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Investigating the gluonic structure of nuclei via J/ψ scattering
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We propose to investigate the properties of nuclear matter by measuring the elastic scattering of J/ψ on
nuclei with a high precision. J/ψ mesons are produced from photons emitted in high-energy electron-proton or
electron-nucleus scattering in the low-x region. Their scattering on nucleons or nuclei is predominantly mediated
by gluonic forces. The measurement could be performed at the future ENC, EIC, or LHeC facility.
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I. INTRODUCTION

One of the main reasons why, after almost 80 years of
investigations of nuclear structure, some of the basic properties
are so poorly understood is the lack of proper tools to view
inside nuclei. In the past, the most direct information about
nuclear structure was obtained by scattering electron beams
off nuclei. The electron is a very good probe because it
penetrates into the nuclear interior without being absorbed.
Unfortunately, electrons can only see the electric charge
distributions. They are not sensitive to the distribution of strong
fields that keep nuclei together. Another important source of
information comes from the scattering of low-energy protons
on nuclei. Protons sense the full matter distribution but they
are themselves complicated objects whose interactions with
matter are not very well known. Our understanding of strong
interactions is currently only robust at distances much smaller
than the proton size, where perturbative QCD is applicable.
Although lattice gauge theory has firmly established that QCD
is the correct theory of strong interactions at large distances,
its applications to hadronic interactions are only now being
developed [1–3].

In recent years the Hadron-Electron Ring Accelerator
(HERA) has shown that, in deep inelastic electron-proton
scattering at low x, up to 20% of events are of diffractive
origin.1 This is comparable to the rate of elastic reactions in
hadron-hadron scattering at high energy. In hadronic reactions
the rate of elastic and inelastic events is connected by the
optical theorem. Before HERA, the optical theorem was
not expected to play any role in electron-proton scattering
because the elastic ep component is miniscule. The abundance
of diffractive (i.e., quasielastic) processes seen at HERA
therefore indicates that some intermediate states have to be
formed to which the optical theorem can be applied. The
theoretical framework that naturally describes the formation
of such intermediate states is the dipole picture. Dipoles are
small quark-antiquark pairs that interact by color exchange.
In contrast to hadron scattering, where the projectiles are
complicated, color dipoles are simple objects. Their creation,
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1Here diffraction means that the proton stays intact.

interaction, and annihilation have a simple description in
perturbative QCD combined with QED. A multitude of HERA
measurements such as inclusive cross sections, charm produc-
tion, diffraction, jet production, vector-meson production, and
DVCS cross sections are accurately explained within the dipole
picture [4–13].

A particular final state into which a dipole transforms acts as
an analyzer. For example, jets select very small dipoles, J/ψ

production selects charm-anticharm dipoles, ρ mesons uū or
dd̄ dipoles, and so on. For nuclear structure investigations
the most interesting process is the scattering of small dipoles.
The smallness of the dipole assures that the interaction with
the nucleon is well described by perturbative QCD. In the
low-x region small dipoles interact with the nucleon by gluon
exchange only. The color exchange is of short range, in contrast
to the interaction of electromagnetic dipoles. Of particular
interest is the elastic scattering of color dipoles because
the transverse deflection of the dipole measures the spatial
distribution of the gluonic matter.

In this paper we concentrate on the measurement of exclu-
sive J/ψ vector-meson photoproduction. The J/ψ meson is
a bound state of a charm quark-antiquark pair and therefore
the corresponding dipole is naturally small. The cross section
is relatively high because we take photoproduction.

In nuclei, the small charmed dipole presumably scatters
on individual nucleons. Despite the high energies involved,
the nucleus will frequently remain intact because the large
absorption cross section together with the optical theorem
assures that the scattering process has to be coherent in
about 15% of cases [13,21]. Because the charmed quark
dipole interacts almost completely via two-gluon exchange
with matter, the deflection of the J/ψ measures directly the
intensity and the spatial distribution of the strong field that
keeps the nucleus together. This will allow us to see precisely
the structure of gluonic fields, which has never been seen
before.

This paper is organized as follows. In Sec. II we give an
overview of the main properties of the dipole interaction and
summarize in some detail the existing experimental results. In
Sec. III we discuss the properties of J/ψ as a probe of proton
and nuclei. In Sec. IV we discuss the J/ψ production cross
section within potential detector acceptances, and in Sec. V
we discuss the detector requirements necessary to perform a
precise pT measurement and the experimental requirements
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necessary to assure the elastic signature. In Sec. VI we
summarize the results and in Sec. VII we conclude. In the
Appendix we give a derivation of the dipole representation in
a simple case of elastic photon-proton scattering.

II. DIPOLE DESCRIPTION OF DEEP INELASTIC
SCATTERING (DIS) REACTIONS

Dipole interactions are, in a way, as fundamental as
Rutherford scattering. In Rutherford scattering the incoming
electron emits a virtual photon that scans the charge distri-
bution of the nuclear target. In elastic dipole scattering the
incoming electron emits a virtual photon that turns into a small
quark-antiquark pair. In leading-order QCD, at large virtuality
scales and high energies, the qq̄ pair interacts elastically with
the nucleon by exchanging two gluons with large transverse
momenta, �l and �l + ��. The transverse momenta of the gluons
cannot be directly observed, however, their difference �� is
measurable in elastic vector-meson scattering because it is
equal to the difference between the transverse momentum
of the incoming virtual photon and the final vector meson.
The two-gluon interaction leads in QCD (together with QED)
to the dipole representation. In the Appendix we derive the
dipole representation from Feynman diagrams in a simple
case of virtual photon-proton elastic scattering, when �� = 0.
In the following we discuss the main properties of the dipole
representation.

A. Dipole representation

The dipole interaction proceeds in three stages: first, the
incoming virtual photon fluctuates into a quark-antiquark pair;
next, the qq̄ pair elastically scatters on the target; and, finally,
the qq̄ pair recombines to form a final state. The creation,
scattering, and recombination of the dipole occur in different
space-time regions because the lifetime τ of the qq̄ fluctuation
is very long. In the proton rest frame, τ ≈ 1/mpx. Even at
x = 10−2 this corresponds to a distance of ∼20 fm, which is
larger than the size of all nuclei, R ≈ 1.2 · A1/3 fm. In addition,
owing to high energies, the transverse positions of the quark
and antiquark do not change in the scattering process so that
the dipole does not change its size (see Appendix).

The amplitude of the elastic photon-proton scattering,
γ ∗p → γ ∗p, Aγ ∗p(x,Q,�), is therefore the product of
amplitudes of these three subprocesses integrated over the
dipole variables �r and z:

Aγ ∗p(x,Q,�)

=
∑
f

∫
d2�r

∫ 1

0

dz

4π
�∗(r, z,Q)Aqq̄(x, r,�) �(r, z,Q),

(1)

where �(r, z,Q) denotes the amplitude for the incoming
virtual photon, with virtuality Q, to fluctuate into a quark-
antiquark dipole with flavor f .2 The wave function is deter-

2We suppress references to photon helicities here for simplicity.

mined from light cone perturbation theory to leading order
in the fermionic charge; see the Appendix. The amplitude
for the qq̄ to recombine to a virtual photon is �∗(r, z,Q).
Aqq̄ (x, r,�) is the elementary amplitude for the scattering of
a dipole of size r on the proton, �� denotes the transverse
momentum transferred from the dipole to the target, and
x is the Bjorken variable. The sum should be taken over
all quark flavors f , including charm. For a charmed quark
the definition of the Bjorken x = xB should be replaced by
x = xB[1 + (4m2

ch/Q
2)] to take into account charm threshold

effects. For similar reasons, in the case of vector-meson
production, x = xB[1 + (M2

