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Systematic theoretical uncertainties in jet quenching due to gluon kinematics

W. A. Horowitz1,* and B. A. Cole2,†
1Physics Department, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210, USA

2Physics Department, Columbia University, 538 West 120th Street, New York, New York 10027, USA
(Received 9 October 2009; published 17 February 2010)

We find that the current radiative energy loss kernels obtained from the opacity expansion dramatically violate
the collinear approximation used in their derivation. By keeping only the lowest order in collinearity terms,
models based on the opacity expansion have ∼50% systematic uncertainty in the calculation of π0 RAA in the
most central RHIC collisions, resulting in a systematic uncertainty of ∼200% in the extracted medium density.
Surprisingly, the inclusion of a thermal gluon mass of the order of the Debye screening scale affects RAA only at
about the 5% level due to nonintuitive coherence effects. For some observables such as RAA, the effect of these
uncertainties decreases with increasing jet energy; for others, such as the average number of radiated gluons,
the effect is energy independent. We note that it is likely that the differences reported in the extracted values
of medium parameters such as q̂ by various jet energy loss models will fall within this collinear approximation
systematic uncertainty; it is imperative for the quantitative extraction of medium parameters or the possible
falsification of the hypothesis of weak coupling between the hard probes and the soft modes of the quark-gluon
plasma medium that future radiative energy loss research push beyond the lowest-order collinear approximation.
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I. INTRODUCTION

Jet quenching is a unique observable in ultrarelativistic
heavy-ion collisions (URHIC) as high-transverse-momentum
(high-pT ) particles are the most controlled, calibrated, and
direct probe of the fundamental soft degrees of freedom
of quark-gluon plasma (QGP) [1]. Rigorous falsification or
confirmation of fundamentally different qualitative pictures of
the basic physics of QGP (e.g., whether it is strongly or weakly
coupled [2], its relevant degrees of freedom [3–5], etc.) from
comparing theoretical predictions to high-pT data crucially
requires a detailed understanding of both experimental and
theoretical uncertainties.

Once the qualitative picture is fixed, jet tomography [6,7],
the quantitative determination of bulk properties of the QGP
through the study of the attenuation pattern of high-momentum
particles, becomes possible. Jet tomography requires both
high-precision experimental data and a precise theoretical
understanding of partonic energy loss. Recent statistical
analyses by PHENIX [8,9], assuming infinite precision for
theoretical calculations that assume a weakly coupled QGP,
suggest that data are now certain enough to extract medium
properties to within ∼20%. Given that no current perturbative
energy loss model satisfactorily and simultaneously describes
more than one high-pT observable [10,11], such as the level of
suppression and azimuthal anisotropy of the high-pT gluons,
light quarks, and heavy quarks as measured through the light
meson [12–15] and nonphotonic electron nuclear modification
factor [16–19], RAA(pT , φ), and the away-side suppression of
jet-triggered hadrons, IAA [20], it is, perhaps, premature to
claim that even a qualitative understanding of the jet quenching
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of QGP exists. Nevertheless, continuing with the assumption
that current perturbative quantum chromodynamics (pQCD)
models accurately describe the physics, such quantitative
extractions of medium properties can only be meaningful when
the systematic uncertainties in the theoretical calculations
and modeling are both known and included in the system-
atic uncertainties in the extracted quantities. While there
have been some previous qualitative estimates of the theo-
retical uncertainty stemming from the running of the strong
coupling [21,22], the probability leakage of the Poisson
convolution [23,24], and a phenomenological infrared (IR)
cutoff imposed to approximate the effects of a nonzero, thermal

TABLE I. Comparison of the extracted dNg/dy for the work
considered here compared to PHENIX 0%–5% most central π0 data.
Note especially the difference of nearly a factor of 3 in the last three
columns when using radiative energy loss (rad) only. Due to the use of
the collinear approximation, all three of these values should be con-
sidered equally valid determinations of the medium density. The
assumed infinite precision for the elastic channel makes the convolved
radiative + elastic (rad + el) extraction of dNg/dy suffer a smaller
systematic uncertainty than those studied in the radiative channel
alone. Columns 2 and 3 demonstrate the limited influence of the
radiated gluon mass in measuring the medium density. See text for
more details.

x: x+ x+(xE) xE

θmax: π/2 π/4

mg: µ/
√

2 0

Rad Only
3.0+0.7

−0.5 2.4+0.5
−0.4 2.0+0.4

−0.3 4.0+0.9
−0.6 5.9+1.1

−1.0dNg/dy (×1000)

Rad + El
1.0+0.3

−0.1 1.0+0.2
−0.2 0.9+0.2

−0.2 1.3+0.2
−0.2 1.5+0.3

−0.3dNg/dy (×1000)
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gluon mass [25], one of the main purposes of this paper is
to begin the process of rigorously quantifying the combined
experimental uncertainties and systematic theoretical uncer-
tainties in extracted medium parameters. This paper, then, is
complementary to the work of Ref. [26], which demonstrated
through rigorous statistical analysis the crucial importance of
the choice made for the early time energy loss and the lack of
sensitivity to the particular nuclear PDFs chosen.

In particular, we investigate the theoretical uncertainties due
to the collinear approximation and due to different assumptions
regarding the thermal mass of the radiated gluon in the opacity
expansion approach [27–31] for calculating the radiative
energy loss of high-pT partons in pQCD. We also assess
how those uncertainties change when elastic energy loss is
included [32,33]. A summary of our results is reported in
Table I. Most strikingly, we find that keeping only the lowest-
order term in collinearity results in an ∼200% systematic
uncertainty in the value of the extracted gluon rapidity density
for central Au + Au collisions at top RHIC energies. While
this paper does not quantify the uncertainties associated with
the collinear approximation for other pQCD radiative energy
loss models [23,27,34,35], the uncertainties in those models
are almost certainly similar to the results quoted here. In
particular, the sizable discrepancies between the extracted
medium properties obtained by different energy loss groups
[8,9,36] are probably within the current theoretical systematic
uncertainty.

