, besides the usual linear
term [Eq. (9)], the quadratic term

∫
d2sTA(�b − �l)[�pN (l)]2 =

T h
A (b)σpN

el . Both terms together result in the exponent
σ

pN
in TA(b). Then the quasielastic cross section gets the form

σ
pA

qel (pA → pA∗)

=
∫

d2b
{
exp

[−σpN
in T h

A (b)
] − exp

[−σ
pN
tot T h

A (b)
]}

.

(13)

B. Nucleon correlations

Equation (5) represents only the lowest order term of the
square of the full nuclear wave function |ψ0|2. As a matter
of fact, the latter can be written as an expansion in terms of
density matrices [1,13], as follows:

|ψo(�r1, . . . , �rA)|2 =
A∏

j=1

ρ1(�rj ) +
∑
i<j

�(�ri, �rj )
∏
k 
=i,j

ρ1(�rk)

+
∑

(i<j )
=(k<l)

�(�ri, �rj )�(�rk, �rl)

×
∏

m
=i,j,k,l

ρ1(�rm) + · · · , (14)
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in which the single-particle density ρ1(�ri) is (e.g. i = 1)

ρ1(�r1) =
∫

|ψo(�r1, �r2, . . . , �rA)|2
A∏

i=2

d3ri (15)

and the two-body contraction � is

�(�ri, �rj ) = ρ2(�ri, �rj ) − ρ1(�ri)ρ1(�rj ). (16)

The two-body density matrix

ρ2(�r1, �r2) =
∫

|ψo(�r1, �r2, . . . , �rA)|2
A∏

i=3

d3ri (17)

satisfies the sequential condition∫
d3rjρ2(�ri, �rj ) = ρ1(�ri), (18)

which leads to the basic property of the two-body contraction:∫
d3rj�(�ri, �rj ) = 0. (19)

Notice that the single-particle density appearing in Eq. (14)
is normalized to 1 so that the densities defined by Eq. (6)
and Eq. (15) are simply related by ρA(�r) = Aρ1(�r). It should
be stressed that in Eq. (14), only unlinked contractions
have to be considered, and that the higher order terms, not
explicitly displayed, include unlinked products of 3, 4, and
so on, two-body contractions, representing contributions to
two-nucleon correlations, and unlinked products of three-body,
four-body, and so on, contractions, describing three-nucleon,
four-nucleon, and so on, correlations. We will give now a short
derivation of the total cross section, including two-nucleon
correlations (more details will be given elsewhere [14]). Taking
into account all terms of the expansion [Eq. (14)] containing all
possible numbers of unlinked two-body contractions, Eq. (3)
can be written in the following form, which yields the usual
Glauber profile when � = 0 [12,14]:

GA(b) ≡
∫ A∏

k=1

d3rk|ψo(1 · · · A)|2
A∏

i=1

GpN (�b − �li)

=
∫ A∏

k=1

d3rkρ1(�rk)GpN (�b − �lk)

+
∑
i<j

∫ A∏
k=1

d3rk�(�ri, �rj )
A∏

l 
=i,j

ρ1(�rl)G
pN (�b − �lk)

+
∑

i<j 
=p<l

∫ A∏
k=1

d3rk�(�ri, �rj )�(�rp, �rl)

×
A∏

m
=i,j,p,l

ρ1(�rm)GpN (�b − �lk) + · · ·

= G
(0)
A (�b) + G

(1)
A (�b) + G

(2)
A (�b) + · · · , (20)

where the superscript denotes the number of two-body contrac-
tions in the given term, each term containing Glauber profiles
to all orders. For each nucleus, we have considered all terms

of the series of Eq. (20), the first term, corresponding to the
single-particle approximation of Eq. (5), being

G
(0)
A (b) =

∫ A∏
k=1

d3rkρ1(�rk)GpN (�b − �lk)

=
[

1 − 1

A

∫
d3r1ρA(�r1)�pN (�b − �l1)

]A

, (21)

and the nth term being

G
(n)
A (b) = A!

