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Effects of α-cluster potentials for the 16O + 16O fusion reaction and S factor
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A joint analysis of the elastic-scattering angular distributions and fusion cross sections together with the
S factor for the 16O + 16O system near and below the Coulomb barrier is reported. To describe these observables
within the framework of the optical model, a comparative study of microscopic α-α double-folding clusters
and phenomenological shallow potentials with surface-transparent imaginary parts is performed. Although the
phenomenological Woods-Saxon type of shallow real potentials is unable to provide a consistent explanation
of these data, the α-α double-folding cluster potential obtained by considering the α-cluster structure of 16O
provides a considerable improvement. The α-α double-folding cluster potential also reproduces the normalized
resonant energy states of 32S for the N = 24 cluster band.
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I. INTRODUCTION

Fusion reactions at energies near and below the Coulomb
barrier are being studied both experimentally and theoretically
for numerous systems with stable as well as unstable beams.
Studies with stable beams, especially for the 12C + 12C,
12C + 16O, and 16O + 16O systems, are of special interest from
an astrophysical point of view, as reliable extrapolation to ener-
gies far below the Coulomb barrier is very important for stellar
reactions and nucleosynthesis [1]. Such fusion reactions have
been studied with several models: A simple one-dimensional
barrier penetration model was first used for many systems [2],
however, the need to include internal degrees of freedom in
this approach has been demonstrated by measurements of
the subbarrier fusion [3]. A potential inversion method has
been applied to determine the inter-nucleus potential between
colliding nuclei [4–6]. In the latter approach, experimental
data for heavy-ion fusion cross sections at energies well below
the Coulomb barrier were inverted to determine directly the
inter-nucleus potential within the framework of the WKB
approximation. In another attempt for the 16O + 16O system,
the ion-ion potential was derived by Reinhard et al. from the
adiabatic time-depenent Hartree-Fock calculation [7].

The optical model and coupled-channels methods have
been widely used for fusion cross-section calculations [8–10].
The coupled-channels formalism, which includes coupling
between the relative motion and the internal degrees of
freedom such as rotational and vibrational states of the
interacting nuclei, has been applied to explain the exper-
imental fusion data [11,12]. Channel coupling effects in
the subbarrier fusion of oxygen isotopes with other oxygen
isotopes have been explored by Wu et al. [13] using data from
Ref. [14]. In the coupled-channels formalism, the fusion cross
sections are usually calculated either using an incoming wave
boundary condition (IWBC) or using an imaginary potential.
In the IWBC method, the fusion process is determined by

*boztosun@akdeniz.edu.tr

the boundary conditions inside the Coulomb barrier and
the imaginary potential has to be within the barrier with a
short-range radius, r ≈ 1.0 fm [15]. These conditions show
that fusion strongly depends on the Coulomb barrier. The
coupled-channels formalism is the most accepted and utilized
model for low-energy fusion reactions, but the outstanding
problem for this model is to obtain an explanation of the
reaction observables such as the elastic, quasielastic, and
fusion data using the same potential [11]. In a previous study,
Michaud [16] carried out optical model calculations with a
shallow potential containing a soft repulsive core for the
12C + 12C, 12C + 16O, and 16O + 16O systems and used a weak
short-range imaginary potential to explain the fusion data.
Recently, Esbensen et al. [17–19] examined the fusion cross
sections for the 16O + 16O system by using a proximity-type
potential. In this approach, a shallow real potential constructed
from the double-folding (DF) model with a repulsive term is
used to explain the fusion data. These studies indicate that
shallow potentials are more favorable than deep microscopic or
phenomenological potentials. However, the question whether
or not these potentials could explain the individual elastic-
scattering angular distributions is still unanswered.

In this respect, a long-standing problem in the study
of fusion is to understand why different values of surface
diffuseness parameters in the nuclear potential are needed
to explain elastic-scattering and fusion data. The value of
diffuseness to fit fusion data is approximately 1.5 to 2
times larger than the value required to fit elastic-scattering
data. Therefore, the same phenomenological Woods-Saxon
potential fails to reproduce both these observables [20,21].

In this study, an α-α double-folding cluster (DFC) potential
was constructed to investigate this problem. We aim to
explain the fusion cross sections, astrophysical S factor, and
angular distribution for the 16O + 16O system by using the
microscopic α-α DFC and compare the results with the pheno-
menological potentials within the framework of the optical
model. We discuss the importance of the diffusion param-
eter in the surface-transparent imaginary potential of the
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phenomenological and microscopic approaches and examine
whether it is possible to explain the elastic-scattering angular
distribution, fusion cross section, and S-factor experimental
data simultaneously.

In Sec. II, we introduce the optical model and the phe-
nomenological and microscopic potentials used to analyze the
experimental data on the 16O + 16O system. We report the
results of these analyses in Sec. III. Section IV is devoted to a
summary.