There are, generally speaking, four main pQCD-based
radiative energy loss formalisms applied to URHIC: opacity
expansion (GLV) [7,27,28,30,31], multiple soft scattering
(BDMPS-Z-ASW) [29,37–46], higher-twist (HT) [47–50],
and thermal field theory (AMY) [51–54]. We emphasize that
we are interested in quantifying the systematic theoretical
uncertainty due to the approximations made in the process
of deriving an energy loss formula within any current pQCD-
based formalism; we do not focus on the differences due to
the various physics assumptions that go into the different
formalisms (this is the purview of, e.g., Ref. [36]). In
this work we focus quantitatively on the opacity expansion
approach; see Fig. 1 for a cartoon of the physics involved and
visualizations of the key variables discussed in the text. Within

FIG. 1. (Color online) Cartoon of the production, in-medium en-
ergy loss, and fragmentation processes that may occur perturbatively
for a high-pT parton produced in a heavy-ion collision. Momentum
labels are p for the outgoing parent parton, k for the medium-induced
bremsstrahlung gluon, and q for the momentum transfer between an
in-medium soft degree of freedom and the high-pT parent parton.
Note the ordering of length scales displayed, µ−1 � λ � L.

the GLV formalism one derives an expression for the single
inclusive radiated gluon spectrum, dNg/dx, that is folded
into a Poisson convolution [7] for the distribution of total
radiated energy by the parent parton (see below). Like all
radiative energy loss models, the formalism makes the eikonal
approximation, namely, that the parent parton has a sufficiently
high energy that its path is approximately straight and that
the interference from the away-side jet, O(1/E), may be
safely ignored [55]. The formalism also neglects contributions
from four-gluon vertices and assumes that the parent parton
suffers independent, path-ordered collisions. These choices are
justified in the opacity expansion approach by the assumption
of a medium composed of Debye-screened scattering centers
whose screening length µ−1 � λ is much smaller than the
mean free path of the parent parton [37]. Such an ordering of
scales is consistent with thermal field theoretic estimates for
µ and λ [33,56].

Current evaluations of the diagrams resulting from the
opacity expansion formalism drop a significant number of
terms that are assumed to be small. These approximations
were made for analytic simplicity, but they do not seem
to be inherently required. Specifically, GLV takes: (1) the
collinear approximation, kT � xE, where k is the momentum
of the radiated gluon and kT its component transverse to
the motion of the parent parton; (2) the parent parton path
length much longer than the gluon mean free path, L � λ;
and (3) the soft radiation limit, x � 1, where x is the mo-
mentum fraction taken away by the radiated gluon (discussed
further below). We note that all these assumptions are also
made in the BDMPS and AMY formalisms.1 HT makes
an assumption similar to (2), does not make the soft gluon
approximation (3), but does assume collinearity (1). After
discussing (1) in greater detail we briefly touch on (2) and (3)
further.

This work focuses on the collinear approximation kT � xE

and, more generally, the effects of limiting the phase space
into which gluon bremsstrahlung is allowed to radiate. The
current derivations using the opacity expansion formalism
yield a single inclusive gluon radiation kernel, dNg/dxdkT ,
that knows nothing about the approximations used in its
derivation; in calculating dNg/dx the collinear approximation
is enforced phenomenologically with an ultraviolet (UV)
cutoff in the kT integration. We find that the dNg/dxdkT

kernel maximally violates the assumption of collinearity at
small x. It is not surprising, therefore, that dNg/dx, and
observables dependent on it such as RAA, are highly sensitive
to the O(1) variations of the cutoff one explores in estimating a
systematic theoretical uncertainty. Even worse, as we discuss
further below, the use of only the lowest-order collinear

1In GLV and BDMPS, assumption (2) is used to neglect poles from
propagators multiplied by exp(−µ�z) ≈ exp(−µλ) � 1, where �z

is the distance between successive scattering centers; this approach
is probably invalid for L � λ ∼ 1 fm. On the other hand, AMY uses
the central limit theorem in its Langevin approach and corrections
are likely for L � 30λ ∼ 30 fm; this extra long path length is also
required by the neglect of the interference between vacuum and in-
medium induced radiation.
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term means that collinearly equivalent definitions of x yield
values of medium density extracted from data that differ by
∼100%.

Previous work [25] that investigated a phenomenological kT

cutoff in the IR to approximate a thermal mass of the radiated
gluon found a similarly strong sensitivity to the specifics of
the cutoff. However, we find that, with an explicit derivation of
energy loss for nonzero gluon mass instead of a cutoff imposed
by hand a posteriori, surprising and nontrivial cancellations
yield an energy loss that has little sensitivity to the exact value
of mg .

II. OTHER SOURCES OF UNCERTAINTY

Before returning to the primary focus of the paper—
uncertainties introduced by the collinear approximation—it is
worth enumerating here other potential sources of theoretical
uncertainty that we do not attempt to quantify in this work but
that, nonetheless, could be quite large.

In this paper, we calculate radiative energy loss using the
first-order expression from the opacity expansion; that is, the
single inclusive gluon radiation spectrum is derived by scaling
up diagrams with only a single in-medium scattering for the
parent parton or its bremsstrahlung radiation, as depicted in
Fig. 1, by the average number of scatterings, L/λ. The nth
order in opacity explicitly evaluates the interference terms,
neglected in the lower-order expressions, from diagrams with
n in-medium scatterings. Within the set of approximations
given previously, and assuming that the medium consists of
Debye-screened static scattering centers, the GLV formalism
yields a closed-form expression for dNg/dx to all orders in
opacity. Numerical study of dNg/dx [7,28,56] suggests that it
does receive corrections from higher orders but that these are
relatively small—around the ∼30% level for relatively long
paths, of L = 5 fm, and smaller for shorter paths—for RHIC-
and LHC-like conditions.

The Poisson convolution [7,37] of the dNg/dx kernel is
an attempt to approximate the full probability distribution of
radiative energy loss P (ε), where the fraction of radiated en-
ergy is defined by Ef = (1 − ε)Ei . The convolution assumes
independent, incoherent emission of gluons; the effect of ne-
glecting the interference between two or more emitted gluons
is not currently known. There are also uncertainties associated
with “probability leakage” [7,23]: in model implementations
the parent parton energy is often not dynamically updated
throughout the convolution, leading to the possible violation
of energy conservation (i.e., P (ε) has support for ε > 1). In
this work, we assign the total weight from the convolution at
ε > 1 to a δ function centered at ε = 1 (complete stopping),
the so-called “non-reweighted” approach [23,24]. Studies have
shown that this procedure reproduces reasonably well distri-
butions obtained from Poisson convolution procedures that
dynamically update the parent parton energy [57]. Moreover,
for energy loss calculations based on the GLV formalism, the
leakage tends to be small. When elastic energy loss is included
this leakage is even smaller [58].

A realistic model of jet quenching in URHIC requires a
weighted averaging over a large range of medium path lengths,
0 � L � 12 fm. QGP temperatures at RHIC energies lead to a

gluonic mean free path of λ ∼ 1–2 fm.2 Additionally, even in
the most central collisions, a significant portion of path lengths
has L � 2 fm, and the bias toward the surface from energy loss
makes these shorter paths even more important [23,33]. The
assumption, L � λ, is therefore violated for a large fraction of
energy loss inducing processes. In the RAA calculations in this
work, we simply apply the GLV formalism to all path lengths.
There is an additional uncertainty associated with mapping the
realistic medium density of heavy-ion collisions—with its ap-
proximate Bjorken expansion and nontrivial, time-dependent
transverse density profile—into the static, uniform “brick”
problem in which the analytic formulas were derived.

