
PHYSICAL REVIEW C 81, 024613 (2010)

Energy dependence of the optical potential of weakly and tightly bound nuclei
as projectiles on a medium-mass target
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Angular distributions for the elastic scattering of the weakly bound 6,7Li + 144Sm systems were measured with
high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis
was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted.
The results are compared with those previously published for the tightly bound 12C + 144Sm and 16O + 144Sm
systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not
observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling
which cancels the attraction arising from couplings with bound channels.

DOI: 10.1103/PhysRevC.81.024613 PACS number(s): 25.70.Bc, 24.10.Ht, 25.70.Mn

I. INTRODUCTION

The strong influence that the breakup process may exert
on other reaction channels in systems that involve weakly
bound nuclei has become a subject of considerable interest
in recent years [1–20]. Breakup reactions can be studied
experimentally in a variety of ways. On the one hand, the
detection of the breakup fragments either in inclusive or
exclusive experiments can directly furnish the cross sections
for this process as a function of the bombarding energy and its
behavior in the vicinity of the Coulomb barrier. In particular,
exclusive measurements through the coincident detection of
both emitted fragments can be especially sensitive for the
identification and characterization of breakup mechanisms,
although these measurements are often associated with lengthy
experiments [20–30]. On the other hand, a complementary
approach to the study of the effect of breakup on other reaction
processes is the systematic analysis of the behavior of the
optical potentials used to describe elastic scattering.

In systems formed with tightly bound nuclei, the elastic
scattering close to the Coulomb barrier as described by the
optical model shows a rapid variation of both the real and
imaginary parts of the potential as a function of the bombarding
energy. The real part of the potential exhibits a bump at values
close to the Coulomb barrier and the imaginary part decreases
from a constant value at above-barrier energies down to almost
zero at energies below the barrier. This behavior of both parts
of the potential close to the Coulomb barrier, known as the
threshold anomaly (TA), is consistent with a dispersion relation
that correlates the energy dependence of the real and imaginary
parts of the optical potential [31–34] due to causality [34–36],
which imposes the condition that no scattered wave emerges
before the incident wave reaches the target.
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If one of the reaction partners is a weakly bound nucleus,
the dynamics of the collision will change, modifying the cross
sections in the elastic channel. It is possible that the breakup
channel does not close as a function of decreasing energy as
fast as other channels in the vicinity of the Coulomb barrier
and, hence, the behavior of the optical potential under such
circumstances can be different from the tightly bound system.
In some works [37–41] an increase of the imaginary potential
at lower energies (and, due to the dispersion relation, a decrease
of the real part of the potential) has been observed which is
known as breakup threshold anomaly.

The effect of small binding energies on the elastic scattering
channel can be investigated using beams of weakly bound
stable nuclei, like 6Li and 7Li. These nuclei break up into
α + d and α + t and have the low threshold breakup energies
of 1.47 and 2.47 MeV, respectively. Thus, the probability for
breakup is significant.

In this article we present 22 angular distributions of
original and high-precision experimental elastic-scattering
cross sections of weakly bound 6Li and 7Li nuclei from
the neutron magic 144Sm target taken in a wide range of
bombarding energies (Sec. II). Performing a χ2 analysis within
the framework of the optical model, we found phenomeno-
logical energy-dependent optical potentials that describe the
experimental elastic angular distributions (Sec. III). We carried
out a dispersion relation calculation to see whether it was
satisfied, and we obtained a qualitative agreement between the
theory and the data (Sec. III). We observed, for both weakly
bound 6,7Li + 144Sm systems, that the energy dependence of
the potentials do not show the usual threshold anomaly which
has always been seen in tightly bound systems (Sec. IV).
This work is part of a more extended research project
aiming to explore the influence of the breakup of those
projectiles on targets having different masses and deformations
[16–19,38–56].
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II. EXPERIMENTAL SETUP