II. THE OPTICAL MODEL

In the optical model, the total potential Vtotal(r) consists of

Vtotal(r) = VNuclear(r) + VCoulomb(r) + VCentrifugal(r). (1)

The Coulomb and centrifugal potentials are well-known.
Owing to a charge ZP e interacting with a charge ZT e

distributed uniformly over a sphere of radius Rc, the Coulomb
potential [22] is

VCoulomb(r) = 1

4πε◦

ZP ZT e2

r
, r � Rc,

= 1

4πε◦

ZP ZT e2

2Rc

(
3 − r2

R2
c

)
, r < Rc, (2)

where Rc is the Coulomb radius, and ZP and ZT denote the
charges of the projectile P and the target nuclei T , respectively.
The centrifugal potential is

VCentrifugal(r) = h̄2l(l + 1)

2µr2
, (3)

where µ is the reduced mass of the colliding pair.
To make a comparative study of this reaction, we use

two different potentials for the real part of the optical model
potential: One is a phenomenological shallow potential and
the other is the microscopic α-α DFC potential. We provide
the details of nuclear potentials in the following sections.

A. Phenomenological Potential

For the phenomenological potential, we used the Woods-
Saxon shaped potential of Esbensen et al. [19], with the same
shape and parameters for the real part. This potential is

VNuclear(r) = −V0

1 + exp[(r − RV )/aV )]

+ i
−W0

1 + exp[(r − RW )/aW ]
, (4)

where V0 = 42.14 MeV, RV = rV (A1/3
P + A

1/3
T ) with rV =

1.217 fm, and aV = 0.602 fm. The imaginary part of the
potential has the same Woods-Saxon volume shape as in Eq. (4)
and its parameters are listed in Table I. The Coulomb potential
[23,24] is distributed uniformly over a sphere of radius
RC = 5.54 fm.

TABLE I. Parameters of the real and imaginary potentials of
the optical model. All imaginary potentials have a Woods-Saxon
volume shape.

Potential NR V0 rV aV W0 rW aW

type (MeV) (fm) (fm) (MeV) (fm) (fm)

α-α DFC 0.897 – – – 4.0 1.0 0.35
Woods-Saxon – 42.14 1.217 0.602 4.0 1.0 0.35

B. α-α Double-Folding Cluster Potential

The numbers of neutrons and protons in the nucleus we
study in this paper are integer multiples of those of an
α particle, and such nuclei can demonstrate an α-cluster
structure [25–28]. Therefore, it will be interesting to obtain
the interaction potential by considering the α-particle structure
of 16O. To do this, it is presumed [28–30] that (i) the α

particles in the nucleus are regarded as elementary bosons, and
(ii) each α particle in the nucleus moves independently in a
mean field with a repulsive core. As a result, the ground-state
wave function of the 16O nucleus can be written as

χ ( �r1, �r2, �r3, �r4) = φ
(α)
0 ( �r1)φ(α)

0 ( �r2)φ(α)
0 ( �r3)φ(α)

0 ( �r4), (5)

where φ
(α)
0 (�ri) is the lowest orbital wave function of an α

particle consisting of 1s and 2s harmonic-oscillator wave
functions. The α-α DFC potential is thus constructed in a
similar way to the ordinary DF potential, which is based on
the following nucleon-nucleon (NN ) interaction, folded with
nuclear matter densities of both projectile and target nuclei:

νnn(r) = 7999
exp(−4r)

4r
− 2134

exp(−2.5r)

2.5r

+ J00(E)δ(r) MeV. (6)

In the present α-α DFC potential, we fold an α-α effective
interaction with α-cluster distribution densities and formulate
the nucleus-nucleus DFC optical model potential [31] as

VDFC(�r) =
∫∫

ρcP ( �r1)ρcT ( �r2)ναα(|�r + �r2 − �r1|)d �r1d �r2,

(7)

where ρcP and ρcT are the α-cluster distributions for the
projectile and target nuclei and ναα is the effective α-α
interaction.

The matter distribution of 16O can be parametrized as

ρM (�r) = ρ0M (1 + wr2) exp(−βr2). (8)

This is a modified form of the Gaussian shape for the ρM ,
projectile, and target densities, where w = α/a2 and β =
1/a2. The parameter a is the length of the harmonic well and
α ≡ (Z − 2)/3 is proportional to the number of protons in the
1p shell; their values are 1.76 and 2.0 fm, respectively [32].

Satchler and Love [33] assumed a Gaussian form for the
α-density distribution with a range determined to give the best
value [34] of the root mean square (rms) charge radius of
1.67 fm. The corresponding α density is

ρα(�r) = ρ0α exp(−λr2). (9)
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TABLE II. Parameters of nuclear matter densities and
rms radii of 16O and 4He [31–33].

