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Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions
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We perform viscous hydrodynamic calculations in 2 + 1 dimensions to investigate the influence of bulk
viscosity on the viscous suppression of elliptic flow in noncentral heavy-ion collisions at Relativistic Heavy
Ion Collider energies. Bulk and shear viscous effects on the evolution of radial and elliptic flow are studied
with different model assumptions for the transport coefficients. We find that the temperature dependence of the
relaxation time for the bulk viscous pressure, especially its critical slowing-down near the quark-hadron phase
transition at Tc, partially offsets effects from the strong growth of the bulk viscosity itself near Tc and that even
small values of the specific shear viscosity η/s of the fireball matter can be extracted without large uncertainties
from poorly controlled bulk viscous effects.
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I. INTRODUCTION

A question of widespread interest is that of the specific
shear viscosity (shear viscosity per entropy density η/s) of the
quark-gluon plasma (QGP) created in nuclear collisions at the
Relativistic Heavy Ion Collider (RHIC). Ideal (i.e., inviscid)
fluid dynamics has been quite successful in describing the
transverse momentum (pT ) spectra and the elliptic flow
coefficient v2(pT ) of the bulk of the thousands of particles
created in each, say, Au + Au collision [1]. The agreement
between theory and experiments improves further when one
interfaces a (3 + 1)-dimensional ideal-fluid description of the
QGP phase with a hadron cascade during the late expansion
stage, to properly account for the highly viscous evolution after
hadronization of the QGP [3]. This success strongly suggests
that the QGP fireball created at RHIC thermalizes very quickly
and behaves like an almost-perfect liquid [4], which implies
that it must be a strongly coupled plasma [5–7].

On the other hand, the quantum mechanical uncertainty
relation places a fundamental lower bound on the specific
shear viscosity of any medium [8], and explicit computation
in a large class of very strongly coupled quantum field theories
(unfortunately not including QCD) suggests that this limit is
close to the so-called KSS bound η

s
|KSS = 1

4π
≈ 0.08 [9,10].

While this is a very small number (almost two orders of
magnitude smaller than that of any other known (real) fluid
[10,11], with the possible exception of strongly interacting
systems of ultracold fermionic atoms near the unitarity limit
[12,13]), it is known that the anisotropic elliptic flow generated
in noncentral relativistic heavy-ion collisions is very sensitive
to shear viscosity [14,15]. The roots of this sensitivity lie in
the exceedingly rapid expansion of the heavy-ion collision
fireballs, especially during the early expansion stage, which
is characterized by very large components of the velocity
shear tensor [8]. Recent progress in performing causal rela-
tivistic hydrodynamical simulations of viscous fluids in 2 + 1
dimensions [16–28] revealed that even very small specific
shear viscosities, close to the KSS bound, should leave easily
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identifiable experimental signatures, in particular, through a
suppression of elliptic flow. In the experimental data this
suppression is not large enough to lead to immediate failure of
the ideal-fluid approach, suggesting that the QGP viscosity, in
the temperature region probed by RHIC collisions, must also
be close to the KSS bound [29–33].

Viscous hydrodynamics, in comparison with experimental
data, allows in principle for an accurate determination of η/s.
In practice, this requires excellent control of several other
inputs that either are presently not known with sufficient
accuracy or have not yet been correctly implemented in the
numerical simulations [34]. The largest prevailing uncertainty
is related to the initial source deformation that drives the
elliptic flow, which is presently not known to better than
20%–30% [2,22,35,36] (see, however, recent suggestions for
eliminating this error source [37,38]). As shown in Ref. [22],
this leads at present to anO(100%) uncertainty in the extracted
η/s value. Two other effects of similar magnitude, which,
however, work against each other and may largely cancel, are
strong viscous effects [2] and the nonequilibrium chemical
composition [39–43] in the late hadronic phase. Finally (and
this is the point of the present paper), bulk viscous effects
must be included in any study that aims to extract the specific
shear viscosity [34,44]. However, even when making generous
allowances for all these uncertainties, it appears clear that the
effective shear viscosity-to-entropy ratio of the QGP, averaged
over the expansion history of the fireballs created in RHIC
collisions, cannot exceed the conservative upper limit,

η

s

∣∣∣
QGP

< 5 × 1

4π
.

This makes the QGP the most perfect liquid ever observed in
the laboratory.

In the present paper we use the (2 + 1)-dimensional viscous
relativistic fluid dynamic code VISH2+1 [18,20,21] to study
the effects of bulk viscosity and their interplay with shear
viscosity in the buildup of radial and elliptic flow. Some
preliminary results were reported in Refs. [34] and [44]
(see also Ref. [45] for related work). Our work is preceded
by three (0 + 1)-dimensional studies for systems undergoing
boost-invariant longitudinal expansion without transverse flow
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[46–48] that explored the suggestion by Torrieri, Tomášik,
and Mishustin [49] that, in rapidly expanding fireballs, bulk
viscosity can lead to such large negative bulk pressures that
the fluid becomes mechanically unstable against clustering and
cavitation. Because bulk viscosity is expected to be maximal
near the quark-hadron phase transition (see discussion in
Sec. II), those studies predicted that bulk viscous effects
become important mostly during the second half of the fireball
expansion when the QGP undergoes hadronization. At that
time the scalar expansion rate θ ≡ ∂µuµ [where uµ(x) is
the flow four-velocity], which, for one-dimensional boost-
invariant expansion, equals θ = 1/τ (where τ = √

t2 − z2 is
the longitudinal proper time, with z indicating the longitudinal
or beam direction), is already small enough to significantly
temper the growth (in magnitude) of the (negative) bulk
pressure, leading to instability problems only for relatively
large peak values for the specific bulk viscosity ζ/s [46–48].

Our work improves on these analyses by including a
realistic initial transverse density profile and the resulting
transverse flow in the fireball. This has two important con-
sequences. (i) The transverse flow increases the expansion
rate θ , leading to larger bulk pressures |�| for a given ζ/s.
(ii) Some of the matter near the dilute transverse edge of the
fireball experiences large bulk viscosities already at very early
times where the expansion rate θ ∼ 1/τ is high. This leads
to much more severe problems with mechanical instability
in VISH2+1 than for simple one-dimensional expansion and
to correspondingly smaller values for the upper limit of
ζ/s that allows for stable hydrodynamic evolution. Even
more restrictive than the condition for mechanical stability
is the self-consistency constraint for the validity of viscous
hydrodynamics itself: the entire framework, which is based
on a near-equilibrium expansion, breaks down when viscous
corrections to the local equilibrium distribution function
become comparable to the thermal equilibrium terms. We show
that this happens, for particles with typical momenta p ∼ 3T ,
even before the effective total pressure becomes negative and
mechanical instability sets in.1 While the formalism may
be able to qualitatively indicate where and when cavitation
sets in [46–48], we doubt that the phenomenon itself can
be self-consistently described within the existing viscous
hydrodynamic frameworks.