The small x approximation seems reasonable at RHIC
energies where the single inclusive gluon radiation spectrum
dNg/dx peaks at x ∼ µ/E � 0.05 � 1. The small-x approx-
imation should apply even better at LHC, where E will be
larger by a factor of ∼10. However, the Poisson convolution
widens the original dNg/dx spectrum—no matter how low
the x value of the peak of the spectrum—thus distributing its
weight out to larger values of x. In this way the convolution
introduces a sensitivity to the large-x region of dNg/dx that
is not well controlled due to the x � 1 assumption.

Probably the largest source of uncertainty, likely even
bigger than that due to the collinear approximation that
we detail in this paper, will result from values chosen for
and/or the running of αs [21,22]; because radiative energy
loss varies as α3

s , it is highly sensitive to changes in the
value of the coupling. One factor of αs arises from the
emission of the gluon bremsstrahlung, while the other two
result from interacting with the soft degrees of freedom in
the medium; see Fig. 1. For these last two couplings it is
not even clear what scale should be chosen for the running.
Nevertheless, the momentum transfer q will always probe soft
scales of the order of µ ∼ 0.5 GeV � 	QCD ∼ 0.2 GeV, and
nonperturbative physics will be involved. The lack of a proof
of factorization, whereby these nonperturbative contributions
necessarily become small at high energies, is of course not
particularly comforting.

III. OPACITY EXPANSION ENERGY LOSS KERNEL AND x

The first order in opacity result for the radiated gluon
spectrum assuming massive quarks and gluons and using the
Gyulassy-Wang model of static scattering centers [3], to lowest
order in x and kT /xE, where kT = |k|, is given by [30]

x
dNg

dx
= CRαs

π

L

λ

∫
d2q
π

2d2k
π

µ2

(q2 + µ2)2

× k · q(k − q)2 − β2q · (k − q)

[(k − q)2 + β2]2(k2 + β2)

×
∫

dz

[
1 − cos

(
(k − q)2 + β2

2Ex
z

)]
ρ(z). (1)

2We follow Refs. [33] and [56] by taking λg = 1/ρgσgg , where
ρg = 16ζ (3)T 3/π 2 is the density of a pure glue medium and σgg =
9πα2

s /µ
2 is the tree-level gg → gg elastic scattering cross section.

Note that only the gluonic mean free path is required in the opacity
expansion due to color triviality [28].
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FIG. 2. (Color online) Plot of dNg/dxdkT from Eq. (2) (solid
curve) for a light quark with all masses set to 0, E = 10 GeV, L =
5 fm, and representative values of µ � 0.46 GeV and λ � 1.25 fm
for a medium density of dNg/dy = 1000, similar to RHIC conditions
[33]. Vertical lines show the values of kT used as cutoffs to enforce
collinearity in Eq. (2). Note that with x = 0.025 ∼ µ/E, dNg/dxdkT

is large near kT ∼ kmax, completely in contradiction with the collinear
approximation. The dotted curve, from the unshifted integrand of
Eq. (1), differs only slightly from the spectrum obtained from the
shifted integrand of Eq. (2) (solid curve).

Here, β2 = x2M2 + m2
g , where M is the mass of the parent

parton and mg is the mass of the radiated gluon, CR = CF

for a parent quark, and CR = CA for a parent gluon. The
corresponding result for massless parent quarks/gluons and/or
massless radiated gluons is obtained by setting M and/or mg to
zero in Eq. (1), respectively. After temporarily taking the qT =
|q| medium exchange momentum limit to infinity and making
a change of variables (see Ref. [30] for more details) and,
additionally, assuming an exponentially decaying distribution,
ρ(z), for the distance to the scattering center,3 Eq. (1) becomes

dNg

dx
= 8CRαsµ

2

π x

L

λ

∫
dqT dkT

q3
T

(4xE/L)2 + (
q2

T + β2
)2

× kT

k2
T + β2

k2
T

(
k2
T + µ2 − q2

T

)+ β2
(
q2

T + µ2 − k2
T

)
[(kT − qT )2 + µ2]3/2[(kT + qT )2 +µ2]3/2

.

(2)

We note that supposing the scattering center distribution to be
uniform instead of exponentially decaying appears to make
only a small difference in the gluon spectrum [58].

The integrand in Eq. (2) is both IR and UV safe. In principle,
we could set the lower and upper qT and kT limits of integration
to 0 and ∞, respectively. If the integrand were exact, then

3In general it is necessary to specify the distribution in the difference
in distance between successive scattering centers. In the first order
in opacity case, with only one scattering center, this difference in
distance is between the scattering center and the production point.
One can always take the production point to be at z = 0, and thus in
this case the specified distribution is the distance to the first scattering
center.

FIG. 3. (Color online) Comparison of dNg/dxdkT spectra as a
function of kT with x = 0.5 between GLV (all masses set to zero)
and DGLV (nonzero radiated gluon mass) formulations using both the
shifted integrand of Eq. (2) (solid curves) and the unshifted integrand
of Eq. (1) (dotted curves). The horizontal dashed line at 0 is meant
to guide the eye. The three vertical lines represent the choices of
kmax described in the text. dNg/dxdkT better respects the collinear
approximation for larger values of x, as it has little weight near kT ∼
kmax. At small kT the radiated gluon mass, surprisingly, enhances
radiation for DGLV due to coherence effects; at larger kT the mass
has the expected effect of suppressing dNg/dxdkT .

it would have support only in the physical regions of the
qT and kT integration space. However, due to the small x

and collinear approximations, the integrand violates kinematic
limits: one can clearly see that the integrand in Eq. (2) has
support over all qT and kT (this is also true of the unshifted
integrand, Eq. (1)). We enforce physicality in the hope of better
approximating the exact result by restricting the qT and kT

integration region with cutoffs. A new result from this paper is
a quantitative estimate of the systematic uncertainty that results
from allowingO(1) variations of these cutoffs on some observ-
ables and extracted medium parameters. Surprisingly, we find
that dNg/dx is highly sensitive to variations in the kT UV
cutoff.

For the qT integration we make the usual choices, qmin = 0
and qmax = √

3µE. The value for qmax is, in principle, the max-
imum momentum transfer allowed using relativistic kinemat-
ics, though it has been pointed out that this is no longer correct
with the change of variables q → q + k used in the final steps
leading to Eq. (2).4 Nevertheless, Eq. (2) is rather insensitive
to the qT cutoff [30], and we show later explicit calculations of
dNg/dxdkT using the shifted, Eq. (2), and unshifted, Eq. (1),
integrands. These comparisons in Figs. 2 and 3 demonstrate
that the shifted integrand with the unshifted qmax reproduces
well the results of the unshifted integrand, albeit with minor
artifacts.

Previous work by BDMS [25] found a strong sensitivity
to a phenomenological IR cutoff in the kT integration of the

4We thank Ulrich Heinz for finding this error in logic.
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BDMPS multiple soft scattering calculation, a residual of the
original vacuum radiation IR divergence. They also showed
that the sensitivity of a quenching factor to variations in this
cutoff decreased with increasing parent parton energy. The IR
cutoff was imposed to approximate the influence of a nonzero
thermal gluon mass; we find that including a gluon mass at the
level of the gluon propagators [30] decreases the sensitivity of
the energy loss and calculated RAA (see Table I) to the choice
of gluon mass. This result is due to a nontrivial cancellation of
effects that we will discuss further.