2nn!(A − 2n)!
Xn(b)YA−2n(b), (22)

where

X(b) =
∫

d3r1d
3r2�(�r1, �r2)�pN (�b − �l1)�pN (�b − �l2) (23)

and

Y (b) =
[

1 − 1

A

∫
d3r1ρA(�r1)�pN (�b − �b1)

]
, (24)

resulting from the basic properties of the two-body contraction:∫
d3ri,j�(�ri, �rj ) = 0 and∫

d3r1d
3r2�(�r1, �r2)GpN (�b − �l1)GpN (�b − �l2)

=
∫

d3r1d
3r2�(�r1, �r2)�pN (�b − �l1)�pN (�b − �l2). (25)

Equation (20) can now be written as follows:

GA(b) =
A/2∑
n=0

A!Xn(b)[Y (b)]A−2n

2nn!(A − 2n)!
−→
A�1

[Y (b)]A

×
∞∑

n=0

A2nXn(b)

2nn!
= [Y (b)]Ae

A2

2 X(b). (26)

Using, for ease of presentation, the optical limit
approximation

[Y (b)]A =
[

1 − 1

A

∫
d3r1ρ1(�r1)�pN (�b − �l1)

]A

= e− ∫
d3r1ρA(�r1)�(�b−�l1), (27)

the insertion of Eq. (27) into Eq. (26) leads to the final result:

GA(b) � 1 − exp

[
−

∫
d3r1ρA(�r1)�(�b − �l1)

+ 1

2

∫
d3r1d

3r2�A(�r1, �r2)�(�b − �l1)�(�b − �l2)

]
= 1 − exp

[
−1

2
σ

pN
tot T̃ h

A (b)

]
, (28)

where

�A(�r1, �r2) = ρ
(2)
A (�r1, �r2) − ρA(�r1)ρA(�r2), (29)

which obviously differs from Eq. (16) simply by a factorA2,
and

T̃ h
A (b) = T h

A (b) − �T h
A (b), (30)
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FIG. 1. Nuclear thickness function T h
A (b) and the correction

owing to NN correlations, �T h
A (b), calculated at the energy of

HERA-B for (top) carbon and (bottom) lead.

with T h
A (b) given by Eq. (9) and

�T h
A (b) = (1 − iαpN )

σ
pN
tot

∫
d2l1d

2l2�
⊥
A(�l1, �l2)

× Re�pN (�b − �l1) Re�pN (�b − �l2), (31)

where

�⊥
A(�l1, �l2) =

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2�A(�r1, �r2) (32)

is the transverse two-nucleon contraction. It can be
seen that the inclusion of NN correlations in nuclei
leads to a modification of the nuclear thickness function
T h

A (b) ⇒ T̃ h
A (b). Owing to its general structure and the basic

property
∫

d3r1,2�A(�r1, �r2) = 0, the sign of the contraction
is mostly negative, with a small positive contribution at large
separations. In Fig. 1, we present T h

A (b) and �T h
A (b) for 12C

and 208Pb. We see that �T h
A (b) is indeed mostly negative, so

according to the definition of Eq. (30), correlations increase
the nuclear thickness function and make the nuclear medium
more opaque [12]. At the same time, the corrections are
small, �T h

A (b) � T h
A (b), and the effects from higher order

correlations, estimated in Ref. [12], can safely be disregarded.
A short description of the way in which the one- and two-

body densities and contractions have been calculated is now in
order. Following Ref. [12], the two-body density has been ob-
tained from the fully correlated wave function of Refs. [15,16],
ψ0 = F̂ φ0, where F̂ = ∏

i<j [
∑8

k=1 fk(rij )Ôk(ij )] is a cor-
relation operator generated by the realistic Argonne V 8′
interaction [17] and φ0 is a mean-field shell-model wave
function composed of Woods-Saxon single-particle orbitals.
The preceding wave function largely differs from the Jastrow
one, featuring only central correlations, because the operator
F̂ generates central (Ô1 = 1), spin [Ô2(ij ) = �σi · �σj ], isospin
[Ô3(ij ) = �τi · �τj ], spin-isospin [Ô4(ij ) = (�σi · �σj )(�τ i · �τj )],
tensor [Ô5(ij ) = �Sij ], tensor-isospin [Ô6(ij ) = �Sij (�τi · �τj )],
and so on, correlations. The two-body density and contraction
therefore reflect not only the short-range repulsion but also
the spin-isospin dependence of the interaction, particularly

that generated by the tensor force. The parameters of both
the single-particle wave functions and the various correlation
functions have been fixed from the ground-state energy calcu-
lation so that no free parameters are present in our approach.

The contraction �(�r1, �r2) resulting from our calculation
exactly satisfies the sum rule

∫
d3r1�( �r1, �r2) = 0 because the

one-body density ρ1(�r1) exactly results from the integration of
ρ2(�r1, �r2). Notice, moreover, that our one-body point density
and radii are in agreement with electron scattering data [18].
We have also investigated the validity of the approximation
in which the nuclear matter two-body density ρ2(�r1, �r2) =
ρ1(�r1)ρ1(�r2)g(|�r1 − �r2|) is used for finite nuclei, finding that
it leads to a strong violation of the sequential relation∫

d3rρ2(�r1, �r2) = ρ1(�r1) for nuclei with A < 208. Thus, when
such an approximation is used to introduce correlations in
light- and medium-weight nuclei, a mismatch between the
one-body density (usually taken from the experimental data)
and the two-body density is generated.