Obviously, viscous hydrodynamics can predict the viscous
suppression of elliptic flow reliably only within its domain of
validity. We therefore restrict our attention to the parameter
range where the bulk viscous pressure stays everywhere suf-
ficiently small that stable hydrodynamic evolution is ensured.
Within that range (which we determine), we study the effects
of bulk viscosity and of the microscopic relaxation time for

1This argument assumes that the fluid is sufficiently weakly coupled
that a microscopic kinetic description in terms of quasiparticle distri-
bution functions makes sense. We do not know how to generalize this
argument to strongly coupled field theories that have no particle in-
terpretation. We suggest that the criterion (|�| + |πµν |)/(e + p) � 1
(where |πµν | is the largest viscous pressure component) defines
the domain of validity of (second-order) viscous hydrodynamics,
irrespective of the microscopic structure of the fluid.

the bulk viscous pressure on radial and elliptic flow, with and
without additional shear viscosity. For a fluid with constant
specific shear viscosity η/s = 1/(4π ), we find that, depending
on initial conditions and details of the temperature dependence
of the relaxation time, bulk viscosity increases the viscous
suppression of v2(pT ) by 5%–50%. This large range indicates
not only that bulk viscosity is a potentially serious contaminant
in the extraction of the specific shear viscosity η/s from elliptic
flow data, but also that a robust theoretical effort is needed
to better constrain the range of reasonable values for the
bulk viscosity and its associated relaxation time. We find that
the uncertainty range is drastically reduced, to the 10%–20%
level, if we impose proportionality between the specific bulk
viscosity and its associated relaxation time, as indicated by
kinetic theory. The critical growth of the specific bulk viscosity
near the quark-hadron phase transition is then accompanied
by critical slowing-down of the dynamics of the viscous bulk
pressure. This diminishes the bulk viscous contribution to the
viscous suppression of elliptic flow.

The paper is organized as follows. In Sec. II we review
the present state of knowledge of the temperature dependence
of the specific bulk and shear viscosities, ζ/s and η/s, and
their associated microscopic relaxation times. Based on this
analysis we introduce specific parametrizations for (ζ/s)(T )
and the bulk pressure relaxation time τ�(T ), which we use
later in the numerical simulations. Section III gives a brief
summary of specific features of the viscous hydrodynamic
equations solved in this work, referring to earlier work for a
more general description. In Sec. IV we discuss generic effects
of bulk and shear viscosity on the hydrodynamic evolution of
fireball eccentricity and flow and their implications for the
final hadron spectra and elliptic flow. Section V discusses
the sensitivity of bulk viscous effects to the initialization
of the bulk viscous pressure and to its relaxation time. In
Sec. VI we explore the range of bulk viscosities that allows for
stable viscous hydrodynamic evolution. Consequences of bulk
viscous effects for the extraction of the specific shear viscosity
η/s from experimental elliptic flow data are discussed in
Sec. VII, before we summarize our findings in Sec. VIII.

II. VISCOSITIES AND RELAXATION TIMES

The present state of knowledge of the viscous properties
of strongly interacting matter at high temperatures is nicely
reviewed in Ref. [50], to which we refer for details. Kinetic
theory [51] and experiment [10,11] show that, for nonrelativis-
tic fluids, the specific shear viscosity η/s typically reaches
a minimum near the liquid-gas phase transition, rising both
toward lower temperatures in the liquid phase and toward
higher temperatures in the gas phase. Lattice QCD [52],
perturbative QCD [53], and hadron cascade simulations [54]
indicate that relativistic QCD matter behaves analogously,
but with the liquid and gas phases interchanged (the liquid
QGP phase exists at higher temperatures than the hadronic
gas phase). According to perturbative [53] and lattice [52]
QCD, the increase in η/s with temperature in the QGP
phase is weak over the temperature range explored in RHIC
collisions, suggesting the use of a constant η/s for the
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QGP in hydrodynamic simulations. Here we use the smallest
value for this constant permitted by the KSS conjecture [10],
η

s
|KSS = 1

4π
≈ 0.08, to extract reasonable upper bounds for

the uncertainties introduced by bulk viscous effects into the
extraction of such a small value from experimental data. (We
note that the assumption of a constant η/s is unacceptable
for quantitative attempts to extract it from heavy-ion collision
data; at least, one must account for a significant increase in this
ratio during hadronization and in the late hadronic phase [54].)

The relaxation time τπ for the shear viscous pressure
tensor πµν has been computed for a relativistic Boltzmann gas
[55,56], in weakly coupled QCD [57], in lattice QCD [58], and
inN = 4 SYM theory at infinite coupling [59–61]. The results
can be presented in the form τπ = λ

T

η

s
, with λ bracketed by

2 <∼ λ <∼ 6. Here we use τπ = 3
T

η

s
= 1.5

2πT
.

Theoretical knowledge of the specific bulk viscosity ζ/s is
more murky. For a noninteracting system of massless quanta it
vanishes exactly, owing to conformal invariance. Interactions
lead to deviations from zero that usually remain small, except
near phase transitions, where the system may develop large
correlation lengths [62–64]. Kinetic theory gives ζ/η = κ( 1

3 −
c2
s )2, where κ = 5/3 in relaxation time approximation [66] and

κ = 15 for a system of photons radiated by massive particles
in thermal equilibrium [67]. The complete leading-order result
for weakly coupled QCD [68] is roughly consistent with the
latter of these two but adds a weak (decreasing) temperature
dependence. At high temperatures c2

s ≈ 1
3 , so the ratio ζ/η is

small, of second order, in the deviation. For strongly coupled
N = 4 SYM theory one obtains a lower bound for this ratio
that is only linear in this deviation and thus much larger: ζ/η �
2( 1

3−c2
s ) [69]. For the hadron gas different authors [70–72]

agree that ζ/η � 1 just below Tc and that this ratio decreases
toward lower temperatures. There is no agreement on the sign
of the temperature dependence of the specific bulk viscosity
ζ/s itself, which, according to Ref. [70], increases toward
lower temperature for massive pions but decreaes for massless
pions [72]. However, there are general arguments [63,73] that
support the idea that ζ/s should peak near the quark-hadron
phase transition, owing to long-range correlations related to
the restoration of chiral symmetry; at a second-order critical
point ζ/s is predicted to diverge [64,65].

We assume here that ζ/s quickly approaches zero once T

decreases below Tc; above Tc, we parametrize it as ζ

s
= 1

2π
( 1

3 −
c2
s ) [which corresponds to the Buchel bound [69] for η/s =

1/(4π )], using c2
s (T ) extracted from the same lattice QCD data

[74] that we used for our equation of state (EOS L; see Ref. [21]
for details). The factor ( 1

3 − c2
s ) increases as we approach

Tc from above; the resulting increase in ζ/s is qualitatively,
but not quantitatively, consistent with a direct extraction of
ζ/s from lattice QCD [75] (for a critical discussion of this
extraction see Ref. [64]) and with recent work in “holographic
QCD” [76]. We connect our parametrization above Tc to the
assumed zero value for ζ/s well below Tc by interpolating
with a Gaussian function (see Fig. 1). This results in a peak
value (ζ/s)(Tc) � 0.04: about half as big as our choice for
the (temperature-independent) specific shear viscosity η/s and
consistent with strong coupling estimates for strongly coupled
conformal field theories using the AdS/CFT correspondence
[77] (which was also used by Buchel in deriving his bound)
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FIG. 1. Parametrization of the specific bulk viscosity ζ/s as a
function of temperature. C is a multiplicative scaling factor for the
entire function; see text.

and with holographic QCD [76]. It is, however, more than 10
times smaller than both the lattice QCD value extracted by
Meyer [75] and a recent AdS/CFT-based estimate by Buchel
for a nonconformal plasma [65]. We will see that this factor
10 has crucial implications for the applicability of viscous
hydrodynamics. To simulate larger bulk viscosities, we scale
the function shown in Fig. 1 (which we refer to as “minimal
bulk viscosity” for brevity) by a constant factor C > 1.