We do find, however, that the radiated gluon spectrum and
resulting parton energy loss are extremely sensitive to the
choice of the UV cutoff in the kT integration. Furthermore,
we find a sensitivity to the particular interpretation of x used
in relating the components of k to the components of p. It
turns out that the derivations of dNg/dx in the literature have
used two different, albeit equal to lowest order in collinearity,
definitions of x. We use the light-cone normalization p± =
p0 ± pz, with inverse p0, z = (p+ ± p−)/2, and denote p0 =
E and p+ = E+. With these conventions the two definitions
of x are (1) the fraction of plus momentum carried away by
the gluon [27,28],

x = x+ ≡ k+/p+ = k+/E+; (3)

and (2) the fraction of energy carried away by the gluon [29],

x = xE ≡ k0/p0 = k0/E. (4)

In the usual notation, where parentheses designate four-
momenta, k = (k0, kz, k), square brackets denote light-cone
momenta, k = [k+, k−, k], and boldfaced variables are the
transverse two-vectors (kT = |k|), we find that the radiated
massless gluon has on-shell momentum

k = (xEE,
√

(xEE)2 − k2, k) =
[
x+E+,

k2

x+E+ , k
]

. (5)

With these definitions of x+ and xE one may derive the exact
relationships,

x+(xE) = 1

2
xE

⎛
⎝1 +

√
1 −

(
kT

xEE

)2
⎞
⎠ , (6)

xE(x+) = x+

(
1 +

(
kT

x+E+

)2
)

, (7)

where we have assumed that the initial parent parton momen-
tum is P = (E, E, 0), and, hence, E+ = 2E. These relation-
ships are exact; therefore x+(xE(x+)) = x+ and xE(x+(xE)) =
xE . From the formulas, it is easy to see that in the collinear
limit, x+ = xE , so it is natural that the integrand in Eq. (2) is
the same when derived using these two different definitions
of x: in one case terms of order kT /xEE are dropped,
whereas in the other terms of order kT /x+E+ are dropped.
Thus dNg/dx+dkT dqT (x+) = dNg/dxEdkT dqT (xE) in the
collinear limit.

There are two justifications for, and there are two deriva-
tions of, the kT cutoff in the literature: (1) when interpreting x

as xE , kmax = xEE keeps k always real (note that in the x = x+
representation, k is real regardless of the value of kT ) [44]; (2)
when interpreting x as x+, kmax = x+E+ enforces forward

emission (k+ � k−) [59].5 In this work, we interpret kmax as
enforcing consistency with the collinear approximation. It is,
then, useful to determine that cutoff from a physical condition
independent of the interpretation of x; we choose to set kmax by
requiring that the emitted radiation be within a cone of angle
θmax centered on the direction of the parent parton. In this way
we may control the collinearity of the radiation by varying the
maximum angle of emission allowed. Simple trigonometry
relates

kmax =
{
x+E+ tan(θmax/2), x = x+,

xEE sin(θmax), x = xE.
(8)

In particular, when θmax = π/2

kmax =
{
x+E+ = 2x+E, x = x+,

xEE, x = xE,
(9)

and we see that the two original justifications of the kmax cutoff
are manifestations of the same physical condition, namely,
forward emission. It is worth emphasizing that, with kmax given
by Eq. (9), for any numerically equal value of x+ and xE the
integrand in Eq. (2) is integrated out twice as far in kT when
interpreting x as x+ as opposed to when interpreting x as
xE . We note that a previous study [45] also varied the upper
limit of the kT integration. However, that work investigated the
radiation into jet cones of various sizes; here we are interested
in quantifying the impact of regions of kT space over which
there is currently little or no theoretical control.

If the integrand of Eq. (2) respected the assumptions that
went into its derivation over the entire integration region, then
it would have little weight for kT ∼ xE. However, Fig. 2
shows that there are values of x for which dNg/dxdkT has
large contributions from kT ∼ xE. In fact, we should expect
such a result: the Debye mass µ is the natural scale for
kT , and dNg/dxdkT will always have a significant weight
at kT ∼ µ. As a result, varying kmax ∼ xE will always lead
to large changes in dNg/dx near x ∼ µ/E. In the kinematic
regime relevant for RHIC and LHC, numerical study suggests
that (1) dNg/dx(x) reaches its maximum at x ∼ µ/E and
(2) dNg/dxdkT (x ∼ µ/E, kT ) reaches its maximum at kT ∼
kmax; for x ∼ µ/E the maximum value of dNg/dx rises
quadratically with kmax. These observations imply a dramatic
sensitivity of dNg/dx—and any quantities derived from it—to
the precise choice of kmax. Increasing the radiating parton
energy decreases the region of x over which dNg/dx is highly
sensitive to the cutoff, x � µ/E. Naively, then, one might
expect that increasing E would decrease the sensitivity of
observables calculated from dNg/dx to variations of kmax.
However, we show below that even this expectation does not
generally hold.

Figure 3 shows that, as expected, as x increases, the
assumption of collinearity, kT � xE, becomes a better ap-
proximation: dNg/dxdkT has little weight near kT ∼ kmax,

5An even more restrictive cutoff for kT results if one also requires
forward propagation of the parent parton [7]. Surprisingly this tighter
cutoff, which forbids support for dN/dx for x > 1 and therefore
enforces energy conservation, leads to only a small change in dNg/dx

[58], and we do not use it here.

024909-5



W. A. HOROWITZ AND B. A. COLE PHYSICAL REVIEW C 81, 024909 (2010)

and therefore, for these larger values of x, dNg/dx has
less sensitivity to the exact choice of kmax. One may also
observe in Fig. 3 the negative values of dNg/dxdkT for the
massless case at small values of kT . These negative values are
due to the destructive interference between the zeroth-order
vacuum production radiation (the QCD analog of the usual
β-decay radiation spectrum from QED) and the first-order
medium-induced radiation. The interference is controlled by
the ratio of the radiating parton path length L and the coherence
length,

τcoh = 2xE

q2
T + β2

, (10)

found by examining the cosine term in Eq. (2) (qT enters τcoh

here due to the shift in integration variables qT → qT + kT

upon going from Eq. (1) to Eq. (2)). For larger values of
x the coherence length τcoh is longer, and the destructive
interference more important; hence dNg/dxdkT is negative
for small values of kT for the massless results shown in
Fig. 3 but not in Fig. 2. Including a nonzero mass for the
radiated gluon reduces τcoh and, therefore, the influence of
the destructive interference. As a result, for small values of
kT the dNg/dxdkT spectrum is actually enhanced for the
massive compared to the massless case. At larger values of
kT the nonzero thermal gluon mass exhibits the expected
effect of suppressing bremsstrahlung radiation. Unfortunately,
then, introducing a phenomenological kT cutoff in the IR
into a massless dNg/dx formula does not capture well the
complicated dynamics resulting from allowing the radiated
gluons to pick up a nonzero thermal mass from the medium.
More readily visible in Fig. 3 than in Fig. 2 is the removal of
the minor artifacts from the shift in integration variable when
evaluating the unshifted integrand of Eq. (1).