V /Q2)].
The elementary elastic amplitude Aqq̄ is defined such that

the elastic differential cross section for qq̄-pair scattering on
the proton is

dσqq̄

dt
= 1

16π
|Aqq̄(x, r,�)|2, (2)

where t = − ��2. The notation follows the conventions of
Refs. [9] and [18]. Elastic dipole scattering is connected by
the optical theorem to the total cross section for photon-proton
or photon-nucleus scattering. To evaluate the connections be-
tween the total cross section and various diffractive reactions,
it is convenient to work in coordinate space and define the
S-matrix element at a particular impact parameter b:

Aqq̄(x, r,�) =
∫

d2 �b e−i�b· �� Aqq̄(x, r, b)

= i
∫

d2 �b e−i�b· �� 2[1 − S(x, r, b)]. (3)

This corresponds to the intuitive notion of impact parameter
when the dipole size is small compared to the size of the proton.
The optical theorem then connects the total cross section for
qq̄-pair scattering on the proton to the imaginary part of the
forward scattering amplitude:

σqq̄ (x, r) = ImAqq̄ (x, r,� = 0)

=
∫

d2 �b 2[1 − Re S(x, r, b)]. (4)

The integration over �b of the S-matrix element motivates the
definition of the differential dipole cross section as

dσqq̄

d2 �b = 2[1 − Re S(x, r, b)]. (5)

The total cross section for γ ∗p scattering, or equivalently
F2, is obtained, using Eqs. (1) and (4), by integrating the dipole
cross section with the photon wave functions:

σ
γ ∗p
T,L (x,Q) = ImAγ ∗p

T,L(x,Q,� = 0)

=
∑
f

∫
d2�r

∫ 1

0

dz

4π
(�∗�)fT ,L σqq̄ (x, r), (6)

where the subscript T or L denotes the transverse or longi-
tudinal polarization of the incoming photon, respectively. For
completeness we also give the relation between the F2 structure
function and the γ ∗p cross section at low x:

F2(x,Q2) = Q2

4π2αem
(σT + σL).
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FIG. 1. (Color online) Elastic scattering of a J/ψ meson on a
proton or ion in the dipole representation.

Elastic vector-meson production appears in a similarly
transparent way. The amplitude is given by

Aγ ∗p→pV (�)

=
∫

d2r

∫
dz

4π

∫
d2b �∗

V � exp(−i �b · ��)2[1 − S(b)].

(7)

Assuming that the S-matrix element is predominantly real, we
may substitute 2[1 − S(b)] with dσqq̄/d

2b. Then the elastic
cross section is

dσγ ∗p→Vp

dt

= 1

16π

∣∣∣∣
∫

d2r

∫
dz

4π

∫
d2b �∗

V � exp(−i �b · ��)
dσqq̄

d2b

∣∣∣∣
2

.

(8)

Equations (6) and (8) determine the total DIS cross sections
and the exclusive diffractive vector-meson production cross
section. Figure 1 is a diagram of the dipole scattering when
the final state is a J/ψ meson.

B. Dipole cross sections

The universal dipole cross section dσqq̄/d
2 �b contains all the

information about the gluon content of the target and the QCD
evolution of the gluon density. Its particular form depends on
the evolution schema. In the DGLAP formalism, the dipole
cross section for small dipoles is given by3

dσqq̄

d2b
= π2

3
r2 αs(µ

2) xg(x, µ2) T (b). (9)

Here xg(x, µ2) is the gluon density and µ2 denotes the
evolution scale. The starting scale is denoted µ2

0. The scale
is given by the inverse of the dipole size and is usually taken
as µ2 = (4/r2) + µ2

0, to stabilize the αs behavior for large
dipoles. The function T (b) is the transverse profile of the
gluon density of the proton. It is convenient to write the gluon
density in a semifactorized form, xg(x, µ2)T (b, x). Because
the x dependence of T (b) is weak, it is omitted in the following

3The derivation of the dipole cross section is given in the Appendix.

FIG. 2. (Color online) The γ ∗p cross section as a function of W 2.
Solid lines show the dipole fit to the data [17] in the low-x region,
x < 10−2.

discussion. At every x the transverse profile is normalized
to 1,

∫
d2bT (b) = 1. The parameters of the gluon density

are determined from the fit to the total inclusive DIS cross
section measured at HERA using Eq. (6). The fit is shown
in Fig. 2. The gluon density at a scale µ2

0 is parametrized by
xg(x, µ2

0) = c · x−λ. The three free parameters are c, λ, and
µ2

0. The predictions of the model, at low Q2 values, also depend
on the assumption on the quark masses, mf . Other schemas,
like the CGC evolution and Regge parametrizations, also lead
to a successful description of the data [19,20,31]. More details
are given in Refs. [18] and [19].

The transverse profile is assumed to have a two-dimensional
Gaussian form:

T (b) = 1

2πBG

exp(−b2/2BG), (10)

as the measured t distributions were found to be well de-
scribed by the exponentially falling distribution, dσ

γ ∗p
V M /dt ∝

exp(−BD|t |); see Fig. 3.4 The coefficient BD is not exactly

4The Fourier transform of a Gaussian in �b is a Gaussian in ��
corresponding to an exponential in t .
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FIG. 3. (Color online) Differential cross section for elastic J/ψ

production [25].

equal to BG because the size of the vector meson is not
negligible (see the discussion in Sec. II D). In addition, the
observed coefficient BD shows some x dependence (e.g., in
J/ψ photoproduction) and so BG should be x dependent (see
the discussion in Sec. III A). We note also that the fit with the
dipole form factor, dσ/dt ∝ 1/(1 − t/M2)4, which is usually
used to parametrize the proton form factors does not describe
the data appropriately [25].

The dipole cross section, Eq. (9), is propotional to the dipole
area r2 and the gluon density seen by the dipole, xg(x, µ2). It
is therefore a measure of the gluon density. When either the
dipole size or the gluon density is not small, it is convenient
to use the eikonalized form of the dipole cross section to take
into account possible saturation effects:

dσqq

d2b
= 2

(
1 − exp

(
−π2r2 αs(µ2) xg(x, µ2) T (b)

2 · 3

))

= 2

(
1 − exp

(
−�

2

))
. (11)

Here � denotes the opacity, which is equal to the right side
of Eq. (9). This formula is called the Glauber-Mueller dipole
cross section. A diffractive cross section of this type was used
by Glauber [26] about 50 years ago to study the diffractive
dissociation of deuterons and reintroduced by Mueller [27]
to describe dipole scattering in deep inelastic processes. In
contrast to Glauber scattering, in DIS the functional form of
the opacity is known from QCD.

C. Deeply virtual Compton scattering (DVCS) and
vector-meson production

The elastic cross section, Eq. (8), was derived under the
assumption that the dipole size is much smaller than the proton
size. For dipoles of a size r the explicit QCD calculation [45]
shows that �� conjugates to �b + (−z)�r . Therefore, the cross
section is sensitive not only to the proton impact factor b,
but also to the dipole size r . Thus, the modified dipole cross

section is

dσγ ∗p→Vp

dt
= 1

16π

∣∣∣∣
∫

d2r

∫
dz

4π

∫
d2b �∗

V � exp(−i[�b

+ (1 − z)�r] · ��)
dσqq̄

d2b

∣∣∣∣
2

. (12)

This cross section can also be used to describe the DVCS
process, for which the final state consists of the scattered
electron, the proton, and a real photon. The wave function for
the outgoing state is just the amplitude �∗(Q2 = 0) for the real
photon. Equation (12) gives, after a small correction for the real
part5 and skewedness6 are applied, an absolute prediction for
the DVCS process. The prediction is shown along with HERA
data in Fig. 4. The figure shows an impressive agreement
between the dipole model predictions and the data if we
realize that two very different processes are described with
the same amplitudes; the average event that contributes to the
total cross section has about 40 particles in the final state,
while the DVCS event has just a proton, a photon, and an
electron. The wave function of the final state, �∗(Q2 = 0), is
very different from that of the incoming virtual photon. And
yet all the distributions and the absolute event rates of the
DVCS process are properly described. This means that the net
effects of possible higher-order QCD radiative corrections [28]
or possible kinematical corrections [30] have to be small or
are consistently absorbed into the gluon density.