Finally, we must specify the relaxation time τ� for the
bulk viscous pressure �, about which even less is known
theoretically. In Israel-Stewart theory (in both its macroscopic
and its microscopic kinetic formulation [55]), one has τ� =
ζβ0, where β0 is some combination of thermal equilibrium
integrals. This suggests that, if ζ/s peaks near Tc, owing to
growing correlation lengths, so does the relaxation time τ�

for the bulk pressure (“critical slowing-down”).2 Buchel [65]
found that in theories where the specific heat diverges at Tc,
cV ∼ 1/

√|1 − Tc/T |, the relaxation time can actually diverge
at Tc even if ζ/s remains finite, that is, as T → Tc, τ� grows
more strongly than ζ/s (see also the discussion in Ref. [64]).
We use the parametrization

τ�(T ) = max

[
τ̃ ·ζ

s
(T ), 0.1 fm

]
, with τ̃ = 120 fm/c.

(1)

This increases linearly with ζ/s as T → Tc but imposes
a nonzero lower bound on τ�, for reasons of numerical
stability of VISH2+1. For comparison we also study two
constant relaxation time values, τ� = 0.5 and 5 fm/c, roughly
corresponding to the smallest and largest values of Eq. (1) for
temperatures 1 � T/Tc � 2 if we set C = 1.

III. VISCOUS HYDRODYNAMICS

We solve the following second-order viscous hydrodynamic
equations (“Israel-Stewart equations” [55,78–80]),

dµT µν = 0, T µν = euµuν − (p+�)�µν + πµν, (2)

2We thank K. Dusling for a personal communication on this point.
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�µα�νβDπαβ = − 1

τπ

(πµν−2ησµν)

−1

2
πµν ηT

τπ

dλ

(
τπ

ηT
uλ

)
, (3)

D� = − 1

τ�

(� + ζθ ) − 1

2
�

ζT

τ�

dλ

(
τ�

ζT
uλ

)
,

(4)

in the two transverse spatial directions and time [(2 + 1)-d],
implementing boost-invariant longitudinal expansion along
the beam direction. We assume zero net baryon density and
thus vanishing heat conductivity. Here T µν is the energy mo-
mentum tensor, πµν is the shear pressure tensor, and � is the
bulk pressure. dµ denotes the covariant derivative components
(see Refs. [16] and [24] for details) in the curvilear coordinates
(τ, x, y, ηs), where τ = √

t2−z2 is the longitudinal proper
time and ηs = 1

2 ln[(t + z)/(t − z)] is the space-time rapidity.
�µν = gµν−uµuν projects onto the spatial components in
the local rest frame [here gµν = diag(1,−1,−1,−1/τ 2) is
the metric tensor in (τ, x, y, ηs) coordinates]; ∇µ = �µνdν

is the spatial gradient, and D = uµdµ is the time derivative
in that frame. The driving forces for the shear and bulk
viscous pressures are the (symmetric and traceless) velocity
stress tensor σµν = ∇〈µuν〉 ≡ 1

2 (∇µuν+∇νuµ) − 1
3�µνθ and

the scalar expansion rate θ = dνu
ν = ∇νu

ν , respectively. The
shear and bulk viscosities η and ζ and their associated
relaxation times τπ and τ� have been discussed in the
preceding section.

The last terms in Eqs. (3) and (4) are of second order
in deviations from local equilibrium. For conformal systems
they can be written in various equivalent forms, up to
higher-order corrections [21]. Even for nonconformal systems,
such as QCD with the EOS L used here (see later), the
difference between the terms as written here and their various
conformal approximations are numerically insignificant [21]
unless inconsistently large relaxation times are used. Other
second-order terms that should be allowed for on the right-hand
sides of Eqs. (3) and (4) were identified in Refs. [59] and [81],
and some of their coefficients were derived in the weak
coupling limit in Ref. [57]. Recent code verification efforts by
the TECHQM Collaboration [82] indicate that these additional
terms have very little numerical influence. We therefore ignore
them in the present study.

The explicit form of Eqs. (2)–(4) for longitudinally
boost-invariant (i.e., ηs-independent) systems is given in
Ref. [16]. The equations are closed by providing an equa-
tion of state, for which we use EOS L as described in
Ref. [21]. We study Au + Au collisions with the same
initial conditions for the starting time, τ0 = 0.6 fm/c, and
Glauber model initial energy density profiles as in Ref. [21],
with peak density e0 ≡ e(r = 0, τ0; b = 0) = 30 GeV/fm3

in central (b = 0) collisions. For the viscous pressures
we use either zero [�(x, y, τ0; b) = πµν(x, y, τ0; b) = 0] or
Navier-Stokes initial conditions [�(x, y, τ0; b) = −ζθ (τ0)
and πµν(x, y, τ0; b) = 2ησµν(τ0)], calculated from the initial
velocity profile (which does not depend on x, y, and b, owing
to the absence of initial transverse flow). The actual choice
is noted in the discussion of the results. As in Ref. [21]

we end the hydrodynamic evolution and compute the final
hadron spectra on a freeze-out surface of constant temperature
Tdec = 130 MeV.

IV. VISCOUS EVOLUTION AND SPECTRA:
GENERIC FEATURES

In this section we compare generic effects on the hy-
drodynamic evolution and final particle spectra caused by
shear and bulk viscous effects separately. (Their combined
effects are explored in Sec. V to Sec. VII.) To this end we
perform hydrodynamic comparison runs for central (b = 0)
and noncentral (b = 7 fm) Au + Au collisions, using identical
initial and freeze-out conditions, for (i) an ideal fluid, (ii)
a viscous fluid with only minimal shear viscosity, η

s
= 1

4π
,

and (iii) a viscous fluid with only “minimal bulk viscosity”
(C = 1) as defined in Sec. II. In the viscous runs we choose
Navier-Stokes initial conditions for the viscous pressures and
equal relaxation times, τπ = τ� = 3η/sT . (As a caveat we
note that in the bulk viscous case, results can depend sensitively
on the initial conditions, depending on the characteristics of the
relaxation time for the bulk viscous pressure; see discussion
in Sec. V.) The results for case (ii) supplement those for
the smaller Cu + Cu collision system studied in Refs. [18]
and [20] [although for a more realistic equation of state
and using Eq. (3) instead of the “simplified Israel-Stewart
equation” employed in those earlier papers].

A. Hydrodynamic evolution

Figure 2(a) shows the time evolution of the local temper-
ature in central Au + Au collisions for the three cases. [We
plot the temperature at a radius r = 3 fm from the fireball
center, as at r = 0 the curves for cases (i) and (iii) are
almost indistinguishable.] Compared with the ideal fluid, shear
viscosity reduces the work done by longitudinal pressure and
thus slows down the cooling process during the early stage;
during the middle and late stages, shear viscosity accelerates
the cooling, as the positive transverse shear pressure leads to
stronger radial flow than for the ideal fluid [see Fig. 2(b) and
Ref. [20] for a full discussion]. At late times, the shear viscous
fireball thus cools more rapidly than the ideal fluid [18,20].