Using the nuclear thickness function, which includes the
effects of correlations [Eq. (30)], the total cross section
[Eq. (8)] acquires a correction, σ

pA
tot ⇒ σ

pA
tot + �σ

pA
tot , which

is positive and can be approximated as

�σ
pA
tot ≈ −σ

pN
tot

∫
d2b�T h

A (b) exp

[
−1

2
σ

pN
tot T h

A (b)

]
, (33)

which is also positive because �T h
A (b) is itself negative.

We see that this correction to the total cross section comes
mainly from peripheral collisions and rises with A rather
slowly, as A1/3. Notice that the accuracy of the optical (ex-
ponential) approximation in Eq. (8) is quite good, ∼10−3 for
heavy nuclei, but it gets worse with decreasing A, and therefore
for numerical calculations, as was already mentioned, we rely
on the exact Glauber expressions throughout the article. In
what follows, we neglect the real part of the elastic amplitude,
which gives quite a small correction, ∼ρ2

pp/A
2/3, and which

otherwise can be easily implemented.
The simplest process with a large rapidity gap (LRG) is

elastic scattering. It is worth noting, however, that this channel
is enhanced by absorptive corrections, whereas other LRG
processes considered later are suppressed by these corrections.

The elastic cross section according to Eq. (7) reads

σ
pA

el =
∫

d2b

∣∣∣∣1 − exp

[
−1

2
σ

pN
tot T̃ h

A (b)

]∣∣∣∣2

, (34)

where T̃ h
A (b) is given by Eq. (30).

The quasielastic cross section also gets modifications
compared to the Glauber expression [Eq. (13)]. The nucleon
correlations show up in the second order in nuclear density,
leading to an additional term proportional to (σpN

in )2�T h
A (b).

Thus the cross section of quasielastic proton-nucleus scatter-
ing, pA → pA∗, gets the form

σ
pA

qel =
∫

d2b

{
exp

[
−σpN

in T h
A (b) −

(
σ

pN
in

)2

σ
pN
tot

�T h
A (b)

]

− exp
[−σ

pN
tot

(
T h

A (b) + �T h
A (b)

)]}
. (35)
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Notice that in deriving this expression, we implicitly used the
assumption that the impact parameter dependence of powers
of the amplitude �pN (s) does not depend on the power.
Although this is certainly not correct, the approximation is
rather accurate as far as the NN interaction radius is much
smaller than the size of the nucleus. Nevertheless, we used
this approximation only for the sake of clarity and simplicity.
For numerical calculations, we use the more complicated but
exact analog of Eq. (35).

III. GRIBOV CORRECTIONS VIA LIGHT-CONE DIPOLES

The dipole representation for the amplitude of hadronic
interactions allows us to sum the Gribov inelastic corrections
to all orders. We assume the collision energy to be high enough
to keep the dipole size “frozen” by Lorentz time dilation during
propagation through the nucleus. In this limit, the calculations
are much simplified.

The key ingredients of the approach are the universal dipole-
nucleon cross section and the light-cone wave function of the
projectile hadron [5]. Several different models were tested in
Ref. [10] by comparing with data on proton diffraction. Here
we select two models that describe diffraction quite well. Both
employ the saturated shape of the dipole cross section and
differ only by modeling the proton wave function.

In the limit of soft interactions, the Bjorken x is no longer a
proper variable, and the dipole cross section should depend on
energy. We rely on the model proposed in Ref. [19] and fitted
to data:

σq̄q(rT , s) = σ0(s)

[
1 − exp

(
− r2

T

R2
0(s)

)]
, (36)

where R0(s) = 0.88 fm (s0/s)0.14 and s0 = 1000 GeV2 [19].
The energy-dependent factor σ0(s) is defined as

σ0(s) = σ
πp
tot (s)

(
1 + 3R2

0(s)

8
〈
r2

ch

〉
π

)
, (37)

where 〈r2
ch〉π = 0.44 ± 0.01 fm2 [20] is the mean square of

the pion charge radius. This dipole cross section is normalized
to reproduce the pion-proton total cross section, 〈σq̄q〉π =
σ

πp
tot (s).

For the proton wave function, we employ two models.