Successful comparisons of the inclusive diffractive cross
sections with the dipole model predictions have been per-
formed in several investigations [7,8,13,31]. Inclusive diffrac-
tion denotes the sum of all processes in which the proton
remains intact. Because the summation is over a complete
set of states, the cross section depends only on the photon
wave functions. However, the dipole cross section in this case
has to take into account also the possible qq̄g Fock state,
which makes the comparison less clean than in the DVCS
case. Nevertheless, comparison of the cross sections with the
predictions again works very well [13]. The same is also true
for the comparison with the diffractive jet cross sections [37].

Further support for the validity of the dipole picture
comes from the very good agreement of the predicted vector-
meson cross sections with the data, shown in Fig. 5. The
vector- meson wave functions are constructed according to a
standard procedure developed in Refs. [43] and [44]. They are
educated guesses based on general considerations described
in Refs. [11] and [18]. The only phenomenological input
that is necessary is obtained from the measured electronic
decay width of the vector meson. The very good agreement

5The derivation of the cross section for exclusive vector-meson
production or DVCS relies on the assumption that the scattering
amplitude is purely imaginary. The real part of the amplitude can be
accounted for by multiplying the exclusive cross section by a small
correction factor given in Ref. [11].

6For vector-meson production or DVCS, one should use the off-
diagonal gluon densities, as here the two gluons carry different
fractions x and x ′ of the proton momentum. This effect can be taken
into account by multiplying the gluon distribution xg(x, µ2) by a
correction factor Rg given in Ref. [29].
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FIG. 4. (Color online) Total DVCS
cross sections σ as a function of Q2 (a)
and W (b) [32] compared to predictions
from the b-Sat and b-CGC models [19].

between data and dipole model predictions means that the
vector-meson wave functions were properly estimated. This
is further supported by the excellent description of the σL/σT

ratio as a function of Q2 for the J/ψ and φ vector mesons [18].
In the case of ρ mesons this ratio is not so well described. This
can be attributed to the complicated dynamic of ρ decay into
pions.

D. The t distributions

At HERA, the distributions of the square of the momentum
transfer, t = − ��2, have been measured in exclusive vector-
meson and DVCS processes. The value of t is usually
determined from the pT imbalance of the final-state particles
seen in the detector. The t distributions have also been mea-
sured using forward proton spectrometers for all diffractive
processes. Forward spectrometers, however, have a relatively
low acceptance.

All measured t distributions are very well described by the
exponential dependence dσ/dt ∝ exp(−BD|t |). The t range
used in the fit to the vector-meson differential cross sections is
typically limited to |t | < 1 GeV2 to avoid regions where large
corrections were applied to account for the proton dissociation
process. BD is related to the size of the interaction region,
as discussed here. It is sensitive to the gluonic proton shape
and to the sizes of the dipoles contributing to the process.
The dipole sizes depend, through the incoming and outgoing
wave functions, on the Q2 value and the vector-meson spatial
extension.

Figure 6 shows BD as a function of W for J/ψ photo-
production. The average value of BD from this process was
used to fix the BG parameter of the proton shape in the b-Sat
model to BG = 4.0 GeV−2. The model then allows prediction
of the expected BD values for other processes, like DVCS and
φ and ρ production. The predictions are compared to data in
Fig. 7. The value of BD depends considerably on Q2 and the
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FIG. 5. (Color online) Total cross section σ vs. (Q2 + M2
V ) for exclusive J/ψ [25,33], φ [35], and ρ [36] meson production compared to

predictions from the b-Sat and b-CGC models using the “boosted Gaussian” vector-meson wave function [19].
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type of process, as the effective sizes of vector mesons and
of the DVCS photon differ substantially. The dipole model
reproduces the changes in the value of BD very well.

As shown in Fig. 6 the value of BD in J/ψ photoproduction
shows some W dependence. This can be attributed to QCD
evolution effects. In the DGLAP evolution scheme, owing
to strong ordering, the increase in BD with decreasing x ≈
M2

J/ψ/W 2 is expected to be negligible [38], as in the b-Sat
model. In the BFKL evolution scheme the evolution in x could
lead to a small increase in the size of the interaction area.
This was taken into account in the b-CGC model, which is
based on a phenomenological approach to the BFKL and BK
equations [18–20]. Alternatively, the variation of BD with W

can also be attributed to the increase in the contribution of the
“pion cloud” at low x [39].

III. J/ψ AS A PROBE OF PROTON AND NUCLEI

The properties of diffractive processes described in the
previous section single out J/ψ photoproduction as an
ideal probe for investigation of nuclear properties, for three

main reasons.

(i) The J/ψ meson provides the smallest probe compared
to the other diffractive processes measured at HERA.
This can be seen directly from measurement of the sizes
of the interaction region BD shown in Figs. 6 and 7.

(ii) The observed number of well-measured events is
substantially larger for J/ψ photoproduction than for
other exclusive diffractive processes with a similar
probe size.7 In the central region of the H1 and
ZEUS detectors, the number of well-measured γp →
J/ψ p → µµp and γp → J/ψ p → ee p events is
about 10 times higher than for γ ∗p → ρp → ππ p

and a factor of 40 higher than for γ ∗p → φp → KK p

processes with Q2 + M2
V > 10 GeV2. For the DVCS

reaction, with Q2 > 10 GeV2, this factor is about 100.
(iii) The J/ψ meson decays with a probability of 12% into

a leptonic pair, µ+µ− or e+e−. These are very clean
final states that emerge from quark annihilation. It can
be measured well in the detector because the J/ψ is
a very narrow resonance. The ρ meson decays mostly
into a pair of pions, which can also be measured well.
However, this is a strong decay, the ρ width is large,
and the decay mechanism is more complicated than in
the J/ψ case. This may make this process less suitable
as a probe of nuclear properties.

7This is because the cross section for the electroproducion process
is approximately proportional to log(Q2

max/Q
2
min) and to the photo-

production cross section σγp . In the ZEUS and H1 measurements
of J/ψ photoproduction, Q2

min ≈ 10−12 GeV2 and Q2
max ≈ 1 GeV2.

In this Q2 region the photoproduction cross section σγp is almost
constant. For the ρ, φ, or DVCS process one has to require that
Q2

min ≈ 10 GeV2 to ensure that the interaction is mediated by the
small dipoles. In addition, the virtual photon-proton cross section
decreases quickly with increasing Q2, σ γ ∗p ∼ 1/(M2

V + Q2)n, with
n ≈ 3, which effectively limits the Q2 range.
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A. Proton radius

To show the potential of J/ψ photoproduction as a probe
of the properties of matter we discuss here a classic nuclear
physics subject, determination of the proton radius. The
smallest sizes of the interaction region, BD , are measured
at HERA in the exclusive J/ψ photoproduction process,
in agreement with the dipole model expectations. The t

distribution of this process is also one of the most precisely
measured at HERA. In the following we determine the proton
radius using data on this process.

The observed values of BD in the H1 and ZEUS experiments
show an increase with growing energy W . This increase is
parametrized in the HERA experiments as

BD(W ) = b0 + 4α′ · log(W/90 GeV). (13)

For ZEUS,

b0 = 4.15 ± 0.05+0.30
−0.18 GeV−2,

α′ = 0.115 ± 0.018+0.008
−0.015 GeV−2,

and for H1,

b0 = 4.63 ± 0.06+0.043
−0.163 GeV−2,

α′ = 0.164 ± 0.028+0.030
−0.030 GeV−2.