Bulk viscosity, on the other hand, reduces the work done
in all three directions, owing to the isotropic negative bulk
pressure � ∼ −ζθ driven by the positive expansion rate
θ > 0. As a result, radial flow develops less rapidly than
for the ideal fluid [Fig. 2(b)], and the bulk viscous fluid
cools (slightly) more slowly than the ideal one during all
expansion stages [Fig. 2(a)]. While the expansion rate is
highest at very early times, the bulk viscosity then is very
small throughout the fireball, except for a thin region near the
transverse edge of the fireball where the matter is close to Tc;
bulk viscous effects are therefore almost negligible until most
of the matter cools down to Tc. At this time the longitudinal
expansion rate has significantly decreased, but transverse
expansion picks up some of the the slack, and we see significant
bulk viscous effects on radial flow evolution between 5 and
10 fm/c. Surprisingly, the consequences for the cooling rate
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FIG. 2. (Color online) Time evolution of the local temperature
(a) and average radial flow (b), from ideal hydrodynamics (dashed
blue line), viscous hydrodynamics with only minimal shear (solid
red line) or bulk (solid light-brown line) viscosity. In (b) the average
radial flow is calculated with the Lorentz contracted energy density
γ⊥e in the transverse plane as a weight function. The inset in
(a) shows the late evolution with increased resolution.

are significantly smaller than in the shear viscous case: with
the parameters studied here, the cooling rates for the ideal and
bulk viscous fluids almost agree.

We now turn to noncentral collisions. To describe the
fireball deformations in configuration and momentum space,
we use the spatial eccentricity εx = 〈〈y2−x2〉〉

〈〈y2+x2〉〉 (where 〈〈· · ·〉〉
denotes an energy density weighted average over the transverse

plane [83]) and the momentum anisotropies εp = 〈T xx
0 −T

yy

0 〉
〈T xx

0 +T
yy

0 〉
(defined in terms of unweighted averages over the transverse
plane of components of the ideal-fluid part of the energy-
momentum tensor and, thus, measuring only the collective
flow anisotropy [20]) and ε′

p = 〈T xx−T yy 〉
〈T xx+T yy 〉 (defined in terms

of the total energy-momentum tensor, which contains the
viscous pressure components and thus additionally includes
microscopic momentum anisotropies in the local rest frame of
the fluid [20]).

Figure 3(a) shows the time evolution of the spatial ec-
centricity εx for noncentral Au + Au collisions at b = 7 fm.
Compared with the ideal fluid, bulk viscosity decelerates,
whereas shear viscosity initially accelerates, the decrease in the
spatial eccentricity εx with time. This is a direct consequence
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FIG. 3. (Color online) Time evolution of spatial eccentricity εx

(a) and momentum anisotropy εp , ε′
p (b), from ideal and viscous

hydrodynamics (see text for details). In (b), the different symbols
along the bulk viscous fluid lines indicate central (r = 0) freeze-
out times for different freeze-out temperatures as described in
the key.

of the weaker radial flow in the bulk viscous case and the
stronger radial flow in the shear viscous case. It is easy
to see that isotropic radial expansion is enough to decrease
the spatial eccentricity εx [83]; anisotropic flow, with higher
flow velocities in the reaction plane than perpendicular to
it, only accelerates the rate at which it decreases. At late
times, the eccentricity for the shear viscous fluid decreases
more slowly than for the ideal one, as the ideal fluid develops
stronger elliptic flow [see Fig. 3(b) and following discussion].
In contrast, in the bulk viscous case the slower rate of decrease
in the eccentricity is caused by weaker radial flow.

As the spatial eccentricity of the fireball decreases, its
momentum anisotropy increases. This is shown in Fig. 3(b).
The dash-dotted lines for εp, which takes only the ideal-fluid
part, T

µν

0 = (e + p)uµuν − pgµν , of the energy-momentum
tensor into account, show how hydrodynamic forces convert
the spatial anisotropy into a flow anisotropy. We observe that
at early times the flow anisotropy εp rides on the developing
radial flow: compared to the ideal fluid, εp develops a little
faster in the shear viscous fluid but a little more slowly
in the bulk viscous case, following the evolution of radial
flow.

The difference between εp (dash-dotted lines) and ε′
p

(solid lines) stems from the viscous pressure components
in the energy-momentum tensor. It reflects a contribution to
the momentum anisotropy that arises not from anisotropic
collective flow but from viscous deviations from isotropy of
the microscopic momentum distribution, f = feq + δf , in the
local fluid rest frame [20], accounted for by the nonideal terms

024905-5



HUICHAO SONG AND ULRICH HEINZ PHYSICAL REVIEW C 81, 024905 (2010)

0 0.5 1 1.5 2
p

T
(GeV)

10
-1

10
0

10
1

10
2

(1
/2

π)
dN

/d
yp

T
dp

T
(G

eV
-2

)

ideal hydro
viscous hydro (shear only)
viscous hydro (bulk only)

π−
Au+Au, b=0 fm, EOS L

e
0
=30GeV/fm

3
, 

(a)

τ0=0.6fm/c

T
dec

=130 MeV

0 0.5 1 1.5 2
p

T
(GeV)

0

0.1

0.2

v 2

ideal hydro
viscous hydro (shear only)
viscous hydro (bulk only)

0 0.1 0.2 0.3 0.4 0.5
p

T
(GeV)

0

0.02

0.04

0.06v

(b)

2 Au+Au, b=7 fm
 EOS L

FIG. 4. (Color online) pT spectra and elliptic flow v2(pT ) for directly emitted pions (i.e., without resonance decay contributions).

in T µν . Figure 3(b) shows that for the shear viscous fluid
these viscous corrections are large and negative (reflecting
local momentum anisotropies pointing out of the reaction
plane [20], that is, opposite to the flow anisotropy), especially
at early times, when the expansion rate and shear velocity
components σµν are large. In contrast, the bulk viscous
fluid shows significant viscous corrections only after about
2.5 fm/c, lasting until about 8 fm/c, which is when, in these
noncentral (b = 7 fm) Au + Au collisions, the bulk of the
matter passes through the phase transition where ζ/s is large
[cf. the temperature markers on the curves shown in Fig. 3(b)].
The bulk viscous pressure contribution to ε′

p is positive, that is,
pointing into the reaction plane, parallel to the collective flow
anisotropy. (This was also recently pointed out by Monnai and
Hirano [84].)

For both shear and bulk viscosity, the sign of the viscous
pressure contributions to ε′

p obeys a “Lenz rule”: they act
against the radial-flow-driven effects on the momentum
anisotropy. At late times these contributions become small
in both cases: in the bulk viscous case, driven by the rapid
disappearance of ζ below Tc (as modeled by us), and in the
shear viscous case, by the more gradual vanishing of the shear
velocity tensor σµν [20]. We see that in the bulk viscous case
the radial flow effect on ε′

p eventually wins over that from the
local deviation from equilibrium δf , whereas the opposite is
true for the shear viscous fluid. In both cases, the net effect
at freeze-out is thus a viscous suppression of the momentum
anisotropy below the ideal fluid limit [see purple asterisks in
Fig. 3(b)]. The viscous suppression of ε′

p resulting from shear
viscosity is four to five times stronger than that arising from
bulk viscosity.

B. Spectra and elliptic flow

From the hydrodynamic output at decoupling temperature
Tdec the spectra and their azimuthal anisotropy, in particular,
the elliptic flow coefficient v2(pT ), are computed with a
modified Cooper-Frye algorithm that takes into account that
in viscous hydrodynamics the local phase-space distribution
f (x, p) on the freeze-out surface deviates slightly from ther-
mal equilibrium, f = feq + δf , owing to small but nonzero

viscous pressure components [15,20,85].3 Figure 4(a) shows
the pion pT spectra for central Au + Au collisions from
ideal and viscous hydrodynamics. Compared to the spectrum
from ideal-fluid dynamics, shear viscosity leads to flatter
spectra while bulk viscosity generates steeper ones. This is
a direct reflection of the stronger radial flow caused by the
positive transverse shear pressure and the weaker radial flow
resulting from the negative bulk viscous pressure. The slightly
larger normalization of the viscous spectra is a consequence
of viscous entropy production, which leads to larger final
multiplicities [21,85].