A. q − 2q model

There is much evidence (although none looks decisive) for
a strong paring of the u and d valence quarks into a small-
size scalar-isoscalar diquark [21–23]. Neglecting the diquark
radius, we arrive at a meson-type color dipole structure of the
proton:

|�N (�r1, �r2, �r3)|2 = 2

πR2
p

exp

(
−2r2

T

R2
p

)
, (38)

where �ri are the interquark transverse distances, �r3 = 0, �rT =
�r1 = �r2, and Rp is related to the mean charge radius squared of
the proton as R2

p = 16
3 〈r2

ch〉p. The dipole wave function squared

[Eq. (38)] convoluted with the dipole cross section [Eq. (36)]
gives the proton-proton total cross section.

In this model, the effect of the Gribov corrections in all
orders is equivalent to the replacement of the Glauber formula
[Eq. (8)] by

σ
pA
tot = 2

∫
d2b

∫ 1

0
dα

∫
d2rT |�N (rT , α)|2

× [
1 − e− 1

2 σq̄q (rT ,s)T q̄q

A (b,rT ,α)]
≡ 2

∫
d2b

[
1 − 〈

e− 1
2 σq̄q (rT ,s)T q̄q

A (b,rT ,α)〉]. (39)

Here we consider a q̄q (or qq-q) dipole of transverse separa-
tion �rT and fractional light-cone momenta α and 1 − α of the
constituents. The integration over these variables weighted by
the hadron wave function squared is denoted as averaging. The
new notation, T

q̄q

A (b, rT , α), is

T
q̄q

A (b, rT , α) = 2

σq̄q(rT )

∫
d2l Re�q̄qN (�l, �rT , α)TA(�b − �l).

(40)

The partial dipole-nucleon elastic amplitude Re�q̄qN (�l, rT , α),
corresponding to the dipole cross section of Eq. (36), was
derived recently in Refs. [24–26]:

Re �q̄qN (�l, �rT , α) = σ0(s)

8πB(s)

{
exp

[
− [�l + �rT (1 − α)]2

2B(s)

]

+ exp

[
− (�l − �rT α)2

2B(s)

]
− 2 exp

[
− r2

T

R2
0(s)

− [�l + (1/2 − α)�rT ]2

2B(s)

]}
, (41)

where B(s) = B
pN

el (s) − 1
3 〈r2

ch〉p − 1/8R2
0(s). It is easy to

check that this partial amplitude correctly reproduces the
dipole-nucleon cross section [Eq. (36)],

σq̄q(rT , s) = 2
∫

d2l Re�q̄qN (�l, �rT , α), (42)

and the slope of the differential elastic pN scattering,

B
pN

el (s) = 1

σ
pN
tot

∫
d2ll2〈Re�q̄qN (�l, �rT , α)〉. (43)

These properties of the partial amplitude lead to the
following relations, with the analogous functions defined
previously within the Glauber model:

σ
pN
tot = 〈σq̄q(rT )〉, (44)

Re�pN (l) = 〈Re�q̄qN (�l, �rT , α)〉, (45)

T h
A (b) = 1

σ
pN
tot

〈σq̄q(rT )T q̄q

A (b, rT , α)〉. (46)

Thus the difference between the Glauber formula [Eq. (8)] and
the exact expression [Eq. (39)] is in how the averaging over rT

and α is done: In the former case, the averaging is done in the
exponent, whereas in the latter case, the whole exponential is
averaged.
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Notice that T
q̄q

A (b, rT , α) in the exponent in Eq. (39) can
be replaced by T h

A (b) with high precision. Indeed, at small
r2
T � R2

0(s), the partial amplitude [Eq. (41)] vanishes as
Re�q̄qN (�l, �rT , α) ∝ r2

T . This rT dependence cancels in Eq. (40)
with the same behavior of σq̄q(rT ) in the denominator. Thus
T

q̄q

A (b, rT , α) is independent of rT in this limit. In the opposite
limit of large r2

T � R2
0(s), the last term in Eq. (39) vanishes,

and the amplitude integrated over d2l becomes a constant.
Moreover, the denominator of Eq. (40) is independent of rT

in this limit. Thus one can neglect the slow rT dependence of
T

q̄q

A (b, rT , α) in Eq. (46) in comparison with the fast-varying
function σq̄q(rT ), which is equivalent to the replacement
T

q̄q

A (b, rT , α) ⇒ T h
A (b). We rely on this approximation in

Eq. (39) and in what follows.
Thus, for the total p-A cross section, we recover the

standard expression [5,10]

σ
pA
tot = 2

∫
d2b

∫
d2rT |�N (rT )|2

× {
1 − exp

[− 1
2σq̄q(rT , s)T h

A (b)
]}

. (47)

B. 3q model

Another extreme is to assume no pairing forces and a
symmetric valence quark wave function:

|�N (�r1, �r2, �r3)|2 = 3(
πR2

p

)2 δ(�r1 + �r2 + �r3)