Nucleus ρ0 w β(λ) 〈r2〉1/2

(fm−3) (fm−2) (fm−2) (fm)

16O 0.13173 0.6457 0.3228 2.640
4He 0.4229 0 0.7024 1.461

The parameters for ρ0α , ρ0M , w, β, and λ used in Eqs. (8) and
(9) are given in Table II.

If ρc is the α-cluster distribution function inside the nucleus,
then we can relate the nuclear matter density distribution
function of the nucleus, ρM , to that of the α-particle nucleus,
ρα , as

ρM (�r) =
∫

ρc(�r ′)ρα(|�r − �r ′|)d �r ′. (10)

Because the densities of the nucleus and the α particle can be
calculated from Eqs. (8) and (9), by using Fourier transform
techniques [33] for Eq. (10), we can obtain the α-cluster
distribution function ρc as

ρc(�r ′) = ρ0c(1 + µr ′2) exp(−ξr ′2), (11)
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FIG. 1. (Color online) Results of the fusion cross sections for
the phenomenological Woods-Saxon (WS) potential obtained using
different imaginary diffusion parameters. Experimental data were
taken from Ref. [45].
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FIG. 2. (Color online) Comparative S-factor results for different
calculations. The solid line indicates the present results, and filled
circles the experimental data [45], in comparison with the other results
taken from Ref. [19].

with

η = λ − β, ξ = βλ/η, µ = 2wλ2

η(2η − 3w)
. (12)

Several theoretical and experimental efforts have attempted
to describe the α-α effective interaction. So far, at least three
approaches have been used to analyze the low-energy α-α
elastic-scattering data with a purely attractive local, angular-
momentum, and energy-independent α-α potential [35–37].
A phenomenological α-α potential including a short-range
repulsive and a long-range attractive part have also been used
[38,39]. Satchler and Love [33] have calculated an α-α DFC
potential based on an M3Y NN effective interaction involving
an exchange contribution for the energies of ∼10 MeV
per nucleon. The resulting potential, which is also purely
attractive, is very similar to that of Buck et al. [36].

Among these potentials, the α-α potential of Buck et al.
[36] is the most favorable and the simplest considered in our
calculations. This α-α effective interaction potential is given
as

ναα(r) = −122.6225 exp(−0.202r2). (13)
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FIG. 3. (Color online) Results of the phenomenological Woods-
Saxon and α-α double-folding cluster potentials for the 16O + 16O
fusion reaction.

Therefore, the α-α DFC potential consists of a real and an
imaginary part as in Eq. (14).

VNuclear(r) = NRVDFC(r) + i
−W0

1 + exp[(r − RW )/aW ]
. (14)

The parameters of the real and imaginary potentials are
reported in Table I. The Coulomb radius is taken as RC =
5.54 fm for α-α DFC potentials. The code DFPOT [40] was
used for microscopic DF potential calculation and the code
FRESCO [41] was used to obtain all reaction observables.

III. RESULTS

We first used the phenomenological Woods-Saxon potential
to analyze the fusion cross sections of the 16O + 16O system.
The parameters in Ref. [19] were used for the real part of
the phenomenological potential, together with a weak short-
range imaginary potential, which is localized at the Coulomb
barrier. As expected we found that the fusion cross section
is very sensitive to the value of the diffuseness parameter,
whereas the depth and radius of the imaginary potential do not
have a large effect on the fusion cross section. The results of
the fusion cross-section calculations for the different diffusion
parameters are shown in Fig. 1. As shown in Fig. 1, the best
result was obtained for aW = 0.35 fm. The other parameters
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FIG. 4. (Color online) S-factor results for the 16O + 16O system
obtained using the phenomenological Woods-Saxon and α-α double-
folding cluster potentials.

of the phenomenological Woods-Saxon potential are listed in
Table I. The theoretical calculation with aW = 0.35 fm is in
very good agreement with the experimental data.

The S factor is related to the fusion cross section as

S(E) = Eσf exp(2πη), (15)

where η is the Sommerfeld parameter. The phenomenological
Woods-Saxon potential result for the S factor obtained by using
the same parameters of the fusion cross-section calculations
is shown in Fig. 2. Again, the calculations agree with the data
well. In the same figure, we compare our result with that of
Esbensen [19], which explains the data by creating a small
potential pocket. We observe that the depth of the imaginary
potential has a significant impact on the S-factor calculation
in contrast to the fusion cross section itself.

Although the phenomenological Woods-Saxon potential
approach explains the fusion data together with the S-factor
data, it fails to explain the elastic-scattering angular distri-
bution data within the same energy range: When we used
the same parameters of the real and imaginary potentials,
the oscillatory structure, phase, and magnitude of the elastic
scattering data could not be reproduced. This has, nevertheless,
been the persistent problem (see Refs. [20] and [21]).