The W region extends from 30 to 170 GeV and the values of
BD increase with W by about 25%, owing to QCD evolution
effects. The proton radius should be related to the value of
BD without this effect, that is, to the value of BD at W near
the threshold. However, it is not known whether Eqs. (13) can
be extrapolated to below W = 30 GeV. Therefore we evaluate
the proton radius from the lowest observed value of BD at
W = 30 GeV. This value of W also corresponds to the x value,
x = 10−2, up to which the dipole picture was successfully
tested.

At W = 30 GeV the size of the interaction region is BD =
3.64 GeV−2 for ZEUS and BD = 3.91 GeV−2 for H1. We can
combine these values into

BD(W = 30 GeV) = 3.78 ± 0.3 GeV−2.

As error we take the difference between the ZEUS and the H1
values.

The proton size is related to the value of BG, which is
smaller than BD , owing to the contribution of the size of
the J/ψ . The difference at W = 30 GeV is BD − BG =
�B = 0.6 GeV−2 [18] and is almost independent of W . The
theoretical error can be estimated by evaluating BG with two
different wave functions as �B = ±0.2 GeV−2 [18].

The corresponding proton Gaussian width is BG = 3.18 ±
0.4 GeV−2, where we added the theoretical and experimental
errors in quadrature. The transverse proton radius is then

√
〈b2〉 =

√∫
d2 �b b2TG(b) =

√
2 · BG = 0.50 ± 0.03 fm.

The proton radius is usually determined from the electromag-
netic charge form factor,

GE(t) = 1 + 1
6

〈
r2
p

〉
t + O(t2),

and 〈
r2
p

〉 = 6 · dGE(t)

dt

∣∣∣∣
t=0

.

This is the three-dimensional proton radius; the transverse
proton radius is given by

〈
b2

p

〉 = 4 · dGE(t)

dt

∣∣∣∣
t=0

.

Therefore the transverse proton radius is related to the three-
dimensional proton radius by 〈b2

p〉 = 2〈r2
p〉/3 [39,40]. Guided

by this we obtain the three-dimensional proton radius as
measured by the exclusive J/ψ photoproduction,√〈

r2
2g

〉 =
√

3 · BG = 0.61 ± 0.04 fm.

We call this radius r2g to indicate that it is determined in the
two-gluon exchange process.

The two-gluon proton radius, r2g , is much smaller than the
charged proton radius determined from the electromagnetic
form factor GE , rp = 0.875 ± 0.007 fm. One could argue
that it is more appropriate to compare the two-gluon proton
radius to the proton radius that is determined from the
Dirac form factor F1, rF = 0.81 fm, instead of GE , as
proposed in Ref. [40]. This value is smaller than the standard
charged proton radius because the Dirac form factor describes
only the spin nonflip interactions (in the infinite momentum
frame). Nevertheless, the spin-preserving proton radius is still
substantially larger than the two-gluon proton radius.

It is expected that the value of the proton radius is process
dependent because the current that tests the proton itself has
a structure that depends on its quantum numbers [41]. The
smallest proton radius is determined from the axial form factor
GA measured in neutrino scattering, νp → µp. This is called
the axial radius and has the value rA = 0.675 ± 0.02 fm [41].
The smallness of this radius can be attributed to the fact that
the axial current is not coupling to the pion cloud surround-
ing the bulk of the proton [39]. It is interesting to observe
that the two-gluon radius is still smaller than the axial radius
despite the fact that the two-gluon intermediate state couples
as well to the bulk of the proton as to the surrounding pions.

B. The gluonic structure of nuclei

Measurements of diffractive processes could become an
important source of information on the gluonic structure of
nuclei and high-density QCD. The interaction of a dipole with
a nucleus can be viewed as a sum of dipole scatterings of the
nucleons forming the nucleus. The size of the charmed dipole
in elastic J/ψ scattering is about 0.15 fm [17], that is, it is
much smaller than the nucleon radius. It is therefore possible
that dipoles interact with objects smaller than nucleons, for
example, with constituent quarks or hot spots. Nevertheless,
for the sake of illustration, we take here the conventional point
of view and assume that the nucleus is built out of nucleons and
that dipoles scatter on the ensemble of nucleons. We discuss
the dipole-nucleus scattering using two examples to show the
potential of possible nuclear investigations. To simplify the
discussion multiple scattering effects are ignored, justified by
the small size of the J/ψ dipole; see also Sec. III C.
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FIG. 8. (Color online) Prediction of the dipole model for the t distribution of coherent J/ψ photoproduction on nuclei assuming that
the single-nucleon distribution can be identified with the Woods-Saxon distribution given in the Appendix. Statistical errors of the simulated
measurements are based on the assumed collected sample of 106 events. The dashed line near the top shows the sum of the coherent and
incoherent process in the case of no correlations.

In the first example we consider elastic scattering on the
nucleus [17,21]. This is a coherent scattering process, as the
nucleus remains in its ground state. Ignoring possible multiple
scattering effects, the dipole scattering amplitude for a given
configuration of nucleons {�bi}, using Eqs. (9) and (10), is given
by

dσA
qq̄

d2b
= σp

A∑
i=1

e−(�b− �bi )2/2Bp

2πBp

, (14)

where A denotes the number of nucleons in the nucleus, Bp is
the diffractive slope of the proton, and σp is the total proton
dipole cross section. The Fourier transform of this amplitude
is ∫

d2be−i �b· �� dσA
qq̄

d2b
= σp

A∑
i=1

e−i �bi · �� · e−Bp ·�2/2. (15)

Here we changed the integration variable from �b to �b − �bi

while integrating each term of the sum. We obtain the matrix
element for elastic scattering (qq̄) + A0 → (qq̄) + A0 by
averaging over all configurations of the nucleus ground state:8

−iA
qq̄

A0→A0
= σpe−Bp ·�2/2

A∑
i=1

∫
d2 �b1 · · · d2 �bA

×�∗
A0

(�b1 · · · �bA)�A0 (�b1 · · · �bA) · e−i �bi · ��. (16)

8To simplify the notation we write �(. . .) as a function of the
transverse variables, �bi , only; that is, we assume that the longitudinal
dimensions, zi , are already integrated out.

We define the single-nucleon distribution as

∫
d2 �b2 · · · d2 �bAd2�∗

A0
(�b1 · · · �bA)�A0 (�b1 · · · �bA) = TA(b1),

(17)

with normalization
∫

d2b1TA(b1) = 1. Because the wave
function for protons and neutrons is completely antisymmetric
and the difference between proton and neutron is presumably
small, we assume that TA(b1) = TA(bi). The cross section for
the coherent dipole scattering is then given by

dσ
qq̄

A0→A0

dt
= A2σ 2

p

16π
e−Bp ·�2 ·

∣∣∣∣
∫

d2b TA(b)e−i �b· ��
∣∣∣∣
2

, (18)

that is, it is proportional to the square of the Fourier transform
of the single-nucleon distribution.

The cross sections for coherent J/ψ scattering on nuclei—
computed in the dipole model by averaging the dipole cross
section, Eq. (18), over the incoming photon and outgoing J/ψ

wave functions—are shown in Fig. 8 as a function of t . Note
that in the nuclear case, the size of the vector meson can be
ignored. We assumed here that the single-nucleon distribution
can be identified with the Woods-Saxon distribution; see the
Appendix. The diffractive slope at t = 0 depends on the
size of the system. Figure 8 shows, for small t ∼ 1/R2

A, a
very steep t dependence, ∼exp(−tR2

A/3), and then several
diffractive minima. For larger nuclei the Woods-Saxon shapes
are approximately similar to a box of size RA. The Fourier
transform of a box is given by the Bessel function J1(RA · �),
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which has zeros at RA · � = 3.8, 7.0, 10.2, . . . .9 This gives
the approximate positions of the diffractive minima for the
exclusive J/ψ photoproduction on calcium (A = 40) and
gold (A = 197) shown in Fig. 8. The parameters of the
Woods-Saxon distribution, nuclear radius and skin depth, were
determined mainly by scattering of the charged matter and can
be fairly different when measured in dipole interactions. We
therefore plot in Fig. 8 the predictions computed with slightly
altered values of these parameters.