Angular distributions of elastic scattering differential cross
sections for the 7Li and 6Li + 144Sm systems were measured
using beams delivered by the 20 UD tandem accelerator at
the TANDAR Laboratory. Typical beam currents were of the
order of 20 pnA. The Coulomb barriers in the laboratory frame
are, following the prescription given in Ref. [57], V lab

b =
24.3 MeV and 24.5 MeV for 7Li and 6Li + 144Sm, respectively.
The angular distributions were obtained at eleven different
bombarding energies for each projectile in the ranges 21.6–
40.8 MeV for 7Li and 21.0–42.3 MeV for 6Li (approximately
85% below to 170% above the nominal Coulomb barrier).
The beams impinged on a 120-µg/cm2-thick 144Sm target.
The material was isotopically enriched to 88%, and it was
evaporated onto a 20-µg/cm2 carbon backing. The energy
spread of the beam was around 0.5%, mainly due to the 10-mm
aperture of the analyzing magnet slits. The effect of energy
straggling within the target accounts for an additional energy
spread of at most 0.2%.

The detection system consisted of an array containing
eight silicon surface-barrier detectors placed in a 76-cm-
diameter scattering chamber. The angular separation between
the collimators of two adjacent detectors was 5◦ and the
angular resolution of each detector was better than 0.5◦. The
elastic-scattering angular distributions were taken in steps of
2.5◦ or 5.0◦ depending on the beam energy and angular range.
The energy resolution of the detectors ranged from 0.5%
to 1.0%.

Absolute cross sections were obtained from the number
of counts in the elastic peaks, normalized by the counts
simultaneously registered on a monitor detector placed at a
fixed angle of 12.9◦. At this angular position the validity of the
Rutherford cross-section formula is ensured. The solid-angle
ratios between each detector of the array and the monitor,
which are necessary for the determination of absolute cross
sections, were determined by measuring the elastic scattering
of 7Li and 16O from a 200-µg/cm2-thick 197Au target at
bombarding energies 60% below the Coulomb barrier (where
the Rutherford cross section holds at all angles).

The statistical uncertainty of the cross sections ranges from
2 to 20%, the latter corresponding to the highest energies
and backward angles. The contribution due to the target
contaminants was estimated to be about 2% from their known
abundances. The experimental angular distributions of the
elastic scattering cross sections normalized to the Rutherford
cross section are shown in Figs. 1 and 2 for 7Li + 144Sm and
6Li + 144Sm, respectively.

III. OPTICAL MODEL ANALYSIS AND DISPERSION
RELATION CALCULATIONS

The elastic-scattering differential cross sections measured
in this work were analyzed using a phenomenological potential
given by

U (r) = Vcoul(r) − Vf (r, RV , aV ) − i WV f (r, RWV , aWV )

− i WS g(r, RWS, aWS) . (1)

FIG. 1. Experimental elastic-scattering cross
sections normalized to the Rutherford cross
sections for the 7Li + 144Sm system (open
circles) and their best fits from optical model
calculations (solid curves). Energies are given in
the laboratory frame.
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FIG. 2. Experimental elastic scattering cross
sections normalized to the Rutherford cross
sections for the 6Li + 144Sm system (open
circles) and their best fits from optical model
calculations (solid curves). Energies are given in
the laboratory frame.

In the first term of Eq. (1), Vcoul is the Coulomb potential
of a uniformly charged sphere of radius RC = 1.2 (A1/3

p +
A

1/3
t ) fm. In the second and third term of Eq. (1), f is the

Woods-Saxon form factor given by

f (r, Ri, ai) =
[

1 + exp

(
r − Ri

ai

)]−1

,

where Ri is the radius and ai is the diffuseness. The radius Ri

is usually expressed in terms of the reduced radius ri , defined
as Ri = ri (A1/3

p + A
1/3
t ), Ap and At being the projectile and

target mass numbers, respectively. In the last term of Eq. (1),
g is the derivative of the Woods-Saxon form factor given by
g(r, Ri, ai) = 4ai df /dr(r, Ri, ai) which peaks at the surface
of the nucleus. The last term of the optical potential U is
therefore known as the surface imaginary potential, and WS

represents its depth. Analogously, the imaginary term of U

which contains the form factor f , owed to its geometry is
called the volume imaginary potential and WV represents its
depth. The real part of the potential U which contains the form
factor f has a depth given by V .