The ambiguity in the interpretation of x has consequences
beyond the differences in the corresponding limits of the kT

integration. The gluon dNg/dx distributions obtained from
Eq. (2) using the two different x definitions imply different
gluon energy spectra and, thus, different amounts of jet
quenching. These differences will clearly contribute to the
systematic uncertainty in the interpretation of experimental
data using the opacity expansion formalism and any other
energy loss formalism that invokes the same or similar
collinear approximations. Furthermore, to better understand
the consequences of the different physical pictures used in
different formalisms—for example, by comparing the gluon
spectra produced by GLV (traditionally interpreting x as x+)
and BDMPS-Z-ASW (x as xE)—one wants all results in
terms of the same variables. As a first step we examine an
“apples-to-apples” comparison between results derived from
the two interpretations of x solely within the opacity expansion
approach.

There is an additional problem with energy loss calcu-
lations that interpret x in Eq. (2) as x+: evaluation of the
Poisson convolution P (ε), where ε is explicitly an energy
fraction. Previous models that assumed the x+ interpretation
in dNg/dx invoked the collinear approximation to directly
use dNg/dx+(x+) unmodified as the input for the Poisson
convolution. As we have shown, this is a poor assumption.

To compare the two interpretations of x within GLV and
to quantify the effect of assuming dNg/dx+ ≈ dNg/dxE

in finding P (ε), we need to transform dNg/dx+(x+) to
dNg/dxE(xE), which requires the use of a Jacobian:

dNJ
g

dxE

(xE) ≡
∫ xEE sin(θmax)

dkT

dx+
dxE

dNg

dx+dkT

(x+(xE)), (11)

dx+
dxE

= 1

2

⎡
⎣1 +

(
1 −

(
kT

xEE

)2
)−1/2

⎤
⎦ . (12)

Note the change in the upper limit of integration in Eq. (11)
as dictated by the basic rules of calculus. The Jacobian,
Eq. (12), is strictly >1 and is singular as kT → xEE; the
competing effects between it and the numerically smaller kmax

on dNJ
g /dxE and energy loss is discussed in further detail

below.

IV. QUANTITATIVE COMPARISONS

We now wish to quantify the effects of the different
x interpretations, kmax values, and gluon mass treatments
on dNg/dx and its derived quantities, such as P (ε), the
medium parameter dNg/dy extracted from RAA, and the total
radiated gluon multiplicity 〈Ng〉. We do so by using five
implementations of radiative energy loss; see Table II. In the
first three calculations we use the x = x+ interpretation and
θmax = π/2; in the first two we do not include the effect of the
dx+/dxE Jacobian. In the first calculation we assume radiated
gluons acquire a thermal mass of the order of the Debye scale,
mg = µ/

√
2. The second calculation is the same as the first but

with mg → 0. The third is the same as the second but includes
the Jacobian transformation from x+ to xE . In the last two
calculations we adopt the x = xE interpretation from the start:
in the fourth we take θmax = π/2, and in the fifth, θmax = π/4.

We show in Fig. 4, top (bottom) panel, the dramatic dif-
ference between the “equivalent” dNg/dxE spectra obtained
using the two interpretations of x and taking E = 10 GeV,
L = 5 fm (L = 1 fm), µ ≈ 0.46 GeV, and λ ≈ 1.26 fm as
representative RHIC values. Also shown in the figure is the
large reduction in dNg/dx as θmax is reduced from π/2 to π/4.
That reduction in the spectrum demonstrates the importance
of large-angle gluon emission despite the assumption of
collinearity. Figure 5, top panel, shows the dramatic reduction
in dNg/dx with the introduction of a thermal gluon mass for
the aforementioned parameter values; the bottom panel shows

TABLE II. Descriptions of the five main radiative energy loss
implementations investigated in this work and their names as listed
in diagrams. See text for details.

Name x Jacobian θmax mg

x+, mg = µ/
√

2 x+ No π/2 µ/
√

2
x+, mg = 0 x+ No π/2 0
x+(xE), θmax = π/2 x+ Yes π/2 0
xE , θmax = π/2 xE No π/2 0
xE , θmax = π/4 xE No π/4 0

024909-6



SYSTEMATIC THEORETICAL UNCERTAINTIES IN JET . . . PHYSICAL REVIEW C 81, 024909 (2010)

FIG. 4. (Color online) Comparison of dNg/dxE(xE) for a
10 GeV quark using typical RHIC medium parameters and L = 5 fm
(top) or L = 1 fm (bottom) for the collinearly equivalent expressions
dNg/dx from Eq. (2) with the x = xE interpretation and x+(xE)
from Eq. (11). Also shown is dNg/dx from Eq. (2) with x = xE and
θmax = π/4, to explore the systematic uncertainty in the choice of
kmax. The inset (bottom) shows results on a linear scale for clarity.

that for shorter path lengths, such as L = 1 fm, the inclusion
of a thermal mass for the radiated gluon can actually enhance
the emission of bremsstrahlung radiation.

The only difference between the xE and the x+(xE) curves,
theoretically indistinguishable to lowest order in collinearity,
in Fig. 4 comes from terms of O((kT /xEE)2) and higher.
Figure 6 quantifies the reduction of the effect of these terms
as we decrease θmax from 90◦ to 30◦.

It is also worthwhile to consider the “apples-to-oranges”
comparison of the x+(xE) curve in Fig. 4 and the x+, mg = 0
curve in Fig. 5 (top panel). In particular, we observe that
the former has a reduced peak height at x ∼ µ/E but is
larger for higher values of x. This generic behavior is due
to a nontrivial interplay between the Jacobian, which always
multiplies the dNg/dx+dkT integrand by a number >1,
and the numerically reduced kmax = xEE used in Eq. (11).
Figure 3 shows that the collinear approximation is better at
larger values of x as demonstrated by the small values of
dNg/dxdkT at kT ∼ kmax compared to those at lower kT .

FIG. 5. (Color online) Comparison of dNg/dxE(xE) from GLV
and DGLV (mg = µ/

√
2) for an E = 10 GeV quark using typical

RHIC medium parameters and L = 5 fm (top) or L = 1 fm (bottom).
The inset (bottom) shows results on a linear scale for clarity.
Note the enhancement of dNg/dx at L = 1 fm for the massive
case.