In the second example we evaluate incoherent dipole scat-
tering [13,21,22,46]. We start with the quasielastic scattering
of a dipole on a nucleus,

(qq̄) A0 →
∑

n

(qq̄) An,

where An can be either a ground state, or any excited nuclear
state, or any breakup of the nucleus into nucleons or nucleonic
fragments. Pion and other hadronic production is not allowed.
As in the elastic case, the matrix element for transition to a
state An is

− iA
qq̄

A0→An
= σpe−Bp ·�2/2

A∑
i=1

∫
d2 �b1 · · · d2 �bA

×�∗
An

( �b1 · · · �bA)�A0 ( �b1 · · · �bA) · e−i �bi · ��.

(19)

The quasielastic dipole cross section,

∑
n

dσ
qq̄

A0→An

dt

= 1

16π

∑
n

∣∣∣Aqq̄

A0→An

∣∣∣2

= σ 2
p

16π
e−Bp�2

A∑
i

A∑
j

∫
d2 �b1 · · · d2 �bAd2 �b′

1 · · · d2 �b′
A

×�∗
A0

( �b′
1 · · · �b′

A) ·
∑

n

�An
( �b′

1 · · · �b′
A)�∗

An
( �b1 · · · �bA)

×�A0 ( �b1 · · · �bA) · e−i(�bi− �b′
j )· ��,

can be evaluated using the completeness relation,∑
n

�An
( �b′

1 · · · �b′
A)�∗

An
( �b1 · · · �bA)

= δ(�b1 − �b′
1) · · · δ(�bA − �b′

A), (20)

giving

∑
n

dσ
qq̄

A0→An

dt

= σ 2
p

16π
e−Bp�2

A∑
i

A∑
j

∫
d2 �b1 · · · d2 �bA

×�∗
A0

( �b1 · · · �bA) · �A0 ( �b1 · · · �bA) · e−i(�bi− �bj )· ��.

(21)

9This is like the Frauenhofer diffraction on a circular aperture.

Defining the two-nucleon distribution as∫
d2 �b3 · · · d2 �bAd2�∗

A0
(�b1 · · · �bA)�A0 (�b1 · · · �bA)

= T
(2)
A (�b1, �b2), (22)

with normalization
∫

d2b1d
2b2T

(2)
A (�b1, �b2) = 1, we obtain

∑
n

dσ
qq̄

A0→An

dt
= σ 2

p

16π
e−Bp�2

[
A + A(A − 1)

×
∫

d2 �b1d
2 �b2T

(2)
A (�b1, �b2) · e−i(�b1− �b2)· ��

]
.

(23)

The first term in the square brackets, proportional to A,
emerges from the summation of terms with i = j in Eq.
(21). The second term, proportional to A(A − 1), is obtained
using the antisymmetry property of the wave function and the
assumption that the difference between protons and neutrons
can be neglected, T

(2)
A (b1, b2) = T

(2)
A (bi, bj ) for i 
= j .

The incoherent dipole cross section is obtained by subtract-
ing the ground-state contribution from the sum of Eq. (23),

∑
n
=0

dσ
qq̄

A0→An

dt
= σ 2

p

16π
e−Bp�2

∫
d2 �b1d

2 �b2
{
A

(
TA(b1)TA(b2)

− T
(2)
A (�b1, �b2)e−i(�b1− �b2)· ��) + A2

(
T

(2)
A (�b1, �b2)

− TA(b1)TA(b2)
)
e−i(�b1− �b2)· ��}

. (24)

When the momentum transfer � → 0 the incoherent dipole
cross section, Eq. (24), goes to zero, reflecting the fact
that, without a transfer of transverse momentum to the
nucleus, excited states cannot be produced. At larger values
of the momentum transfer, | ��| > 200 MeV, the contribu-
tion of the second term in the curly brace in Eq. (24),∫

d2 �b1d
2 �b2 A(T (2)

A (�b1, �b2)e−i(�b1− �b2)· ��), starts to be relatively
smaller than that of the first term because the oscillatory
factor suppresses the contributions with |�b1 − �b2| > 1 fm. The
contribution of the second term then grows as A1/3 and can
be neglected for larger nuclei, compared to the contribution of
the first term, which grows as A. Thus when | ��| > 200 MeV,

∑
n
=0

dσ
qq̄

A0→An

dt
= Adσ

qq̄
p→p

dt
+ σ 2

p

16π
e−Bp�2

A2
∫

d2 �b1d
2 �b2

×(
T

(2)
A (�b1, �b2) − TA(b1)TA(b2)

)
e−i(�b1− �b2)· ��,

(25)

and the deviation from the elastic nucleon cross section result
is attributable to two-body correlations only.

Experimentally we expect to be able to distinguish cases
where the nucleus remains intact and cases where the nucleus
breaks up. In the nuclear breakup process, there are about
0.3

√
A free neutrons and 0.2

√
A protons in the final state [47],

as well as other fragments. These particles and fragments
have high momenta and different charge-to-mass ratios than
the nuclear beam and should, therefore, be measurable in
specialized detectors. However, we do not have a one-to-one
correspondence between an intact nucleus and a coherent
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FIG. 9. (Color online) Distribu-
tion of J/ψ dipole sizes: (a) as
given by the γ J/ψ overlap function;
(b) as given by the photoproduction
amplitude.

scattering process, as incoherent processes can lead to an
intact nucleus in an excited state. It remains to be determined
how well excited states of the nucleus can be identified,
measured, and possibly statistically subtracted to extract the
fully separated coherent and incoherent processes.

C. Saturation

One of the main results of HERA is the observation that
the gluon density increases quickly with decreasing x. This
suggests that at some low x the dipole could undergo multiple
interactions. The degree of saturation is characterized by the
size of the dipole rS , which, at a given x, starts to interact
multiple times. The dipole size rS is defined, by convention
[18], via the relation10

dσqq̄ (x, rS, b)

d2b
= 2(1 − exp(−1/2)) ≈ 0.8. (26)

The saturation scale is then defined as Q2
S = 2/r2

S and is a
function of x. A high value of the saturation scale means that
the gluon density is so high that even small dipoles interact
many times.

In various analyses of HERA data the saturation scale, in the
proton center, was found to be Q2

S ≈ 0.5 GeV2 at x ≈ 10−3,
that is, in the EIC range. In the LHeC range, which extends to
x ≈ 10−5, the saturation scale could reach Q2

S ≈ 2 GeV2 [18].
The saturation scale determined in the inclusive γ ∗p reaction
should be compared to the scale of J/ψ photoproduction given
by the effective size of the meson in this reaction. This size is
determined by the overlap of the photon and J/ψ wave func-
tions and by the dynamical effects. Figure 9(a) shows the dis-
tribution of the dipole sizes selected by the overlap of the
photon and J/ψ wave functions defined as r

∫
dz�∗

J/ψ�. The
median value of this distribution is ro

med = 0.7 GeV−1, that
is, about 0.15 fm. The contribution of very small dipoles, in

10From the unitarity limit the highest value of a dipole cross section
is dσ/d2b = 2; see Eq. (11).

the γp reaction, is suppressed by the dynamic of the reaction,
because the dipole cross section is proportional to r2 at small
r; see Eq. (9). The distribution of the dipole sizes selected by
the amplitude, Eq. (7), is shown in Fig. 9(b). The median value
of this distribution, ra

med, was found11 to be between 1.2 and
1.4 GeV−1, depending somewhat on x. Thus, the effective scale
characteristic for J/ψ photoproduction is Q2

eff = 2/(ra
med)2 ≈

1–1.5 GeV2, depending on x. The saturation scale at EIC
is sizably smaller then Q2

eff , so saturation effects are not
expected to be large. However, the measurement on nuclei
could enhance the saturation scale substantially, as discussed
in Ref. [21]. Therefore, the high precision that can be achieved
in the measurement of J/ψ exclusive photoproduction makes
this process interesting as an alternative test bed of saturation
effects at EIC. At LHeC saturation effects should be clearly
visible in the scattering on the proton and presumably very
strong in nuclear reactions.