Figure 4(a) shows that shear and bulk viscosity act against
each other in how they affect the slope of the pT spectra.
When both viscosities are included together in the viscous
calculations, this reduces the amount of readjustment needed
in the initial conditions when fitting the measured transverse
momentum spectra with viscous instead of ideal-fluid dynam-
ics [85]. The differential elliptic flow v2(pT ) for soft pions, on
the contrary, is affected by both bulk and shear viscosity in the
same way: Fig. 4(b) shows that the viscous reduction of ε′

p in
Fig. 3(b) translates directly into reduced elliptic flow v2 in the
final hadron spectra. This is true, in particular, in the low-pT

region, pT < 1 GeV/c [see inset in Fig. 4(b)]. At larger pT ,
the shear viscous v2 suppression increases further, owing to a
negative contribution from δf along the freeze-out surface. In
contrast, the bulk viscosity increases v2(pT ) above 1 GeV/c

because it results in steeper pT spectra. At pT = 0.5 GeV/c

(approximately the mean transverse momentum for pions), we
find that minimal bulk viscosity suppresses v2 by ∼5%, while
minimal shear viscosity leads to a suppression of ∼20%.

If this were the complete story, the additional ∼5% bulk
viscous v2 suppression would lead to an ∼25% reduction of the
value for η/s that one might extract from experimental elliptic
flow data, by comparing them with an ideal-fluid dynamical
baseline as proposed in Ref. [22]. This is a non-negligible

3We note that in our calculations the bulk viscous pressure � ≈ 0
on the Tdec = 130 MeV freeze-out surface, as our parametrization of
the bulk viscosity gives (ζ/s)(Tdec) = 0 (see Fig. 1). Accordingly, the
bulk viscous pressure � does not contribute to the deviation δf from
local equilibrium on the freeze-out surface.
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drodynamics. Different curves correspond to different initializations
and relaxation times, as indicated (see text for discussion).

effect. Because the input for the bulk viscosity used in our
calculations is fraught with large theoretical uncertainties,
as discussed in Sec. II, this points to a likelihood for
correspondingly large uncertainties in the empirical extraction
of η/s from the experiment. In Sec. V we follow this line
of thought further, by investigating the additional sensitivity
of bulk viscous effects to the initial conditions for the bulk
viscous pressure and to its relaxation time.

V. SENSITIVITY OF BULK VISCOUS DYNAMICS
TO INITIAL CONDITIONS AND RELAXATION TIMES

In this section we focus entirely on bulk viscosity and
investigate what happens when we change the initial value
for the bulk viscous pressure � and its relaxation time τ�. We
study only “minimal bulk viscosity” as defined in Sec. II (i.e.,
C = 1), leaving the discussion of larger values to Sec. VI.

Figure 5 shows, for peripheral Au + Au collisions at b = 7
fm, the differential elliptic flow for pions [Fig. 5(a)] and
the time evolution of the average value of the bulk viscous
pressure 〈�〉 [Fig. 5(b)], for the two initial conditions (zero
and Navier-Stokes) for � and the three choices of relaxation
time scales τ� discussed in Sec. II. At pT = 0.5 GeV/c,
Fig. 5(a) indicates a bulk viscous v2 suppression that ranges
(for C = 1) from ∼2% to ∼10%. For the short relaxation time

τ� = 0.5 fm/c (solid and dotted green lines), the suppression
is insensitive to the initialization of �, yielding about 8%
suppression below the ideal-fluid value at pT = 0.5 GeV/c

for both zero and Navier-Stokes initial values. Figure 5(b)
explains the underlying reason for this observation: for this
short relaxation time, 〈�〉 quickly loses all memory of its initial
value, relaxing for both initial conditions to the same trajectory
after ∼1–2 fm/c (i.e., after a few relaxation times, similar to
what we saw earlier [20] for the shear pressure components).
This also demonstrates that most of the finally observed bulk
viscous v2 suppression is generated during the middle part
of the expansion, when most of the matter cools through the
phase transition. If it were dominated by large negative bulk
viscous pressures in the outer shell of the fireball at early
times, we should see stronger sensitivity to the initial value
for �.

This changes completely if we choose a 10 times longer
relaxation time, τ� = 5 fm/c (solid and dotted magenta lines
in Fig. 5). Now the bulk viscous v2 suppression becomes
extremely sensitive to the initialization of �. For zero initial-
ization, the average bulk pressure 〈�〉 always remains small,
leading to very small [O(2%)] final suppression effects for v2.
For Navier-Stokes intialization, 〈�〉 is initially very large and
negative (owing to the large initial expansion rate), and instead
of relaxing to smaller values as predicted by Navier-Stokes
theory (and realized by the solid green line, corresponding to
short τ�), it remains larger than the Navier-Stokes value for
about 4 fm/c. As shown in Fig. 5(a), this leads to the much
larger v2 suppression of about 10%.

The “critical slowing-down” scenario, which uses a
temperature-dependent relaxation time that follows the be-
havior of (ζ/s)(T ) is shown by the solid and dash-dotted
black curves in Fig. 5. In this case the bulk viscous pressure
quickly relaxes to its Navier-Stokes value in the interior of
the fireball, where the temperature is high and the relaxation
time is short; near the edge of the fireball, however, where
the temperature is near Tc and the relaxation time is long, it
remembers its initial value (either zero or the large negative
initial Navier-Stokes value) for a long period. With some
reflection, one convinces oneself that this implies that, for
both zero and Navier-Stokes initializations, the magnitude
of the average bulk viscous pressure 〈�〉 remains below
the value observed for the short relaxation time. This is
evident in Fig. 5(b) upon comparing the black and green
curves. Correspondingly, the viscous v2 suppression shown
in Fig. 5(a) is, for both initializations, smaller for the critical-
slowing-down scenario than for a short constant relaxation
time. Comparing the critical-slowing-down scenario with the
long constant relaxation time, the viscous v2 suppression is
significantly smaller for Navier-Stokes initialization [O(7%)
vs. O(10%)] and about equally small [O(2%)] for zero
initialization.

Because these findings contradict at least our own naive
first expectations, we briefly reiterate the main point: taking
into account the critical slowing-down of the bulk viscous
pressure dynamics near Tc, where ζ/s becomes large, leads
to weaker bulk viscous suppression effects on the elliptic flow
than seen for both short and long constant (i.e., T -independent)
relaxation times τ�.
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VI. LARGER ζ/s AND THE BREAKDOWN OF VISCOUS
FLUID DYNAMICS

As noted in Sec. II, the peak value of ζ/s in our
parametrization shown in Fig. 1 is about 10 times smaller
than some other estimates [65,75]. When one tries to simply
multiply the function shown in Fig. 1 by C = 10, one finds that
(except for special circumstances discussed here) the viscous
hydrodynamic code crashes. The reason is that sufficiently
large bulk viscosity can lead to fireball regions where the
effective total isotropic pressure p + � (thermal + bulk vis-
cous pressure) becomes negative and the medium becomes
mechanically unstable and will tend to break up [46–49]. In
fact, because certain components of the shear viscous pressure
(in particular, its longitudinal component πηη) are usually also
negative, instability can set in even somewhat earlier [47,48].
In numerical simulations this manifests itself through the
exponential amplification of local numerical errors that will
eventually stop the code from running.