The surface imaginary potential is introduced to take into
account the absorption from peripheral processes (inelastic
scattering, particle transfers, and breakup) since these mainly
occur at distances close to RC , while the imaginary volume
potential is introduced to take into account the absorption from
fusion, as this process occurs predominantly at distances which
are shorter than RC .

To summarize, within this phenomenological framework
there are nine parameters available to adjust: the three depths

V , WV , and WS , the three reduced radii rV , rWV , and rWS , and
the three diffusenesses aV , aWV , and aWS . Due to this large
number of parameters the process of adjusting the theory to
experimental data is not necessarily free of ambiguities; that
is to say, that different families of parameters may describe
the data equally well, including some with parameter values
which do not make physical sense.

In this work, all optical model calculations were carried
out using the code PTOLEMY [58,59]. In order to obtain the
optical potential parameters, we performed a simultaneous best
fit procedure for the angular distributions of the 7Li + 144Sm
system’s three higher energies, with the constraints rWV <

rV = rWS and aV = aWS . As the result of this simultaneous
analysis we obtained the following optical-potential parameter
values: the depths V = 14.0 MeV, WS = 4.13 MeV, and
WV = 6.30 MeV, the reduced radii rV = rWS = 1.25 fm and
rWV = 1.05 fm, and the diffusenesses aV = aWS = 0.70 fm
and aWV = 0.714 fm. Later, we performed independent fits
to each elastic-scattering angular distribution at each different
energy, keeping as fixed parameters those corresponding to
the internal volume imaginary potential and those to the radii
and diffuseness of the real and surface imaginary potentials.
The depths V and WS were left as free parameters allowing
an energy dependence in the optical potential. In that way,
correlated ambiguities in the parameter values were confined
to only two variable parameters [33] and due to the allowed
energy dependence of the potentials the fits to the angular
distributions were improved. The results of V and WS obtained
for each energy are presented in Table I and the corresponding
fits are shown in Figs. 1 and 2. The small oscillations present
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TABLE I. Summary of the optical potentials at different energies for 7Li + 144Sm and 6Li + 144Sm systems obtained from the optical
model fit procedure performed on the elastic-scattering angular distributions. For both systems, the internal volume imaginary potential
parameters were WV = 6.3 MeV, rWV = 1.05 fm, and aWV = 0.714 fm, and the reduced radii and diffusenesses of the real and surface
imaginary parts were rV = rWS = 1.25 fm and aV = aWS = 0.70 fm. V (RS) and W (RS) are, respectively, the real and total imaginary
potentials (W = WV + WS) evaluated at the sensitivity radius RS . For the 7Li + 144Sm system RS = 11.63 fm and for the 6Li + 144Sm
system RS = 11.59 fm. The χ 2/point of the fits are given at each energy. The overall χ2/point for the 7Li + 144Sm and 6Li + 144Sm
systems were 1.296 and 2.372, respectively.