In Ref. [9] it was proposed to investigate the effects of
saturation in a systematic way by extracting from data S2(b),
the square of the S matrix. The S matrix is directly connected
to the dipole cross section by dσqq/d

2b = 2[1 − �S(b)] as
shown in Eq. (5). The S matrix can also be used to define the
saturation condition because its square has a meaning for the
survival probability, that is, the probability of no interaction.
The equivalent definition to Eq. (26) then reads S2 = e−1 ≈
0.37. Figure 10 shows the survival probability for dipoles of
different sizes scattering on the proton, at b = 0, where the
gluon density reaches its maximum [17].

To reconstruct the S matrix at b = 0 for protons it is
necessary to measure the t distribution up to about |t | ≈
2 GeV2.12 At HERA this measurement could not be performed
because the measurement of the t distribution had large
systematic errors for |t | > 1 GeV2 and a low statistical
significance. The systematic uncertainties that plagued HERA

11The evaluation was performed in the b-Sat model with the “boosted
Gaussian” wave function, at t = 0.
12In the case of nuclei the measurement will require a much smaller

t range than in the proton case.
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FIG. 10. (Color online) Survival probability S2 as a function of x

for various dipole sizes.

experiments can be avoided in the specially designed ex-
periment discussed here. In addition, it should be possible
to increase the collected number of events by about two
orders of magnitude in comparison to HERA, which should
allow us to reach the |t | = 2 GeV2 region in the proton
measurement.

IV. PRODUCTION CROSS SECTION

In this section, we review the production cross section for
the photoproduction of J/ψ and discuss the kinematic range
where high-precision measurements should be possible. The
ep → epJ/ψ cross section can be written as

d2σ

dW 2dQ2

= α

2π

1

sQ2

[(
1 + (1 − y)2

y
− 2(1 − y)

y

Q2
min

Q2

)

· σγp

T (W 2,Q2) + 2(1 − y)

y
· σ

γp

L ](W 2,Q2)

]
,

where

Q2
min = m2

ey
2

1 − y

and y is the inelasticity. We are interested in very small Q2,
for example, Q2 < 10−2 GeV2, and we can assume that, in
this range, the photoproduction cross section is independent
of Q2. We also assume that the longitudinal cross section is
negligible, as we are dealing with almost-real photons. Then
integration gives

dσ

dW 2
= α

2π

1

s

[
1 + (1 − y)2

y
ln

Q2
max

Q2
min

− 2(1 − y)

y

×
(

1 − Q2
min

Q2
max

)]
· σγp(W 2) .

From the ZEUS data [33], we have

σγp→J/ψp(W 2) ≈ 75 nb

(
W 2

8100

)0.35

.

Writing this in terms of y, we have

σγp→J/ψp = 75 nb
( s

8100

)0.35
y0.35,

where W is in GeV and s is in GeV2. This form is valid at
the large W measured at HERA. An extrapolation to lower
values of W is in agreement with measurements performed by
E401 [50], so we assume this form for all W .

We consider two different values of Q2
max. In one case, we

assume that we do not measure the scattered electron precisely,
and we can only limit the Q2. For this case, we take Q2

max =
10−4 GeV2 so that the maximum pT from the electron is
10 MeV. In the second case, we assume that we do measure
the scattered electron well, so we can afford to go to higher Q2,
and we take Q2

max = 10−2 GeV2. In the Q2 range considered
here, the scattered electron energy is given by E′ = (1 − y)Ee.

High-precision measurements of the J/ψ decay products
are assumed to be made in a central detector, such as a thin-
walled time projection chamber, located in a strong solenoidal
magnetic field. The detector parameters are discussed in the
next section. To measure the J/ψ decay products with good
acceptance in the central detector, we require that the J/ψ has
limited boost. For simplicity, we take Q2 = t = 0 to see the
limits on y [49]. Conservation of energy gives

Ee + Ep = (1 − x)Ep + E′
e + EV ,

where Ee,Ep are the incoming beam energies, and E′
e, EV are

the scattered electron and vector-meson energies. This can be
rewritten as

x = EV − yEe

Ep

.

We also have the requirement,

M2
V = (xp + q)2 ≈ 2xp · q ≈ sxy,

or

x = M2
V

sy
.

Putting these expressions together gives

EV ≈ y · Ee + M2
V

4yEe

,

where MV is the mass of the J/ψ . This leads to the following
constraints:

ymax = min

[
1,

EV + PV

2Ee

]
,

ymin = max

[
0,

EV − PV

2Ee

]
,

or, in terms of W 2,

W 2
max = symax,

W 2
min = symin.
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We now integrate the differential cross section given above
in this W 2 range, with the result

σ (visible) = A
α

2π

( s

8100

)b
[

2(c − 1)

b
yb + 2(1 − c)

1 + b
y1+b

+ c

2 + b
y2+b

]ymax

ymin

,

where we have

A = 75. nb,

b = 0.35,

c = ln
Q2

max

Q2
min

.

To see the effect of the centrality requirement, we require
that the momentum of the J/ψ be less than 4 GeV, so that
the decay particles are not too boosted. We performed a scan
over electron beam energy, keeping the proton beam energy
fixed at Ep = 100 GeV. The accepted y ranges are shown in
Fig. 11. The results for the visible cross section (not including
the branching ratio) are given in Fig. 12. Adding the branching
ratio of about 6% implies that 10 fb−1 would give 106 well-
reconstructed J/ψ → µ+µ− events in the central part of the
detector.
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FIG. 11. (Color online) The y range with good acceptance for
reconstructing J/ψ decays in the central region is plotted as a function
of the electron beam energy [shaded (red) area] at Ep = 100 GeV.
The two curves indicate the minimum y values for detecting the beam
electron scattered at 0◦ assuming (upper curve) that a 1-Tm dipole is
placed near the interaction point (IP) and that the scattered electron
should be at least 5 cm from the beam 5 m downstream of the dipole
and assuming (lower curve) that a 5-Tm dipole is placed near the IP
and that the scattered electron should be at least 5 cm from the beam
10 m downstream of the dipole.
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FIG. 12. Visible J/ψ cross section as a function of the electron
beam energy at Ep = 100 GeV.

V. EXPERIMENTAL CONSIDERATIONS

In the following, we consider the requirements for the
beam momentum spread and the detector requirements for
the scattered electron, the measurement of the J/ψ , and the
measurement of the scattered nucleus or proton. As discussed
in Sec. III B and Sec. II C, the proton or nuclear shapes are
measured by the deflection of the J/ψ from its original direc-
tion. The t measurement will rely on an accurate determination
of the transverse momentum given to the J/ψ , as

t = (pi − pf )2 ≈ −((�px)2 + (�py)2),

where pi, pf are the momenta of the incoming photon and
outgoing J/ψ , and �px,�py are the changes in the transverse
momentum components during the scattering process. As is
clear from these expressions, we require knowledge of (a) the
outgoing J/ψ momentum and (b) the incoming and outgoing
electron momenta, as

�pe,i − �pe,f − �pJ/ψ = �pi − �pf .

Usually, t is viewed as a change in the momentum of
the incoming and the outgoing ions or protons, t = −( �pI,i −
�pI,f )2. Measurement of the ion momenta is technically very

difficult. Here, it is not necessary because �pI,i − �pI,f =
�pe,f + �pJ/ψ − �pe,i . We, therefore, do not foresee a precise
measurement of the ion pT .