We point out that, even before the fluid becomes mechan-
ically unstable, one has left the region of applicability of
viscous hydrodynamics. The viscous hydrodynamic formalism
is based on a near-equilibrium expansion; its validity assumes
that the viscous corrections to the energy-momentum tensor
are small compared with the ideal-fluid terms. In other words,
if the condition (|�| + |πµν |)/(e + p) � 1 is violated for any
component (µν), the evolution based on Eqs. (2)–(4) can no
longer be trusted. Ignoring the shear pressure and setting e +
p = sT ≈ 4p for a QGP, the instability threshold p + � = 0
translates into |�|/(e + p) ≈ 1

4 , which is not sufficiently small
to trust the continued validity of the equations. The following
alternate consideration leads to the same conclusion: if the
fluid can be described by quasiparticles, the viscous terms
in the energy-momentum tensor correspond to deviations
of the local phase-space distribution, f (x, p) = feq + δf ,
from local equilibrium. Using Grad’s 14-moment method, the
deviation δf is expanded up to quadratic order in momentum
[15,55,56,81,84] and (for a fluid with only bulk viscosity and
massless particles at midrapidity y = 0) can thus be written in
the form

δf

feq
= a

p2
T

T 2

�

e+p
, (5)

where a is a slowly varying function of temperature with
magnitude of order unity [84]. When p + � = 0 such that
�/(e + p) = − 1

4 , this means that, for midrapidity particles
with typical thermal momenta pT � 3T , the deviation δf/feq

is negative with magnitude 1 or larger, rendering the total
distribution function f negative, which is unphysical. Clearly
the deviations from local equilibrium are too large and the
formalism breaks down.

In this section we explore the range of bulk viscosities
that are allowed without leaving the region of validity of
second-order (Israel-Stewart) viscous hydrodynamics. As in
the preceding section, we study both zero and Navier-Stokes
initial conditions and the same three choices for the bulk
viscous relaxation time τ�, but we now also include runs where
the fluid has an additional shear viscosity η/s = (1 ÷ 2)/(4π ),
with shear viscous relaxation time τπ = 3η/(sT ), and we vary
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FIG. 6. (Color online) Upper limits for ζ/s (a) and viscous
entropy production (b) as a function of bulk viscous relaxation time
τ�, for zero and Navier-Stokes (N-S) initialization. The asterisks
indicate the results for the temperature-dependent relaxation time,
Eq. (1), with N-S initial conditions, for τ0 = 0.6 fm/c. For τ� given
by Eq. (1) and zero initial conditions, there is no upper limit for ζ/s,
that is, the fluid remains stable for all values of C.

the time τ0 when we start the hydrodynamic evolution. (For
later starting times, we downscale the initial peak entropy
density s0 such that the total initial entropy ∼s0τ0 is held
constant.) For the specific bulk viscosity (ζ/s)(T ) we take
the functional form shown in Fig. 1 but multiplied by an
arbitrary constant C > 1. For each set of initial conditions,
τ�, and η/s, we determine the largest value of Cmax that
still allows for stable running of the code, that is, where the
effective total isotropic pressure p + � does not violate the
stability criterion p + � > 0 anywhere inside the freeze-out
surface.

Figure 6 shows the upper limit (ζ/s)max(Tc) (on the left
vertical axis) and the corresponding maximal C value, Cmax

(on the right vertical axis), as a function of the bulk viscous
relaxation time τ�. We see that it depends strongly on the
initialization.

For Navier-Stokes initial conditions, (ζ/s)max(Tc) is insen-
sitive to the relaxation time τ�. In this case the magnitude of the
average bulk pressure � decreases more or less monotonically
with time [see Fig. 5(b)]. Violations of the positivity condition
p + � > 0 thus always happen at the starting time τ0, at
transverse positions where the matter is close to the phase
transition. This leads to a (ζ/s)max(Tc) that is controlled by the
initial conditions and independent of the relaxation time. [This
includes the temperature-dependent relaxation time, Eq. (1);
see the asterisk in Fig. 6(a).] Correspondingly, (ζ/s)max(Tc)
does not depend on the value of η/s when shear viscosity
is included. When one starts the hydrodynamic evolution
later, (ζ/s)max(Tc) increases with τ0. The dependence on
τ0 arises from the strong dependence of the initial bulk
pressure, � = −ζθ = −ζ∂·u, on τ0, through the expansion
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rate θ (τ0) = 1/τ0. This is illustrated by the solid red, dashed
magenta, and dotted orange lines in Fig. 6(a): as τ0 is increased
from 0.6 to 1 and 2 fm/c, the maximal (ζ/s)max(Tc) increases
from 0.05 to 0.09 and 0.18.

For zero initialization, �(τ0) = 0, one finds a qualitatively
similar dependence of (ζ/s)max(Tc) on the starting time τ0:
the curves Cmax(τ�) move up as τ0 is increased from 0.6
to 1.0 fm/c (solid and dashed green lines). However, in
contrast to the Navier-Stokes initialization, the (ζ/s)max(Tc)
curves now show a strong dependence on relaxation time
τ�, rising monotonically with τ�. The reason is that it takes
some time for the bulk pressure � to develop large enough
magnitudes to violate the positivity condition p + � > 0;
again, this typically happens in regions where the matter is
close to the phase transition. For larger relaxation times, �

moves away from its zero initial value more slowly, rendering
the fluid more stable and resulting in a monotonic increase in
(ζ/s)max(Tc) with τ�. For τ� < 1 fm/c we find “universal”
(ζ/s)max(Tc)–τ� curves that do not depend on the shear
viscosity η/s (solid black, green, and blue curves) but move
upward as the starting time τ0 is increased. This is because the
violation of the positivity condition p + � > 0 then generally
happens at early times, τ < 3 fm/c, when the flow profiles
are not yet significantly affected by shear viscous effects. For
the two viscous fluid lines with η/s = 0.08 and 0.16 (solid
blue and green lines), one sees that they continue to overlap
even for τ� > 1 fm/c after they have broken away from the
η/s = 0 line. In the ideal fluid (η/s = 0) the phase transition
generates large velocity gradients near the phase transition
that generate locally large expansion rates, causing instability
at lower values of ζ/s. Shear viscosity smoothes out these
large gradients, as discussed in Ref. [20], allowing the fluid to
evolve stably up to larger values of ζ/s. Bulk viscosity ζ alone
has no smoothing influence on sharp structures generated by a
phase transition. For a zero initial value of �, shear viscosity
thus helps crucially in stabilizing the evolution of the viscous
fluid against mechanical instabilities caused by strongly
negative bulk viscous pressure, especially for large relaxation
times τ�.

Very interesting is our finding that, for zero initial condi-
tions, there is no limit on Cmax if one accounts for critical
slowing-down of the bulk pressure dynamics near Tc via
Eq. (1). In this case the bulk pressure, starting at zero, never
grows sufficiently large to threaten the mechanical stability of
the fluid, irrespective of how large the bulk viscosity becomes
at Tc! As the peak value (ζ/s)(Tc) is increased, so is the time
it takes � to evolve toward its Navier-Stokes value, and this
never happens fast enough to violate the stability condition
p + � > 0.

Figure 6(b) shows the viscous entropy production for the
maximally allowed bulk viscosities shown in Fig. 6(a). Not
surprisingly, viscous entropy production increases with shear
viscosity η/s and decreases when hydrodynamics is started
later, with correspondingly smaller initial expansion rates [21].
The dependence on (ζ/s)max(Tc) is nonmonotonic, however.
The reason is that the bulk viscous entropy production rate,
∼�2/(2ζ ), depends not only on how large ζ is but also on
how close � is to its Navier-Stokes limit, and this in turn
depends on τ�.