7Li + 144Sm 6Li + 144Sm

Ec.m. V WS V (RS) W (RS) χ 2/point Ec.m. V WS V (RS) W (RS) χ 2/point

20.6 21.3 4.94 0.45 0.42 1.21 20.2 33.8 1.90 0.64 0.16 1.20
21.0 21.4 3.42 0.45 0.30 1.44 21.2 38.0 4.05 0.72 0.32 2.21
21.5 21.0 3.78 0.44 0.33 0.87 21.6 25.0 5.64 0.47 0.44 2.24
21.9 21.8 3.27 0.46 0.29 0.59 22.1 18.7 6.78 0.35 0.52 1.35
23.8 17.7 3.58 0.37 0.31 1.17 23.1 16.9 6.03 0.32 0.46 1.78
25.7 15.6 4.06 0.33 0.35 1.62 25.0 14.7 5.63 0.28 0.44 1.45
27.7 15.2 3.77 0.32 0.33 2.09 26.9 13.9 5.60 0.26 0.43 1.66
28.6 14.9 3.45 0.31 0.30 0.92 28.9 15.0 4.94 0.28 0.38 6.65
30.5 15.2 4.04 0.32 0.35 1.34 30.9 15.9 4.56 0.30 0.36 2.02
33.4 12.8 4.01 0.27 0.35 2.52 33.7 15.6 5.32 0.29 0.41 2.87
38.9 8.58 7.18 0.18 0.61 0.88 40.6 14.4 3.92 0.27 0.31 4.25

in the angular distributions at larger angles and higher energies
could not be satisfactorily adjusted even with drastic variations
of the imaginary potential depth and geometrical parameters.

Ambiguities coming from the multiparameter fit procedure
can be absolutely removed if the potentials are evaluated at the
sensitivity radius RS [33] at each energy. RS is defined as the
value of the radial coordinate where different potentials with
comparable goodness of fit (i.e., with similar χ2) intersect each
other (i.e., take the same value) (see Refs. [17,60–63]). Heavy-
ion elastic scattering is most sensitive in the nuclear-surface
region and hence it primarily determines, at each energy, the
potential values in the vicinity of the sensitivity radius [33].
This sensitivity radius has a slight energy dependence [33]. For
the real part of the potential, we calculated the corresponding
value of RS (at each bombarding energy) in the following
way: with aVmin and χ2

min being the diffuseness parameter of
the potential and the goodness of the best fit obtained in
the χ2-minimization procedure, we performed four new fits
of the data keeping the diffuseness as fixed parameters but
with slight modifications from aVmin (steps of 0.02 fm) and
keeping as free parameters the radius parameter rV and the
potential depth V . In this way, we found a family of five optical
potentials with roughly the same χ2, and the sensitivity radius
from the radial position where all the potentials in the family
intersect each other (for a graphical example see Fig. 3 of
Ref. [17]). In an analogous way, following this procedure we
found the sensitivity radius of the surface imaginary potential
at each bombarding energy. The obtained sensitivity radii at
the different energies for the real part (RSV

) and for the surface
imaginary part (RSWS

) are shown in Fig. 3(a) and Fig. 3(b) for
the 7Li + 144Sm and the 6Li + 144Sm systems, respectively.
For both systems, both RSV

and RSWS
show a slight energy

dependence, becoming smaller as the bombarding energy
increases. It can be seen that the dependence is stronger
at sub-barrier energies and vanishes as the energy increases
toward the Coulomb barrier, and the sensitivity radii remains

almost constant at energies above ∼28 MeV. The mean values
of the sensitivity radii of each system are RS = 11.63 fm and
RS = 11.59 fm for 7Li + 144Sm and 6Li + 144Sm, respectively.
The uncertainty intervals in the potential depths were deduced
from the change of the total χ2 in one unity and hence, they
correspond to a confidence level of 68.3%.

In what follows, we analyze whether the obtained energy-
dependent potentials satisfy the dispersion relation, which
connects the real and imaginary parts through the expression

V (E, r) = V0 + 1

π
P

∫ +∞

−∞

W (E′, r)

E′ − E
dE′,

FIG. 3. Sensitivity radii RSV
(full circles) and RSWS

(open circles)
for (a) 7Li + 144Sm and (b) 6Li + 144Sm. They remain almost constant
at energies above ∼28 MeV and increase slightly as the energy goes
down from close to the top of Coulomb barrier.