The Jacobian, though, introduces an integrable divergence
at kT = xEE, so the x+(xE) curve is systematically larger
than the x+ curve at larger values of x. Since the total gluon
yield 〈Ng〉 must be unmodified by a change in integration
variables, the increased yield at larger x must come at the
expense of gluon yield at smaller values of x; hence, the
numerical reduction in kmax wins in this small-x region. This
redistribution of probability means that 〈x〉 from x+(xE) is
always greater than 〈x〉 from x+. For any given set of medium
parameters and path length, 〈Ng〉 must be the same for both
the x+(xE) and the x+ implementations; because 〈x〉 is always
larger for the former, using x+(xE) will always produce a
smaller RAA than x+. For any given θmax, dNg/dxdkT with
x = x+ is integrated out to a larger kmax than for x = xE .
Therefore, the x+ interpretation will always yield a smaller
RAA than the xE interpretation. Using similar reasoning the
xE calculation with θmax = π/2 will always generate a smaller
RAA than the xE with θmax = π/4 calculation. Based on these
arguments we expect that the extracted medium parameter
dNg/dy will be ordered from smallest to largest according
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FIG. 6. (Color online) Ratios of gluon spectra obtained from
Eq. (11), dNJ

g /dxE(xE), to that obtained from Eq. (2) with x = xE ,
dNg/dxE(xE), as a function of xE for different choices of θmax.
Smaller maximum opening angles produce a decreased sensitivity
to the collinear approximation.

to x+(xE), x+, xE with θmax = π/2, and xE with θmax =
π/4. The dNg/dy values obtained via the statistical analysis
(described later) and listed in Table I demonstrate exactly this
ordering.

A crucial ingredient for any jet quenching calculation is
P (ε), the probability distribution for the fraction of energy
ε radiated by a high-pT parton. Described previously, P (ε)
is obtained via a Poisson convolution of the single inclusive
radiated gluon spectrum, dNg/dy, assuming the independent
emission of the multiple radiated gluons. P (ε) can be decom-
posed into discrete and continuous pieces,

P (ε) = P 0δ(ε) + P̃ (ε) + P 1δ(1 − ε). (13)

P 0 is the probability of radiating no gluons (and hence no
energy loss) and is given by

P 0 = exp(−〈Ng〉). (14)

P 1 encodes the probability “leakage,” the probability that the
radiating parton loses a fraction of energy greater than unity,
that results from the assumption of independent emissions
used here. We show in Fig. 7 the P (ε) generated from four
of the dNg/dx curves investigated in this work (themselves
displayed in Figs. 4 and 5): x+ with mg = 0, x+(xE), xE with
θmax = π/2, and xE with θmax = π/4. The ordering of the
average fractional energy loss 〈ε〉 (represented by the vertical
lines in Fig. 7) is consistent with the qualitative arguments
described in the previous paragraph. As noted previously 〈Ng〉
is identical for the x+ and x+(xE) models; hence, P 0 is also
identical for the two. Previous evaluations of P (ε) using the x+
interpretation approximated dNg/dx+(x+) ≈ dNg/dxE(xE).
We find a systematic, though small, difference between the 〈ε〉
from this approximation and that resulting from the correct
transformation of dNg/dx+ to dNJ

g /dxE ; the modest variation
in P (ε) also produces only an ∼10%–20% change in the
extracted dNg/dy. The continuous parts of P (ε), P̃ (ε), have
the expected ordering: from smallest to largest according to
xE with θmax = π/4, xE with θmax = π/2, x+. This ordering

FIG. 7. (Color online) Plots of P (ε) for a 10-GeV quark in typical
RHIC conditions with L = 5 fm (top) and L = 1 fm (bottom). P (ε)
obtained by convolving the single inclusive spectra dNg/dx shown
in Figs. 4 and 5. Vertical lines represent the 〈ε〉 for each P (ε)
distribution. Symbols represent the weight of the δ functions at ε = 0
and ε = 1. The inset (bottom) shows results on a linear scale for
clarity.

follows simply from the integration of the dNg/dxdkT curves
out to successively larger kmax. The nontrivial ordering of P̃ (ε)
for the x+ and x+(xE) interpretations shows explicitly the
redistribution of probability from smaller to larger ε due to the
combined effects of the Jacobian, Eq. (12), and the numerically
reduced kmax of Eq. (11).

Ultimately, we wish to quantify the effects on extracted
medium parameters of (1) the two collinearly equivalent
interpretations of x, (2) varying of kmax (via θmax), and (3)
the thermal mass of the gluon. We focus here on π0 RAA(pT )
measurements obtained from the 5% most central Au + Au
collisions at

√
s = 200 AGeV [8]. We follow WHDG [33] in

the implementation of energy loss: leading-order pQCD-based
production spectra for gluons and light quarks, followed by
in-medium energy loss, and, finally, KKP fragmentation into
pions. Initial-state effects such as Cronin enhancement and
shadowing are neglected; as such the pT dependence of RAA

here is stronger than in works that describe the trend of the
data better [27].
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So far in this paper we have only discussed medium-induced
gluon radiation, and for one set of RAA calculations we
continue to use purely radiative energy loss. However, it is
known that for pQCD in the kinematic regimes appropriate to
RHIC and even LHC, elastic scattering results in energy loss
of the same order of magnitude as that from radiative energy
loss [32,33,60]; collisional energy loss makes a significant
contribution to the total leading particle suppression at RHIC
and LHC [33,61]. Therefore, we also calculate RAA using
convolved inelastic and collisional loss. We use the Braaten-
Thoma calculation [62,63] of the mean elastic energy loss
and use the fluctuation-dissipation theorem to estimate the
width of the elastic energy loss distribution [33]. These
assumptions are a poor approximation for RHIC conditions
because the number of collisions is typically too small for the
central limit theorem to apply. Hence, Gaussian distributions
do not do a good job of representing the actual, highly
skewed distributions involved; substantially improved results
were derived in Ref. [57]. However, for the purposes of this
paper we do not assess the theoretical uncertainties resulting
from the treatment of the elastic channel (in particular, we
do not vary within reason the kinematics in the collisional
calculations); this is a very interesting question in its own
right.

For the radiative energy loss calculation, we include the full
multigluon fluctuations through the Poisson convolution. We
also account for path-length fluctuations due to parent parton
production points and trajectories in the medium for both
inelastic and collisional loss with an approximate implementa-
tion of Bjorken expansion [33]. A standard Glauber modeling
of the medium with a diffuse Woods-Saxon nuclear density
function is used [33]. Specifically, hard production is assumed
to scale with binary collisions; the medium density is assumed
to follow participant scaling. As shown in Ref. [26] this
geometry yields results in good agreement with those found
when using a medium density given by full 3 + 1-dimensional
ideal hydrodynamics and is sufficient for the purposes of
this paper. The strong coupling constant is held fixed at
αs = 0.3. We use thermal field theory to relate µ = gT and
λ = 1/ρσ , with σ ∝ 1/µ2 [33]. The only independent variable
left is the single input parameter dNg/dy, the rapidity density
of gluons in the pure glue QGP assumed here (increasing
dNg/dy increases the medium density and decreases RAA).
The rigorous statistical analysis of Refs. [8] and [9] was then
used to determine the value and 1 − σ uncertainty of dNg/dy

that yields a theoretical curve that “best fits” the data, given
the experimental statistical and systematic errors.