× exp

(
− r2

1 + r2
2 + r2

3

R2
p

)
. (48)

Here the mean interquark separation squared is 〈�r2
i 〉 =

2/3R2
p = 2〈r2

ch〉p. In this case, one needs a cross section for a
three-quark dipole, σ3q(�r1, �r2, �r3), where �ri are the transverse
quark separation, with the condition �r1 + �r2 + �r3 = 0. To
avoid the introduction of a new unknown phenomenological
quantity, we express the three-body dipole cross section via
the conventional dipole cross section σq̄q [9,10]:

σ3q(�r1, �r2, �r3) = 1
2 [σq̄q(r1) + σq̄q(r2) + σq̄q(r3)]. (49)

This form satisfies the limiting conditions, namely, turning into
σq̄q(r) if one of three separations is zero. It is also confirmed
well by perturbative calculations [27].

In this model, the Gribov corrections modify the Glauber
expression [Eq. (8)] as

σ
pA
tot = 2

∫
d2b

∫
d2r1d

2r2d
2r3|�N (ri)|2

×
{

1 − exp

[
−1

2
σ3q(ri, s)T h

A (b)

]}
. (50)

IV. GRIBOV CORRECTIONS TO THE EFFECT
OF N N CORRELATIONS

Nucleon correlations lead to further modifications of the
exponent in Eq. (39), which correspond to the replacement

T
q̄q

A (b, rT , α) ⇒ T
q̄q

A (b, rT , α) + �T
q̄q

A (b), where

�T
q̄q

A (b, rT , α) = 1

σq̄q(rT )

∫
d2l1d

2l2�
⊥
A(�l1, �l2)

× Re �q̄q(�b − �l1, rT, α)Re �q̄q(�b − �l2, rT, α).

(51)

Changing the integration variables d2l1d
2l2 ⇒ d2Ld2δ, where

�L = (�l1 + �l2)/2,
(52)�δ = �l1 − �l2,

one has, correspondingly, �⊥
A(�l1, �l2) ⇒ �⊥

A( �L, �δ). This func-
tion is rather smooth and varies over distances much longer
than the interaction radius. Therefore we can take it out of the
integral in Eq. (51), fixing it at �L = �b. Then, using the partial
amplitude [Eq. (41)], one can perform the integration over d2L

in Eq. (51) and then average over rT and α. The result is∫
d2L〈Re �q̄q(�l1, rT , α)Re �q̄q(�l2, rT , α)〉

= [
σ

pN

el + σ
pN

sd

]
exp

[
− δ2

4B(s) + R2
0(s)/2

]
. (53)

Here σ
pN

sd is the single-diffraction cross section, pN → XN ,
and the relation [5,10,28]∫

d2L〈[Re �q̄q( �L, rT , α)]2〉 = σ
pN

el + σ
pN

sd (54)

has been used. Data show that at high energies, this cross
section is nearly constant and is about σ

pN

sd ≈ 4 mb, the value
we use in what follows.

Notice that data for single diffraction also include the
contribution from the triple-Pomeron term, which corresponds
to diffractive gluon radiation. This term has not been included
so far in our calculations, which correspond only to diffractive
excitation of the valence quark skeleton of the proton (see
Ref. [10]). However, the higher Fock components of the
light-cone wave function of the proton should be also added,
which effectively incorporate this contribution by using the
total single-diffraction cross section.

Equation (53) turns into the Glauber model relation Eq. (31)
if the diffraction term is removed and the denominator of
the exponent is replaced by 4B

pN

el . Eventually, the correction
related to the nucleon correlations to the nuclear thickness
function, convoluted with the dipole cross section, takes the
form

IA(b) = 〈σq̄q(rT )�T
q̄q

A (b, rT , α)〉 = [
σ

pN

el + σ
pN

sd

]
×

∫
d2δ exp

[
− δ2

4B(s) + R2
0(s)/2

]
�⊥

A(�δ, b).

(55)

The quantity IA(b) is shown in Fig. 2 for both 12C and 208Pb.
Because �TA is small and its higher orders are negligible,

there is no difference between averaging of the exponential
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FIG. 2. The integral of Eq. (55) for (top) carbon and (bottom)
lead, calculated at HERA-B (dotted lines), RHIC (solid lines), and
LHC (dashed lines) energies.

and its exponent. Therefore the result [Eq. (55)] accounts for
all inelastic shadowing effects in NN correlations. Then the
total cross section reads

σ
pA
tot = 2

∫
d2b

{
1 − e

1
2 IA(b)

〈
e− 1

2 σdipT
h
A (b)

〉}
. (56)

Here we use notation that unifies the two models under
consideration; σdip is the dipole cross section, and averaging
corresponds to integration over the light-cone momenta of the
quarks, weighted with the proton wave function squared.