VII. TOWARD EXTRACTING η/s FROM EXPERIMENTAL
DATA: UNCERTAINTIES INTRODUCED BY

BULK VISCOSITY

Given the fact that bulk viscosity contributes to the viscous
suppression of elliptic flow [see Fig. 5(a)], and assuming that
bulk and shear viscous effects cannot be separated by studying
other experimental observables, the question naturally arises
how much of an irreducible uncertainty this will introduce
into the extraction of the specific shear viscosity η/s from
experimental elliptic flow measurements. More precisely, if
the QGP should turn out to be a “most perfect liquid” with
“minimal” shear viscosity, η/s = 1/4π , with what kind of
accuracy can we hope to verify this experimentally if the
bulk viscosity is the only quantity beyond our theoretical and
experimental control?

To answer this question, we used VISH2+1 to compute
the differential elliptic flow of directly emitted pions (with-
out resonance decay contributions) for 200-AGeV Au + Au
collisions at b = 7 fm, assuming the fireball medium to have
constant specific shear viscosity η/s = 1/4π but allowing the
bulk viscosity ζ/s to vary over the entire range allowed by
the mechanical stability criterion p + � > 0. In doing so we
assumed a fixed shape of the temperature dependence of ζ/s as
shown in Fig. 1 but let its normalization vary between C = 1
and Cmax(τ�), where the latter is the largest value within the
range of applicability of Israel-Stewart viscous fluid dynamics,
shown in Fig. 6(a). We allowed for two fixed values of 0.5 and
5 fm/c for the bulk viscous relaxation time τ� as well as for
“critical slowing-down” according to Eq. (1), and we studied
both zero and Navier-Stokes initial values for the viscous
pressure components. All calculations assume τ0 = 0.6 fm/c

as the starting time. The results are presented in Fig. 7 and
Table I.

Generically one observes that, even for minimal shear
viscosity near the KSS bound, the shear viscous contribution
to the elliptic flow suppression far exceeds the bulk viscous
contribution. This is good news, as it means that the uncertainty
introduced into the extraction of η/s by theoretically poorly
controlled bulk viscous effects remains limited and is, in
fact, quite small, especially if the real fireballs created in
heavy-ion collisions do not completely saturate the KSS
bound. On a more quantitative level, one finds that, for
pions with typical transverse momentum pT = 0.5 GeV/c,
the elliptic flow is suppressed by just over 16% below the
ideal-fluid value if the expanding matter has only shear, and
no bulk, viscosity and that this suppression increases to values
between 17% and 25% if bulk viscosity is added. The largest
bulk viscous suppression is found for fixed relaxation times
τ� and zero initialization if the bulk viscosity is increased
all the way up to its upper allowed limit. In these cases
the additional suppression can be as large as 50% of the
suppression found for the fluid with only (minimal) shear
viscosity. If one takes into account that the evolution of the
bulk viscous pressure slows down near Tc, where ζ/s is
largest, the additional bulk viscous suppression never exceeds
20% of the shear viscous elliptic flow suppression, with
10%–15% being a typical range (aqua and green curves in
Fig. 7).
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TABLE I. Pion elliptic flow at pT = 0.5 GeV/c for b = 7 fm, 200-AGeV Au + Au collisions from ideal and viscous
hydrodynamics, with different choices of initial conditions, bulk viscous relaxation times τ�, and bulk viscosities (parametrized
by C). The last of the three columns under each initialization heading gives the viscous suppression of v2 at pT = 0.5 GeV/c

in terms of the percentage deviation from the ideal fluid baseline (=100%).

η/s τ� (fm/c) Zero initialization Navier-Stokes initialization

C v2(0.5 GeV/c) (%) v2
v2,ideal

(%) C v2(0.5 GeV/c) (%) v2
v2,ideal

(%)

0 – 0 5.755 100 0 5.755 100
0.08 – 0 4.821 83.8 0 4.811 83.6
0.08 0.5 1 4.668 81.1 1 4.627 80.4
0.08 0.5 3.5 4.356 75.7 1.3 4.576 79.5
0.08 5.0 1 4.770 82.9 1 4.601 79.9
0.08 5.0 10.3 4.323 75.1 1.3 4.534 78.8
0.08 Eq. (1) 1 4.743 82.5 1 4.660 81.0
0.08 Eq. (1) 100 4.656 80.9 1.3 4.615 80.2

An important caveat, however, is that for Navier-Stokes
initial conditions the allowed maximal bulk viscosities are
small, much below recent lattice QCD estimates [75]. If
larger values are realized by Nature, they invalidate the use
of viscous hydrodynamics, at least at early times [86–89].
The problems in this case arise from the large bulk viscosity
in a thin layer near the transverse edge of the fireball,
where the matter is close to Tc. It is only in this region that
the viscous hydrodynamic description breaks down. Because
the problematic factor, the scalar expansion rate θ , initially
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decreases very rapidly, these initially unstable fluid regions
move quickly back to mechanical stability. As the momentum
anisotropy does not develop instantaneously, we find it hard
to believe that the existence of this unstable external layer
has much influence on the evolution and final value of the
elliptic flow, and one should get very similar results from
simulations in which the initial bulk viscous pressure � is
restricted by hand to values below the threshold for violating
the positivity condition p + � > 0. If this is indeed the case,
the results presented in this section show that bulk viscosity,
even if theoretically not well controlled, will not introduce
large uncertainties into the extraction of η/s from elliptic flow
data.

VIII. CONCLUDING REMARKS

The present study has shown that bulk viscosity—as long
as it is small enough that, in expanding heavy-ion collision
fireballs, the negative bulk viscous pressure does not become
larger than the thermodynamic pressure—affects the elliptic
flow of the final hadrons much more weakly than does shear
viscosity. So, as long as the expanding fireball can be described
by viscous fluid dynamics, it is possible to extract its shear vis-
cosity (even if it is as small as η

s
|KSS = 1

4π
) with good accuracy

from a comparison of viscous hydrodynamic simulations with
experimental elliptic flow data. Accounting for the critical
slowing-down of viscous bulk pressure dynamics near Tc, we
have shown that any contamination from bulk viscosity ζ/s is
<20% (for much of the parameter space it is even <10%) and
that its relative importance decreases further if η/s is larger
than the KSS bound.

However, we also saw that the stability condition p + � >

0 is very restrictive and easily violated if the peak value of ζ/s

near Tc reaches values close to those estimated from lattice
QCD [75] and from some strong coupling approaches [65], and
if the bulk viscous pressure � approaches its Navier-Stokes
limit � = −ζ∂ · u. When this occurs (typically at early times,
when the scalar expansion rate is largest, in a thin layer around
Tc close to the transverse edge of the fireball), the viscous
fluid dynamical description breaks down. Our analysis shows
that the phenomenon of “critical slowing-down” can play a
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crucial role in preventing this from happening. Kinetic theory
for weakly coupled systems [55,90] and a recent analysis
of strongly coupled systems by Buchel [65] suggest that
the same microscopic physics (namely, growing correlation
lengths owing to critical fluctuations) that generate a peak
of ζ/s at Tc also causes the relaxation time τ� for the bulk
viscous pressure to grow and possibly diverge at Tc, even
while ζ/s itself remains finite. When using the model Eq. (1)
for a temperature-dependent τ� inspired by these ideas, we saw
that, unless � is initialized at its Navier-Stokes limit, it never
reaches it during the short time span of a heavy-ion collision
in those fireball regions where ζ/s peaks and � could thus
become very large. This reduces the problem of applicability
of viscous hydrodynamics at early times to a question of initial
conditions for �, especially in that thin transverse layer where
(after local equilibrium is reached) the temperature happens to
be close to Tc.