We show in Fig. 8 the PHENIX measurement of π0

RAA(pT )for the 5% most central collisions and the best-fit
curves to the data for the five different implementations
of the radiative energy loss considered in this paper (see
Table II) for both purely radiative energy loss (top panel) and
convolved radiative and elastic loss (bottom panel). We note
that, when compared at similar centrality bins, the STAR [64]
measurements of π+ + π− RAA systematically differ from
the shown PHENIX [8] π0 RAA by as much as ∼50%.
Such a discrepancy represents a potential source of additional
systematic uncertainty in extracted medium properties that we
do not attempt to evaluate here.

FIG. 8. (Color online) The “best-fit” curves of the five models
discussed in the text to PHENIX measurements of the 5% most
central π 0 RAA [8]: top, including only radiative energy loss; bottom,
including both radiative and collisional energy loss. Fits performed
using the methods of Refs. [8] and [9]. Uncorrelated errors are
represented by bars, whereas correlated errors are shown as gray
boxes, and there is an overall scale uncertainty of ±12% not shown.

The results in Fig. 8 indicate that the extracted dNg/dy

values for the massive (mg = µ/
√

2) and massless (mg = 0)
emitted gluon cases are quite similar despite the large differ-
ences in dNg/dx for large path lengths (Fig. 5, top panel).
As we have shown this behavior is due to the interaction of
the effects of a thermal gluon mass on the coherence length
and the radiation kernel. As the path length decreases, the
difference between the massive and the massless integrated
dNg/dx decreases until eventually the massive distribution
exceeds the massless one. For central RHIC collisions the
results shown in Fig. 5 (bottom panel) indicate that this path
length is ∼1 fm. As noted in Ref. [25] physical observables
are quite sensitive to the specific numerical choice of the IR
cutoff taken when used to approximate the inclusion of a
thermal mass for the radiated gluon. The lack of sensitivity
to the particular choice of gluon mass shown in this paper is a
pleasant surprise. For the convolved energy loss, the extracted
medium density is consistent for massive and massless radiated
gluons. For identical values of dNg/dy the massless case
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yields a smaller RAA; that the extracted medium parameter
is consistent is likely due to the statistical analysis trading
off goodness of fit in the normalization of RAA for slightly
different pT dependencies.

Addressing the primary goal of this paper, we observe
from the results in Fig. 8 that the extracted values of
dNg/dy for the radiative-only energy loss models, x+(xE),
xE with θmax = π/2, and xE with θmax = π/4, vary by
almost 200%. It cannot be overemphasized that the first two
cases—for which dNg/dy varies by ∼100%—are exactly
equivalent under the collinear assumption used in the energy
loss derivation. As discussed previously, for any particular
θmax, x+(xE) produces the smallest RAA. Thus, x+(xE) with
θmax = π/2 represents a lower bound on RAAfor fixed medium
parameters. Unfortunately, it is not possible to rigorously
define an upper bound to the theoretical uncertainty of RAA,
as decreasing θmax → 0 makes RAA → 1. We choose the
values of observables calculated from the xE with θmax = π/4
implementation as a working definition of the upper bound. We
consider this θmax as representing a reasonable O(1) variation
of the coefficient of the kT cutoff that necessarily increases
RAA for a given medium density; the surprise, of course, is
just how sensitive RAA is to such a variation of the cutoff. We
did not explicitly calculate the combined effects of including a
nonzero thermal gluon mass and the Jacobian transformation
from the x+ to xE interpretation.6 However, because the gluon
mass tends to affect the dNg/dxdkT distribution most at small
kT , while the Jacobian tends to affect dNg/dxdkT most at
large kT , we expect the two effects to roughly factorize. It
is worth noting that the larger dNg/dy values extracted using
the radiative-energy-loss-only models are difficult to reconcile
with known RHIC dNch/dy multiplicities [65].

The last row in Table I lists the values of the medium
density extracted when elastic energy loss is considered in
addition to inelastic in “best-fit” jet quenching comparisons
to data. Note that there is no attempt to quantify the
uncertainties in the magnitude of the elastic energy loss; the
same collisional energy loss formula is convolved with each
different implementation of radiative energy loss. It is clear
from Table I that the collisional energy loss is quantitatively
a very important contribution to the total energy loss suffered
by a high-pT parton: the extracted values of dNg/dy are all
reduced by a factor of ∼2–4 when both energy loss channels
are exploited. We expect this reduction in the extracted medium
parameter to increase as the magnitude of radiative energy
loss is decreased compared with the elastic; we see exactly
this progression in Table I. As the elastic energy loss is
assumed to have infinite precision for the purposes of this
paper, the systematic theoretical uncertainty of the extracted
value of dNg/dy from the collisional approximation and the
uncertainty in the specific value of the thermal gluon mass
in the radiative energy loss channel necessarily decrease (to

6Including both effects simultaneously would cause the transforma-
tion functions, Eqs. (6) and (7), to change such that k2

T → k2
T + m2

g;
hence k2

T → k2
T + m2

g in the Jacobian, Eq. (12). The singularity in the
Jacobian will again occur at the maximum upper limit of integration,
now given by kmax = √

(xEE)2 − m2
g .

FIG. 9. (Color online) Ratios of a toy RAA model (top) and ratios
of the average number of emitted gluons 〈N〉 (bottom) as a function
of parent quark energy for the five models discussed in the text.
Collinear and gluon mass effects die out with increasing energy for
the toy RAA but do not for 〈N〉.

about 67%). One can also see in Table I that both the zero and
the nonzero thermal gluon mass cases yield the same extracted
value of dNg/dy, despite the systematic extra suppression in
RAA(pT ) for the zero-mass curve. That the extracted dNg/dy

is the same for both is likely due to a trade-off in the statistical
analysis in which a better (or worse) fit to the local slope of
the data can be compensated for by a worse (or better) fit to
the overall normalization.

An important question that must be addressed is whether
or not the sensitivity of extracted medium properties to
variations in the implementation of the collinear approxi-
mation decreases with increasing radiating parton energy.
To address this question, we show in Fig. 9 a “toy model”
quark partonic RAA(pT ) calculation for an L = 5 fm fixed
path length and typical RHIC medium parameters used
previously. The sensitivity of the partonic RAA(pT ) to different
implementations of the collinear approximation decreases
with increasing parton energy. For example, the �100%
difference at 5 GeV between the collinearly equivalent x+(xE)
and xE interpretations decreases to �10% at 200 GeV. But
we observe that the number of emitted gluons 〈Ng〉 remains
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sensitive to the uncertainties introduced by the collinear
approximation; the factor-of-∼2 difference in 〈Ng〉 shown in
Fig. 9 is nearly energy independent.