Measuring the outgoing J/ψ and electron (or guarantee-
ing that the outgoing electron has a very small transverse
momentum) then allows measurement of t . Nevertheless, the
forward scattering region for the ions will require substantial
instrumentation (a) to guarantee that we have an elastic
scattering event and (b) to measure the correlation between
the variable t and the transverse momenta of debris from the
nuclear dissociation in inelastic events.

We discuss the separate parts of the detector system
according to their function. Because we are dealing with
photoproduction, the large majority of the events are
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concentrated close to Q2 = 0 GeV2. The scattered electron
will therefore have a median transverse momentum of only
a few megaelectronvolts. As discussed below, it should be
possible to measure this scattered electron over the bulk
of the kinematic range of interesst. Even in cases where
the electron is not detected, it will typically only carry a
very small transverse momentum. The measurement of the
t distribution will therefore rely almost exclusively on a
precise measurement of the J/ψ decay products.

A. Scattered electron

The scattered electron will be at a very small angle to the
direction of the electron beam but can be pulled out of the
beam if it has lost enough energy. There will be a minimum
value of y where it is possible to see the scattered electron even
if the electron is scattered at 0◦. For this purpose, we imagine
that there will be a large-aperture dipole magnet placed near
the beam interaction point, which will bend the electrons (and
can also act as a separator of the ion and electron beams). The
transverse separation between a beam electron and a forward
scattered electron can be written as

� = D

[
sin θy

cos θ0

cos θy

− sin θ0

]
,

where

sin θ = 0.3 · B · L

p
,

with the dipole field strength B measured in T, the length
of the magnet L in m, and the momentum of the electron
p in GeV/c. θ0 is used to denote the scattering angle of the
beam electrons after passage through the dipole, and θy is the
scattering angle for momentum p = (1 − y)Ee. The distance
D is measured from the center of the dipole. If detectors are
placed within a few centimeters from the electron beam a
few meters downstream of the dipole magnet, then scattered
electrons at a not-too-low y can be measured. The minimum
value of y required for acceptance of such a system depends
on the strength of the dipole field, the distance of approach to
the beamline, and the drift distance D. Figure 11 indicates the
minimum y values as a function of the electron beam energy for
two representative sets of parameter values. We conclude that
measuring the scattered electron will be feasible over the bulk
of the y range of interest that provided the interaction region
allows for such a dipole magnet and detector arrangement.

B. J/ψ reconstruction

We focus on measurement of the J/ψ via the decay
into muons, J/ψ → µ+µ−. We assume that no particle
identification will be necessary, as it will be easy to identify
the J/ψ via the invariant mass of the reconstructed state.
A continuous background from the Bethe-Heitler process
eA → eAµ+µ− will have to be handled in the analysis of
the data. The expected resolution of the drift chamber can be
estimated from the measurement precision term,

(σpt
/pt )meas = pt σrφ

0.3L2B

√
720

N + 4
,

and the multiple scattering contribution,

(σpt
/pt )MS = 0.05

LBβ

√
1.43

L

X0
[1 + 0.038 log(L/X0)],

as

σpt
/pt = (σpt

/pt )meas ⊕ (σpt
/pt )MS.

Here B is the magnetic field in tesla, L is the lever arm in
meters, σrφ is the spatial resolution in meters for a single
point, X0 is the radiation length in meters, N is the number of
points, and β is the velocity of the particle.

In the J/ψ photoproduction process at small t the trans-
verse momenta of the decay muons range from very small
values up to a maximum of about 2 GeV/c. In this momentum
range, multiple scattering is a critical issue for momentum
resolution. We therefore envision a time projection chamber
(TPC)-type detector with a thin inner wall as the central
tracking detector. Assuming the following parameters,

(i) outer radius R = 2 m,
(ii) solenoidal field B = 3.5 T,

(iii) gas density X0 = 450 m,
(iv) point resolution σ = 100 µm, and
(v) measurement N = 200 points,

yields a track momentum resolution [48],

σpt
/pt = 0.005 · pt ⊕ 0.045/β%,

which will give a pt resolution for the J/ψ of typically
�1 MeV.

The muons would not escape such a detector in the radial
direction. An electromagnetic calorimeter placed outside the
TPC could be used to reject or measure radiated photons
from the interaction vertex and from passage of the muons
through the detector. The detector design could naturally be
extended to include hadronic calorimetry, particularly in the
ion direction, resulting in a general-purpose detector capable
of high-precision measurements for all types of exclusive pro-
cesses as well as inclusive cross-section measurements.

C. Ion forward direction

The main requirement for the instrumentation in the for-
ward direction of the ion beam is that dissociative and inelastic
events be rejected with ∼100% efficiency. We envisage again
a dipole magnet that can be used to separate neutral particles
as well as nuclear fragments from the main beam. This dipole
could also serve as a beam separator to guide the electrons
and ions to their individual beampipes. Ion dissociation will
produce different types of fragments, including neutrons and
charged ions with charge/mass ratios different from that of
the beam ions. Neutrons can be recorded in a calorimeter
at 0◦ to the beamline at the interaction point and located
many meters downstream of the interaction point. Fragments
with different charge/mass ratios will have different deflection
angles in the dipole than the main beam and can, therefore, be
measured with tracking detectors placed close to the beamline.
In inelastic scattering events, particles with opposite charge to
the beam ions can be produced, and these interactions can be
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vetoed using tracking detectors or calorimeters placed behind
the dipole. We therefore expect that for large nuclei, rejecting
nonelastic events will be rather straightforward, as typically
several neutrons and charged particles will be produced.

D. Beam requirements

The experiment discussed requires substantial instrumen-
tation extending to many meters on either side of the
interaction point. It will be critical to avoid “dead zones,”
where scattered particles could escape detection. This will
place severe restrictions on the accelerator design and will
naturally lead to limitations in luminosity. The detector design
foresees a central region with a strong solenoidal field and
dipole magnets on either side of the interaction point (perhaps
±2 m away). The design of these magnets will necessarily have
to be done in conjunction with the accelerator group. Issues
such as synchroton radiation loads will need to be evaluated.
In addition, it is critical that the electron beam transverse
momentum be limited to a few megaelectronvolts, as this
quantity cannot be measured but enters into the calculations
of t .

VI. SUMMARY AND DISCUSSION

We have discussed here the physics potential of t measure-
ments. At HERA, the measurement of t distributions allows
determination of the two-gluon proton radius. This radius is
substantially smaller than the proton radius determined in the
electromagnetic interactions, r2g < rp.

To exemplify the potential of such measurements in
future electron-ion colliders, we have considered two simple
examples of coherent and incoherent J/ψ dipole scattering on
nuclei. In the coherent case the nucleus remains intact, while
in the incoherent case the nucleus goes into any excited state or
it disintegrates into nucleonic fragments or nucleons without
production of additional hadrons.

In the coherent case we have computed the predictions of
the dipole model assuming that nucleons are distributed within
the nucleus according to the Woods-Saxon distribution (Fig. 8),
which is mainly determined by scattering on the electric
charges. It is very possible that, as in the proton case, the
nuclear radius and skin parameters can be quite different when
measured by elastic J/ψ scattering. The shape of the expected
cross section and the differences between different predictions
indicate that a measurement resolution of about 10 MeV for
the pT of J/ψ should be sufficient. This number emerges from
the requirement that the first diffractive minimum should be
properly resolved.

Incoherent J/ψ scattering is equally interesting, as the
very good pT resolution combined with the full acceptance
detector discussed here should allow a systematic study of the
two-body correlations. Measurement of the long-range nuclear
correlations could require a measurement resolution of O(1)
MeV in pT of the J/ψ decay products.