024613-4



ENERGY DEPENDENCE OF THE OPTICAL POTENTIAL OF . . . PHYSICAL REVIEW C 81, 024613 (2010)

FIG. 4. Energy dependence of the real and imaginary parts of the
optical potential obtained for 7Li + 144Sm system at an average radius
RS = 11.63 fm. The energy Vb of the Coulomb barrier is indicated.

where P denotes the principal value, V0 is a constant offset,
and W is the total imaginary potential [i.e., W (E, r) =
WV (E, r) + WS(E, r)]. Because the sensitivity radius is not
strictly constant at different energies (as illustrated in Fig. 3),
it is customary to evaluate the real and imaginary parts of
the empirical optical potential at a fixed radius close to the
sensitivity one [32,33,64,65]; we chose the mean value of
sensitivity radius RS .

The empirical real and imaginary parts of the optical
potential at the mean sensitivity radius for the 7Li + 144Sm
and the 6Li + 144Sm systems are shown in Figs. 4 and 5,
respectively. For the dispersion relation calculations shown
in Fig. 5 (corresponding to the 6Li case) we used the model
proposed in Ref. [34], where W (E) is represented schemati-
cally by a series of linear segments but has the advantage of
giving an analytic form of the dispersion relation. Each line
segment associated with an increment Wij = W (Ei) − W (Ej )
yields the contribution

�Vij (E) = Vij (E) − V0 = (Wij/π )(εi ln |εi | − εj ln |εj |),
where εi = (E − Ei)/�ij , εj = (E − Ej )/�ij and �ij =
(Ej − Ei) > 0. Two different fits were made in order to
demonstrate the sensitivity of the calculated V (E) to changes
in W (E). It can be seen that there is a qualitative agreement be-
tween the empirical and calculated values of the real potential
V (E), showing that the dispersion relation is satisfied.

IV. DISCUSSION

For the 7Li + 144Sm system (see Fig. 4), the behavior
of the real and imaginary parts of the energy-dependent
optical potential does not correspond to the usual threshold
anomaly. Instead of vanishing near the Coulomb barrier (as
occurs in systems where the threshold anomaly is present),
the imaginary potential almost does not vary as a function of
the energy except for the lowest measured energy, which lies

FIG. 5. Energy dependence of the real and imaginary parts of the
optical potential obtained for 6Li + 144Sm system at an average radius
RS = 11.59 fm. The energy Vb of the Coulomb barrier is indicated.
The dotted and dashed lines in the bottom frame are two different
schematic linear-segment fits of the imaginary potential W (E) that
lead, by means of the dispersion relation, to the lines representing the
real potential V (E) in the top frame.

slightly above the rest. This is an important result which means
that for that system there are one or more absorptive channels
still open at energies below the barrier. Even though the
real part of the energy-dependent optical potential smoothly
increases as the energy decreases, this smooth increase could
be considered as consistent (through the dispersion relation)
with a constant imaginary part as has been obtained.

In the case of 6Li + 144Sm system (see Fig. 5), the
imaginary potential is still large at the Coulomb barrier and
even slightly below, and again, as in the 7Li case, it means that
the absorption is still significant for that energy regime and
that the usual threshold anomaly is not present. In Fig. 5 we
have included two different schematic linear segment fits of the
imaginary potential leading, through the dispersion relation,
to the corresponding schematic lines of the real potential at the
top frame.

However, there is a remarkable difference between both
weakly bound systems: The imaginary part of the optical
potential for the 6Li projectile, instead of being almost constant
as a function of energy (as it is for the 7Li), slightly increases as
the energy decreases from 31 to 22 MeV and finally it quickly
drops to zero below this energy.

To emphasize the differences of the weakly bound systems
relative to the tightly bound systems, we show in Fig. 6 a
comparison between the results obtained for the 6,7Li + 144Sm
weakly bound systems and those obtained in Refs. [61,62] for
the tightly bound projectiles 12C and 16O on a 144Sm target.
In order to make a consistent comparison we used the same
approaches to obtain the optical potentials as was used by
Abriola et al. Because we only want to point out the main
differences between the potential strengths at the Coulomb
barrier, they are shown as a function of the energy to Coulomb
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FIG. 6. (Color online) Real and imaginary parts of the optical
potentials for the weakly bound systems 6Li + 144Sm and 7Li + 144Sm
obtained in this work and those for the tightly bound systems 12C +
144Sm and 16O + 144Sm taken from Refs. [61,62]. For comparison,
the potentials of each system are shown as a function of the ratio of
the energy to their corresponding Coulomb barriers Vb.