The results of the calculation of the total, elastic, and
quasielastic cross sections for several nuclei and Hadron-
Electron Ring Accelerator (HERA)-B, Relativistic Heavy
Ion Collider (RHIC), and Large Hadron Collider (LHC)
energies, obtained within the Glauber approach including NN

correlations, are presented in Tables I, II, and III, respectively.
In our calculations, nuclear densities that give the correct

nuclear rms radius have been adopted, and this is a reason
for some differences compared to the results of Ref. [10] in
the case of Glauber calculations. The parameters for the total
nucleon-nucleon cross section and the slope of the Glauber
profiles have been obtained as in Ref. [10]

V. DIFFRACTIVE EXCITATION OF THE PROTON
IN pA COLLISIONS

Whereas the Glauber model, which is a single-channel
approximation, cannot go beyond elastic scattering, the dipole
approach treats diagonal and off-diagonal diffractive channels
on the same footing. Although the calculation of exclusive
channels of diffractive excitation needs knowledge of the light-
cone wave function of the final state (e.g., see Refs. [29,30]),
the total cross section of diffractive excitation summed over
final states is easier to obtain because one can employ
completeness.

Following the standard classification of diffractive channels
in terms of the triple Regge approach [31], one can consider
diffractive excitation of the valence quark system, which
corresponds to the Pomeron-Pomeron-Reggeon (IP IP IR)

TABLE I. HERA-B.

Glauber Glauber q-2q model 3q model
+ SRC + SRC + SRC

12C
σtot 353.71 364.11 344.16 349.37
σel 86.90 92.96 82.39 85.42
σsd – – 5.43 2.40
σsd+g – – 0.07 0.06
σqe 22.85 19.62 21.12 22.05
σqsd – – 1.94 0.84
σtsd – – 12.47 12.92
σdd – – 0.61 0.26
27Al
σtot 697.32 714.35 675.93 688.08
σel 201.02 212.26 188.22 196.28
σsd – – 10.82 4.56
σsd+g – – 0.12 0.11
σqe 36.39 31.75 33.24 34.86
σqsd – – 2.92 1.23
σtsd – – 19.47 20.42
σdd – – 0.91 0.38
48Ti
σtot 1113.52 1135.53 1074.67 1095.93
σel 353.89 369.77 327.78 342.93
σsd – – 16.86 6.86
σsd+g – – 0.17 0.16
σqe 48.73 42.82 44.57 46.86
σqsd – – 3.85 1.61
σtsd – – 26.11 27.45
σdd – – 1.20 0.50
184W
σtot 2972.02 2986.46 2688.09 2747.66
σel 1174.09 1187.18 1025.16 1074.48
σsd – – 32.27 11.75
σsd+g – – 0.28 0.23
σqe 67.04 58.35 57.60 60.89
σqsd – – 4.92 2.04
σtsd – – 33.74 35.66
σdd – – 1.54 0.64
197Au
σtot 2976.26 2989.94 2859.84 2920.75
σel 1193.54 1206.10 1100.54 1150.99
σsd – – 32.55 11.95
σsd+g – – 0.29 0.24
σqe 62.94 54.69 61.15 64.53
σqsd – – 5.31 2.22
σtsd – – 35.82 37.80
σdd – – 1.66 0.69
208Pb
σtot 3052.11 3117.62 2955.57 3018.21
σel 1243.00 1274.60 1147.01 1199.14
σsd – – 32.88 12.02
σsd+g – – 0.29 0.24
σqe 62.55 54.11 61.01 64.39
σqsd – – 5.31 2.21
σtsd – – 35.73 37.71
σdd – – 1.66 0.69

025204-7



M. ALVIOLI et al. PHYSICAL REVIEW C 81, 025204 (2010)

TABLE II. RHIC.

Glauber Glauber q-2q model 3q model
+ SRC + SRC + SRC

12C
σtot 413.71 425.73 406.90 410.20
σel 112.13 119.68 109.16 111.29
σsd – – 3.13 1.20
σsd+g – – 0.31 0.30
σqe 26.40 23.09 26.13 26.72
σqsd – – 0.95 0.29
σtsd – – 10.90 11.14
σdd – – 0.95 0.29
208Pb
σtot 3297.56 3337.57 3228.11 3262.58
σel 1368.36 1398.08 1314.04 1343.76
σsd – – 16.78 5.03
σsd+g – – 1.06 0.98
σqe 66.06 58.47 71.99 73.92
σqsd – – 2.39 0.56
σtsd – – 30.03 30.83
σdd – – 2.39 0.56

term, and diffractive gluon radiation, corresponding to
the triple-Pomeron term (IP IP IP ). The former mostly
contributes to small mass excitations, dσ/dM2

X ∝ 1/M3
X,

whereas the latter is responsible for the large mass tail,
dσ/dM2

X ∝ 1/M2
X, where MX is the invariant mass of the

produced system, pp → Xp.