The t distribution of the nuclear breakup process will be
measured in correlation with the number and momenta of the
breakup protons and neutrons. This should allow study of the

dissociation process as a function of the transverse momentum
transferred to the nucleus.

Although we have concentrated here on the measurement
of J/ψ decays, it should be clear that the detector that is
optimal for measurements of J/ψ elastic scattering will also
be optimal for measurements of other interactions, like light
vector-meson production and inclusive diffractive or inclusive
total cross sections. The quality of the inclusive measurements
will also profit from the large acceptance detector discussed
here because the coverage of the almost-entire rapidity range
for charge and neutral particles will reduce the systematic
uncertainties in the F2 and FD

2 measurements.
The nuclear effects will also be seen through the measure-

ment of the absolute value of cross sections. The dipole model
predicts these values precisely provided that the scattering
takes place on nucleons within the nucleus that have the same
properties as free protons. Any deviation from the expected
value carries information about nuclear effects. For example,
the total dipole proton cross section σp can be different for
a nucleon in a nucleus than for a proton because a nucleon
within a nucleus can have a different size from that of a
free proton or neutron. This would change considerably the
value of the nuclear dipole cross section and therefore also
the values of the observed diffractive cross sections. By the
same argument the measurement of F2 on nuclei is also
determined by the nuclear properties and will lead to very
interesting saturation effects as discussed in Refs. [17] and
[21]. Saturation is dependent on the size of the scattering
objects, therefore its measurement and the absolute value of the
cross section could indicate on what objects the scattering takes
place.

The measurement of the transverse shape and correlations
combined with the measurements of the total cross sections
and the shadowing effects should allow determination of the
inner structure of gluonic fields that keep the nuclei together.

VII. CONCLUSION

We have shown that scattering of small dipoles can become
an important source of information on the gluonic structure
of nuclei. At high energies, the dipoles interact with nuclei
by a well-understood QCD process in which two gluons, with
large transverse momenta, are exchanged. The difference in
the gluon momenta can be precisely determined by measuring
the transverse momentum of the elastically scattered vector
meson. The J/ψ photoproduction process is particularly well
suited to perform this measurement because it has the largest
cross section and the best measurement precision. The pT of
J/ψ can be measured with a high efficiency and a precision of
O(1) MeV using presently available techniques. This allows
determination of the t distributions with a precision of O(1)
MeV2, starting at t ≈ 0. The upper range of the available
t values depends on the process and can reach O(3) GeV2

with the luminosity foreseen at EIC or LHeC. This allows
investigation of large and/or small gluonic structures that
keep the matter together. It is worth emphasizing that large
structures are investigated by a highly virtual, well-understood
interaction because a small pT of the J/ψ meson is a result
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FIG. 13. (Color online) Elastic
photon-proton scattering at t = 0.

of the difference in two large transverse gluon momenta.
Therefore, dipole measurements will provide high-quality
data of a basic nature, which could lead to solution of the
long-standing puzzle: how strong interactions form matter.
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APPENDIX

A. Derivation of the dipole representation

We give here a derivation of the dipole representation
for elastic γ ∗p → γ ∗p scattering to exemplify the main
properties of the dipole picture. Dipoles incorporate naturally
the interference effects between different quark-gluon cou-
plings that are essential to obtain a proper description of DIS
reactions at low x, namely, color transparency.13 For the sake
of illustration, let us consider the scattering of a longitudinally
polarized virtual photon on a proton. Following the derivation
given in Refs. [8,14,15], we write the total cross section in
the kT factorization form according to the Feynman diagrams
shown in Fig. 1 as

σL = αem

π

∑
f

e2
f

∫
d2�l
l4

αsf (x, l2)
∫

d2�k

×
∫

dz4Q2z2(1 − z)2

(
1

D(�k)
− 1

D(�k + �l)

)
, (A1)

where D(�k) = �k2 + Q̄2 and Q̄2 = z(1 − z)Q2 + m2
f . Here mf

denotes the flavor-dependent quark mass and f (x, l2) denotes
the unintegrated gluon density. In the γ ∗p collinear frame �k
and �l are the two-dimensional transverse momentum vectors
of the quark and the exchanged gluon and z and (1 − z) are the
fractions of the light-cone momentum of the photon carried by
the quarks.

13Although we limit ourselves in this paper to ep and eA scattering,
let us note that the dipole concept, because of its importance in
understanding the QCD evolution [23] and its success at HERA, is
now extensively investigated also in the context of pp scattering at
the LHC [24].

In the elastic forward scattering there are just two pos-
sibilities for gluons to couple to the quarks, shown in the
two diagrams in Fig. 13. Both diagrams should be taken into
account because only then does the important property of color
transparency emerge from the cancellation between the two
propagators in Eq. (A1). In the limit k � l the cancellation
leads to σL ≈ 0, reflecting the intuitively clear fact that a gluon
cannot see a quark pair when its wavelength is much larger
than the distance between the quarks. In this case, the quark
pair will appear as neutral to the gluon.

Color transparency emerges more naturally when the
transverse quark momentum �k is replaced by its Fourier
conjugate �r , the transverse separation between the two quarks.
We then have∫

d2�k
2π

exp(i�k�r)
1

D(�k)
= K0(r · Q̄)

and (
1

D(�k)
− 1

D(�k + �l)

)

=
∫

d2�r
2π

exp(−i�k�r)(1 − exp(−i�l�r))K0(r · Q̄),

with K0 being the Bessel-McDonald function.
The change of variables from �k to �r leads to the dipole

representation,

σL = ImAγ ∗p(x,Q, �� = 0) =
∫

d2�r
∫

dz
∑
f

�∗
L(r, z,Q2)

× σqq (x, r)�L(r, z,Q2), (A2)

in which the wave function �L describes the probability
amplitude to find a qq̄ pair within a virtual incoming or
outgoing photon:

�2
L = 3αem

2π2
e2
f 4Q2z2(1 − z)2K2

0 (r · Q̄).

The dipole cross section σqq describes the interaction of the
qq̄ pair with the proton mediated by the two-gluon exchange.

σqq = 2π

3

∫
d2�l
l4

αsf (x, l2)(1 − e−i�l�r )(1 − ei�l�r )

= 4π2

3

∫
dl2

l4
αsf (x, l2)(1 − J0(lr)).

By introducing the relation between the integrated and the
unintegrated gluon density,

xg(x,Q2) =
∫ Q2

0
dl2f (x, l2)/l2, (A3)
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FIG. 14. (Color online) Transverse density, A TWS(b), for several
light nuclei compared to the proton transverse profile, Tp(b).

and assuming that αs depends on the dipole size only, the
dipole cross section can be further simplified by approximating
(1 − J0(lr)) ≈ (lr)2/4, which is valid for l2 < 1/r2:

σqq = π2

3
αs(1/r2)r2xg(x, 1/r2). (A4)

Here xg(x, µ2) is the gluon distribution that evolves in µ2 =
1/r2 according to the DGLAP evolution equation.

In this representation color transparency becomes a prop-
erty of the dipole cross section; for small dipoles r → 0 and,
also, σqq → 0, as is intuitively clear. The last form of the dipole
cross section was first derived in Ref. [16] in an alternative
way.

B. Woods-Saxon distribution

The distribution of nucleons in the nucleus ρA(r)
is usually parametrized according to the Woods-Saxon
distribution [42],

ρWS(r) = N

exp
( (r−RA)

δ

) + 1
, (A5)

where δ = 0.54 fm, RA = (1.12 fm)A1/3 − (0.86 fm)A−1/3,
and N is adjusted to normalize the distribution to∫

d3�r ρWS(r) = 1. (A6)

The transverse distribution is defined as

TWS(b) =
∫ +∞

−∞
dzρWS(

√
b2 + z2). (A7)

Figure 14 compares the proton shape Tp(b) with the transverse
density TWS(b) for several light nuclei.
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