The convergence of the ratios of RAA(pT )with increasing
energy can be understood at least partly as a consequence of the
small-x pileup in dNg/dx. For an energy loss model with P (ε)
and a power law production spectrum dN/dpT ∝ p

−(n+1)
T , we

have that RAA(pT ) � ∫
(1 − ε)nP (ε; pT )dε. Then for any two

models, say 1 and 2,

R1
AA

R2
AA

(pT ) � 1 − n(〈ε1〉(pT ) − 〈ε2〉(pT )), (15)

and the ratio of modification factors automatically approaches
1 as the mean energy loss decreases with increasing pT . On the
other hand, the constancy of 〈Ng〉 in pT is due to the surprising
energy independence of the area under the peak in the dNg/dx

distribution. As the energy increases, the distribution becomes
more sharply peaked, and its normalization becomes more and
more dominated by this energy-independent area.

V. CONCLUSIONS

In the Introduction, we laid out the numerous approxi-
mations used in deriving the opacity expansion energy loss
formulas. In one form or another, these assumptions are
at the foundation of the four energy loss calculations that
are frequently compared to RHIC data. In particular, these
calculations all rely on the lowest-order term in a collinear ex-
pansion, where the small parameter is kT /xE. Unfortunately,
we have found that the opacity expansion energy loss kernel
dNg/dxdkT drastically violates the collinear approximation
for small values of x, the region of x most important for
computing many observables, including the leading particle
suppression and the average number of emitted bremsstrahlung
gluons. While we did not explicitly check this violation for the
other energy loss formalisms, it is highly likely they also will
be similarly strongly affected by the large-angle radiation that,
by assumption of collinearity, is not under theoretical control.

To leading order in collinearity, the two common definitions
of x used in energy loss calculations—x = x+, the fraction
of light-cone plus momentum, and x = xE , the fraction of
energy taken away by the radiated gluon—are equivalent. We
found that for RHIC conditions, the “best-fit” medium density
dNg/dy extracted using these two different, but collinearly
equivalent, definitions of x varies by a factor of ∼2.

While one may use the x+(xE) interpretation with θmax =
π/2 as a natural lower bound for the systematic theoretical
uncertainty of RAA, the upper bound is less obvious. We take
the results from the xE and θmax = π/4 as a working definition;
in this case the extracted medium density increases another
∼50% over the xE and θmax = π/2 model. We note that there
is no sense of a “central value” or Gaussian distribution for this
uncertainty band: the rigorous notion of a “best” interpretation
of x or the “correct” UV cutoff for the lowest-order collinear
results does not exist prior to a calculation based on a more
exact analytic derivation.

The extracted medium density is a factor of ∼2–4 smaller
when collisional energy loss is included in addition to radiative.

The elastic energy loss therefore contributes significantly even
for the implementations with the largest radiative energy loss,
x+(xE) with θmax = π/2. The uncertainties we quote decrease
significantly when elastic energy loss is included, although
the effects of uncertainty in the collisional channel were
not considered here. While the leading particle RAA appears
to suffer less systematic uncertainty at LHC energies, the
uncertainty in other observables, such as the mean number
of emitted gluons, are energy independent. Finally, the effect
of a thermal gluon mass on the extracted medium density
is surprisingly small due to nontrivial coherence effects. The
latter result implies that the specifics of the short-path-length
energy loss behavior are very important; future work should,
therefore, go beyond the L � λ approximation.

One of the great debates over the past several years has
been the so-called “discrepancy” of extracted medium param-
eters from the four energy loss models. An oversimplified
description would be that the densities found when comparing
energy loss models based on the four pQCD formalisms
mentioned in the Introduction (GLV, BDMPS-Z-ASW, HT,
AMY) differ by a factor of ∼4–5 [8,9,36]. It is natural and
right to begin any calculation with assumptions about the
relevant and irrelevant physics of the problem. However, that
the four models include and exclude vastly different physics

FIG. 10. Schematic comparison of q̂0 for the four radiative energy
loss formalisms including an estimate of the uncertainty due only
to the use of the collinear approximation. The uncertainty bounds
are made with the assumption that the other formalisms suffer the
same 295% uncertainty as does the Rad-Only GLV model used here.
The open circles for the ASW, HT, and AMY formalisms represent
the values of q̂0 assuming temperature scaling as reported in Ref. [36].
Since the ASW and AMY formalisms use Minkowski coordinates,
the open circles are at the center of the band; because HT uses
light-cone coordinates, its open circle is at the left of the band. The
extracted dNg/dy values reported in Table I are converted using
q̂ = µ2/λ, similar in spirit to the pure temperature scaling assumed
for the other formalisms, with τ0 = 0.6 fm; for central RHIC Au + Au
collisions one can approximately convert 1 q̂0 to 700 dNg/dy, as
shown explicitly on the upper x-axis label. The open circle for GLV
is set at the left of the band, as previous comparisons with data used
light-cone coordinates [7,33,66].

024909-11



W. A. HOROWITZ AND B. A. COLE PHYSICAL REVIEW C 81, 024909 (2010)

implies to us that any consistency found must be considered
coincidental—even surprising. We see the path forward not in
teasing out the origins of the extracted difference but in finding
observables that can falsify the basic assumptions about the
relevant physics of the quark gluon plasma. Is the medium
strongly or weakly coupled? What are its degrees of freedom?
If energy loss is perturbative, are parton interactions with the
medium better approximated by many soft scatterings or a few
hard ones? To answer these questions we must have not only
well-controlled experiments but also well-controlled theories.
It is, thus, imperative that quantitative estimates be made of
the systematic uncertainty introduced into theoretical results
from the simplifying assumptions—distinct from the physics
assumptions—made in the calculation.

As discussed previously there is no notion of “one standard
deviation” of theoretical uncertainty associated with the
collinear approximation. Moreover, we have not quantified the
consequences of the collinear approximation for the other three
energy loss models, although this is both an extremely interest-
ing and a clearly important problem. Nevertheless, we strongly
suspect that should this uncertainty be quantified for the other
models, then the different values of medium density so far
extracted from data would be mutually consistent within the
systematic theoretical uncertainties; see Fig. 10. As we have
shown in this work, any hope for a quantitative extraction of
medium density from high-pT physics at RHIC using the GLV
formalism requires a far more careful treatment of noncollinear

radiation; this is almost certainly true for the AMY, BDMPS-
Z-ASW, and HT formalisms too. It is interesting that at LHC
the leading particle suppression seems to be a rather collinearly
safe observable, whereas the average number of emitted gluons
and the spectrum of soft gluons is not. This suggests that—
at our current level of theoretical understanding—leading
particle observables and jets measured using narrower cones
may provide more sensitive tests of jet quenching at the
LHC than, for example, full jet reconstruction with large
cones.
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