A. Coherent excitation of the projectile valence quark system

The cross section of coherent single diffraction on a
nucleus, caused by excitation of the valence quark skeleton

TABLE III. LHC.

Glauber Glauber q-2q model 3q model
+ SRC + SRC + SRC

12C
σtot 598.79 613.68 591.05 592.12
σel 198.11 208.59 194.84 195.65
σsd – – 0.74 0.20
σsd+g – – 2.58 2.56
σqe 49.10 45.42 45.03 45.22
σqsd – – −0.66 −0.86
σtsd – – 6.97 7.00
σdd – – −0.66 −0.86
208Pb
σtot 3850.63 3885.77 3833.26 3839.26
σel 1664.76 1690.48 1655.70 1660.67
σsd – – 2.62 0.59
σsd+g – – 2.58 2.56
σqe 120.92 112.65 113.37 113.88
σqsd – – −2.08 −2.62
σtsd – – 17.55 17.63
σdd – – −2.08 −2.62

without gluon radiation, is given as usual by the dispersion
of the distribution of eigen elastic amplitudes, where the
eigenstates are the dipoles [5,28]:

σsd(pA → XA)IP IP IR

=
∫

d2beIA(b)
[〈
e−σdipT

h
A (b)

〉 − 〈
e− 1

2 σdipT
h
A (b)

〉2]
, (57)

where IA(b) is given by Eq. (55). Dependent on the model,
the dipole cross section here has the form of either Eq. (36)
or Eq. (49), and the averaging is weighed by the wave
function squared having the form of either Eq. (38) or
Eq. (48).

Although Gribov corrections to the total cross section
are known to be small, well within 10% [32,33], this is
because they affect only the second exponential term in
Eq. (8), which is small. However, this term itself is modified
significantly by the inelastic shadowing corrections. Therefore
one should expect a considerable increase of both terms
in Eq. (57) owing to inelastic corrections, which make the
nuclear medium considerably more transparent compared to
the Glauber model [5]. Nevertheless, both terms are small
for heavy nuclei and suppress diffraction everywhere, except
at the nuclear periphery. Thus the cross section of single
diffraction should rise as A1/3, with a coefficient that is
sensitive to the inelastic shadowing corrections and NN

correlations.
The details of the calculations with both models under

consideration can be found in Ref. [10]. The numerical results
for several nuclei and energies are presented in Tables I, II,
and III.

B. Coherent diffractive gluon radiation

Diffractive gluon radiation also contributes to the single-
diffractive process pA → XA. Correspondingly, the single-
diffraction cross section [Eq. (57)] must be corrected for
this excitation channel. The cross section of coherent gluon
radiation on a nucleus is given by [19]

σsd(pA → XA)3IP

= 3

4π
ln

[
s(1 − x0)

M2
0

] ∫
d2beIA(b)〈e− 1

2 σdipT
h
A 〉2

×
∫

d2rT |�qG(�rT )|2
(

1 − exp

{
− 9

16

[
σq̄q(rT , s)

× T h
A (b) − 9

8
IA(b)

]})2

. (58)

Here M2
0 = 5 GeV2 is the minimal effective mass squared of

the proton excitation and x0 = 0.85 is the minimal value of
Feynman x, which can be treated as being in the domain of the
triple-Regge kinematics [31].

The first factor in Eq. (58) accounts for the absorptive
corrections, which arise from the lack of initial-final state
interaction of the valence quarks propagating through the
nucleus. Further details about the calculations can be found in
Ref. [10]. The numerical results for several nuclei and energies
are presented in Tables I, II, and III.
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VI. QUASIELASTIC SCATTERING WITH AND WITHOUT
EXCITATION OF THE PROJECTILE

In the cases when either the beam proton (pA → XA) or the
nucleus (pA → pA∗) or both (pA → XA∗) are diffractively
excited, one can make use of completeness, which substan-
tially simplifies the calculations. As was already mentioned,
the important condition for the nucleus is that it decays into
nuclear fragments with no new particle produced. The dipole
formalism for these processes was developed in Ref. [10]. Here
we rely on those results and introduce corrections related to
NN correlations.