Determining these initial conditions (as opposed to guess-
ing them, as we have done here) requires a theoretical
description of the early pre-equilibrium evolution and Landau
matching of the corresponding energy-momentum tensor to
its viscous fluid dynamic form, Eq. (2) (in the spirit of
Ref. [89] but generalized from 0 + 1 to 2 + 1 dimensions).
At this point we lack the tools for doing this. Let us,
however, make a few comments in anticipation of completion
of that task. Consider a small fireball region that is just
reaching local thermal equilibrium at a temperature close to
Tc and undergoing self-similar boost-invariant longitudinal
expansion, while transverse expansion is negligible. Let us
also assume that at this point in time the bulk viscous
pressure in the region is large and negative, leading to negative
effective total isotropic pressure and causing the fluid to be
mechanically unstable. What will happen? The fluid will begin
to rupture, forming little voids, and if the region were to
remain in a state of negative total pressure, it would eventually
fragment. However, as the considered region is undergoing
rapid expansion and cooling, it will quickly exit from its
state of mechanical instability. Furthermore, during the short
period of instability the hydrodynamic growth of voids will

be hampered by the large value of the relaxation time τ�. By
the time the considered region becomes mechanically stable
again, we expect it to be riddled with small holes but otherwise
intact. The small voids formed during the period of instability
will recollapse by cavitation, and the region will quickly
re-equilibrate owing to the now much shorter relaxation time
below Tc. No wholesale breakup of the fluid will occur, owing
to lack of time. Similar arguments hold later, when the bulk of
the matter in the center of the fireball passes through Tc, only,
in this case, the viscous bulk pressure may never grow large
enough to generate mechanical instability, owing to critical
slowing-down.

In summary, unlike the authors of Ref. [48], we do not
expect any dramatic macroscopic phenomena triggered by the
transient mechanical instability arising from possibly large,
but short-lived negative bulk pressures in fireball regions
passing through the hadronization phase transition. For this
reason we believe that a modified viscous hydrodynamic
treatment, where one limits by hand the growth of the viscous
bulk pressure so that it always remains below the instability
threshold [91], will not lead to impermissible distortions of
the real (nonequilibrium) dynamics in the (small) space-time
regions whose description lies outside the hydrodynamic
domain. This is important for future viscous hydrodynamic
studies of heavy-ion collisions with fluctuating and granular
initial conditions [92] that are more realistic than the smooth
initial profiles presently used.
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[49] G. Torrieri, B. Tomášik, and I. Mishustin, Phys. Rev. C 77,

034903 (2008).
[50] J. I. Kapusta, arXiv:0809.3746 [nucl-th].
[51] J. Frenkel, Kinetic Theory of Liquids (Dover, Mineola, NY,

1955); O. Hirshfelder, C. Curtis, and R. Bird, Molecular Theory
of Gases and Liquids (Wiley Interscience, New York, 1964).

[52] H. B. Meyer, Phys. Rev. D 76, 101701(R) (2007).
[53] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys.

05 (2003) 051.
[54] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302

(2009).
[55] W. Israel, Ann. Phys. (NY) 100, 310 (1976); W. Israel and

J. M. Stewart, ibid. 118, 341 (1979).
[56] R. Baier, P. Romatschke, and U. A. Wiedemann, Phys. Rev. C

73, 064903 (2006).
[57] M. A. York and G. D. Moore, Phys. Rev. D 79, 054011 (2009).

[58] H. B. Meyer, Nucl. Phys. A830, 641c (2009).
[59] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A.

Stephanov, J. High Energy Phys. 04 (2008) 100.
[60] S. Bhattacharyya, V. E. Hubeny, S. Minwalla, and

M. Rangamani, J. High Energy Phys. 02 (2008) 045.
[61] M. Natsuume and T. Okamura, Phys. Rev. D 77, 066014 (2008);

78, 089902(E) (2008).
[62] A. Onuki, Phys. Rev. E 55, 403 (1997).
[63] K. Paech and S. Pratt, Phys. Rev. C 74, 014901 (2006).
[64] G. D. Moore and O. Saremi, J. High Energy Phys. 09 (2008)

015.
[65] A. Buchel, Phys. Lett. B681, 200 (2009).
[66] S. Gavin, Nucl. Phys. A435, 826 (1985).
[67] S. Weinberg, Astrophys. J. 168, 175 (1971).
[68] P. Arnold, C. Dogan, and G. D. Moore, Phys. Rev. D 74, 085021

(2006).
[69] A. Buchel, Phys. Lett. B663, 286 (2008).
[70] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys.

Rep. 227, 321 (1993).
[71] D. Davesne, Phys. Rev. C 53, 3069 (1996).
[72] J. W. Chen and J. Wang, Phys. Rev. C 79, 044913 (2009).
[73] D. Kharzeev and K. Tuchin, J. High Energy Phys. 09 (2008)

093; F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B663,
217 (2008).

[74] S. D. Katz, Nucl. Phys. A774, 159 (2006).
[75] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).
[76] U. Gursoy, E. Kiritsis, G. Michalogiorgakis, and F. Nitti, J. High

Energy Phys. 12 (2009) 056.
[77] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, Phys.

Rev. Lett. 101, 131601 (2008); S. S. Gubser, S. S. Pufu, and
F. D. Rocha, J. High Energy Phys. 08 (2008) 085.

[78] A. Muronga, Phys. Rev. Lett. 88, 062302 (2002); 89, 159901(E)
(2002); Phys. Rev. C 69, 034903 (2004).

[79] A. Muronga and D. H. Rischke, arXiv:nucl-th/0407114.
[80] A. Muronga, Phys. Rev. C 76, 014909 (2007).
[81] B. Betz, D. Henkel, and D. H. Rischke, J. Phys. G 36, 064029

(2009).
[82] https://wiki.bnl.gov/TECHQM/index.php/Code verification for

viscous hydrodynamics (in preparation).
[83] P. F. Kolb, J. Sollfrank, and U. Heinz, Phys. Lett. B459, 667

(1999); Phys. Rev. C 62, 054909 (2000).
[84] A. Monnai and T. Hirano, Phys. Rev. C 80, 054906 (2009).
[85] P. Romatschke, Eur. Phys. J. C 52, 203 (2007).
[86] A. Dumitru, E. Molnar, and Y. Nara, Phys. Rev. C 76, 024910

(2007).
[87] P. Huovinen and D. Molnar, Phys. Rev. C 79, 014906 (2009).
[88] M. Martinez and M. Strickland, Phys. Rev. C 79, 044903

(2009).
[89] M. Martinez and M. Strickland, arXiv:0909.0264 [hep-ph].
[90] S. R. De Groot, W. A. Van Leeuwen, and C. G. Van

Weert, Relativistic Kinetic Theory. Principles and Applications
(North-Holland, Amsterdam, 1980).

[91] S. Pratt, Phys. Rev. C 77, 024910 (2008).
[92] J. Takahashi, B. M. Tavares, W. L. Qian, R. Andrade, F. Grassi,

Y. Hama, T. Kodama, and N. Xu, Phys. Rev. Lett. 103, 242301
(2009).

024905-12