We then carried out a comprehensive study of this reaction
in a microscopic framework by considering the α-cluster
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FIG. 5. (Color online) Elastic-scattering angular distributions for
the 16O + 16O system at different center-of-mass energies. Experi-
mental data (filled circles) were taken from Ref. [46].

structure of 16O. As explained in Sec. II B, we obtained the
real part of the nuclear potential from the α-α DFC and the
imaginary part of the nuclear potential from the preceding
phenomenological calculation, whose parameters are given in
Table I. The value of the normalization (NR) constant of the
α-α DFC potential in this table is determined by requiring that
all of the fusion cross sections, S-factor, and elastic-scattering
angular distribution data can be described by our calculations.

We present the result of the microscopic potential in the
same energy region as the phenomenological potential analysis
described previously in Fig. 3. At lower energies there is a
reasonable agreement between the fusion cross-section data
and the phenomenological Woods-Saxon potential prediction.
At energies higher than Ec.m. = 10 MeV, the microscopic
potential underpredicts the fusion cross section in comparison
with the experimental data and the theoretical result of the
phenomenological Woods-Saxon potential.

In Fig. 4, we present the result of the microscopic α-α
DFC potential for the S factor in comparison with the result
of the phenomenological Woods-Saxon potential as well as
the experimental data. The microscopic potential reproduces
the behavior of the S-factor data. With decreasing energy, the
microscopic α-α DFC potential result shows a deviation from
the results of our phenomenological Woods-Saxon potential
and the results of Esbensen [19]. It is clearly shown in Fig. 4
that the microscopic α-α DFC potential predicts the S-factor
structure at low energies better than the other approaches.

To explore the elastic-scattering angular distribution of the
16O + 16O system, we analyzed the experimental data using
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FIG. 6. (Color online) Normalized resonant energy states for the
16O + 16O system in comparison with the results of Ohkubo et al. [42]
obtained using the complex scaling method.

the α-α DFC potential with the same parameters used in the
fusion cross sections and S-factor calculations. Considerable
agreement between our microscopic α-α DFC potential and
the experimental data was obtained. The results are shown in
Fig. 5. The α-α DFC potential produces the oscillatory
structure of the elastic- scattering angular distributions data
with correct phases and magnitudes. We point out that small
changes in the normalization constant NR could further
improve the agreement between the theoretical results and
the experimental data.

To summarize, it seems that the microscopic α-α DFC
potential provides a simultaneous explanation of the fusion,
S-factor, and elastic-scattering angular distribution data in a
unified way. To see the validity of the α-α DFC potential for
resonant and bound states from the nuclear structure viewpoint,
we also calculated the normalized resonant energy states for
the N = 24 cluster band that was investigated by Ohkubo
et al. [42] using a complex scaling method. In Fig. 6, we
show the results obtained using the code GAMOW [43]. In this
figure, the normalized resonant energy states were calculated
using the following equation:

ε = E(J+) − E(0+)

E(2+) − E(0+)
. (16)

Our results show the same behavior as the results of Ref. [42]
for the N = 24 cluster band of the 32S nucleus.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we have focused on explaining the fusion,
the S-factor, and the elastic-scattering angular distribution
data of the 16O + 16O system within the framework of the
same optical model. We have utilized both phenomenological
and microscopic potentials. In the first part of this paper, to
describe fusion, S-factor and elastic-scattering angular distri-
bution data simultaneously, we have used a phenomenological
Woods-Saxon potential approach with a weak short-range
imaginary potential. As in the previous work, we observed
that the diffusion parameter of the imaginary potential has
a significant effect on the fusion cross-section results. We
have determined that the best value that predicts the fusion
cross-section data is aW = 0.35 fm. Although this phenomeno-
logical Woods-Saxon potential approach explains the fusion
and S-factor data well, it is unable to provide a reason-
able description of the elastic-scattering angular distribution
data.

We have then explored the use of the microscopic deep po-
tential obtained by the α-α DFC model. The α-α DFC potential
can describe the broad features of the fusion, S-factor, and
elastic-scattering angular distribution data simultaneously. We
emphasize that the same α-α DFC potential also successfully
predicts the trend of the normalized resonant energy states
for the N = 24 cluster band of the 32S nucleus. This study

shows the benefits of the α-cluster potential approximation
to describe systematically the reaction observables of light-
ion interactions such as the 16O + 16O system. In contrast,
it is pointed out that experimental data for 16O + 154Sm
quasielastic scattering at backward angles also favor a large
value of the surface diffuseness parameter, and a DF approach
fails to reproduce the experimental excitation function of
quasielastic scattering for this system at energies around the
Coulomb barrier [44]. It will be interesting to apply the
α-cluster DF approximation to study fusion and scattering
observables of other, lighter systems and explore why it seems
to describe the data better.
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