The simplest processes are double-excitation pA → XA∗,
where X includes the ground-state proton, as well as quasid-
iffraction, with all diffractive excitation of its valence quark
system (without gluon radiation) and breakup of the nucleus.
All channels of coherent interactions that leave the nucleus
intact should be subtracted:

σqel(pA → pA∗) + σqsd(pA → XA∗)

=
∫

d2b
〈
e−σdipT

h
A (b)

{
eĨA(b)e

σ2
dipT h

A
(b)

16πBel − eIA(b)
}〉

=
∫

d2b
∑
k=0

1

k!

[
T h

A (b)

16πBel

]k

[eĨA(b) − eIA(b)δk0]

× ∂2k

∂
(
T h

A

)2k

〈
e−σdipT

h
A (b)

〉
. (59)

Here, besides the function IA(b) defined in Eq. (55), we
introduce a new one:

ĨA(b)

=
∫

d2l1d
2l2�

⊥
A(�l1, �l2)〈[2Re�q̄q(�l1, �rT , α)

− (Re �q̄q(�l1, �rT , α))2][2 Re �q̄q(�l2, �rT , α)

− (Re �q̄q(�l2, �rT , α))2]〉 ≈
[
σ

pN
tot − σ

pN

el − σ
pN

sd

σ
pN
tot

]2

IA(b).

(60)

To simplify the calculations, we neglect here the difference
in the slopes of powers of the partial amplitude. This
is a second-order correction, that is, a correction to a
correction.

One can single out in Eq. (59) the quasielastic chan-
nel. For that purpose, one should average over the dipole
sizes separately for both the incoming and outgoing
protons:

σ
pA

qel =
∫

d2b
〈〈
e− 1

2 σ
(1)
dipT h

A (b)e− 1
2 σ

(2)
dipT h

A (b)

× [
eĨA(b)e

1
16πBel

σ
(1)
dipσ

(2)
dipT h

A (b) − eIA(b)
]〉

1

〉
2

=
∫

d2b
∑
k=0

1

k!

[
T h

A (b)

4πBel

]k

[eĨA(b) − eIA(b)δk0]

×
{

∂k

∂
(
T h

A

)k

〈
e− 1

2 σdipT
h
A (b)

〉}2

. (61)

This is a fast-converging series because of the smallness
of the elastic cross section. We control the accuracy to be
within 1%.

Subtracting Eq. (61) from Eq. (59), one can get the
quasidiffractive cross section, which includes the proton
excitations without gluon radiation. To include gluon radiation,
we use the same prescription as in Eq. (54), replacing the
IP IP IR term, [σpp

sd ]IP IP IR , by the total single-diffraction cross
section.

In the case of nuclear breakup, the recoil-bound nucleon
can also be diffractively excited. We relate the cross sections
for such channels to the previously calculated quasielas-
tic and quasidiffractive processes, in the same way as in
Ref. [10].

VII. GLUON SHADOWING

In terms of the parton model, gluon shadowing is interpreted
in the nuclear infinite momentum frame as a result of fusion of
gluons originating from different bound nucleons. This process
leads to a reduction of the gluon density in the nucleus at small
x. The ultimate form of gluon shadowing is gluon saturation
[34].

In terms of the dipole approach, gluon shadowing is
described as Glauber shadowing for higher Fock states
containing gluons [19]. The effect turns out to be rather weak
because of the shortness of the quark-gluon and gluon-gluon
correlation radius, an observation that is supported by much
experimental evidence [35,36]. For this reason, we neglect the
small effects of nucleon correlations in the calculation of gluon
shadowing and use the results of Ref. [10].

VIII. CONCLUSIONS

In this article, we further developed the dipole approach of
Refs. [5,9,10] to the calculation of Gribov inelastic corrections.
We employed two models for the proton wave function,
which result in reasonable diffractive cross sections for pp

collisions. Here we increased the accuracy of the calculation
of the cross sections of different diffractive processes on
nuclei by improving the model for the nuclear wave function.
Namely, we went beyond the popular single-particle density
approximation and introduced corrections for nucleon-nucleon
correlations, which lead to sizable effects, modifying the
effective nuclear thickness function [12]. While inelastic shad-
owing corrections make the nuclear medium more transparent
for colorless hadrons, the nucleon short-range correlations
work in the opposite direction, making the medium more
opaque. The influence of both effects on different diffractive
channels varies. Effects are especially large for quasielastic
and quasi-single-diffractive processes associated with the
survival probability of colorless hadrons propagating through
a nuclear medium. Notice that for heavy nuclei, the effect of
correlations is sometimes smaller than the uncertainty brought
by poor knowledge of the proton structure. This allows us
to gain new information about the proton wave function,
provided that precise data for nuclear cross sections will be
available.
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