barrier ratio (E/Vb). In the same way as for the 6,7Li +
144Sm systems, the Coulomb barrier of the 12C and 16O +
144Sm systems were calculated to be V lab

b = 49.2 MeV and
66.1 MeV, respectively, following Ref. [57]. For the tightly
bound 12C and 16O projectiles, the optical potentials are
observed to have a strong variation at energies slightly above
the Coulomb barrier in accordance with the threshold anomaly.
The real parts of the optical potentials exhibit a bump centered
at E/Vb approximately 1.07, and from this value of E/Vb the
imaginary parts drop quickly to zero as the energy decreases
toward the Coulomb barrier. The behavior of the imaginary and
real parts satisfy the dispersion relation and was interpreted as
evidence of the presence of the threshold anomaly for both
tightly bound systems [61,62]. On the other hand, the 6Li and
7Li systems do not show the same behavior at the Coulomb
barrier. As stated above, for 7Li + 144Sm the imaginary part
of the potential is almost constant for all the measured energy
points, i.e., until E/Vb approximately 0.90. For 6Li + 144Sm
there is an increase in the strength of the imaginary part
as E/Vb decreases from near 1.25 to approximately 0.95,
and from that value it drops to zero vanishing at E/Vb

approximately 0.82. The noticeable difference between 6Li
and both tightly bound projectiles is that in the latter case
the absorptive channels close at energies above the Coulomb
barrier while in the former case the absorptive channels remain
open even at sub-barrier energies, as can be seen from the
shift in energy at which WS drops to zero. At higher energies,
although all these systems differ in the absolute strengths, they
exhibit a similar pattern as a function of the energy.

The behavior of the imaginary part of the optical potential
just described for 6Li + 144Sm (i.e., an increase of the
imaginary strength as a function of decreasing energy even
at energies slightly below the Coulomb barrier) has also

been observed in other reactions induced by weakly bound
projectiles such as 9Be + 64Zn [38], 9Be + 209Bi [44], 6Li +
208Pb [39], 6Li + 27Al [40], 6Li + 58Ni and 6Li + 64Ni [6], and
6Li + 90Zr [41]. In recent works [38,39] it has been speculated
that this energy dependence could be a fingerprint of the
influence exerted by the breakup channel which is expected
to be dominant in these systems even at energies below the
barrier, and the denomination breakup threshold anomaly was
coined. From Fig. 6 it should be noted however that the increase
of the imaginary strength as a function of decreasing energy
down to the Coulomb barrier is also present in the reactions
induced by the tightly bound projectiles 12C and 16O on the
same 144Sm target, but with the important difference that the
increasing regions are completely positioned at energies above
the top of the Coulomb barrier while for the weakly bound
projectiles presenting the so-called breakup threshold anomaly
the increasing regions extend until above the Coulomb barrier
because the breakup channel remains open.

We believe that the present results adequately placed in
the framework of previous measurements call for further
investigation of the influence played by the breakup channel
through the measurement of weakly bound and tightly bound
projectiles on different targets, especially at energies well
below the Coulomb barrier.

V. SUMMARY AND CONCLUSIONS

In this work we present an exhaustive measurement of
elastic angular distributions for the 6,7Li + 144Sm systems at 11
bombarding energies for each system covering a broad energy
range from 0.85 to almost 1.7 times the Coulomb barrier. They
have been measured with sufficient accuracy to extract reliable
values for the optical potentials in order to investigate how
the projectile breakup channel influences their behaviors. The
novel results obtained for the 6,7Li + 144Sm systems show that
the imaginary part of the optical potentials do not vanish at the
Coulomb barrier and, therefore, that there is an absence of the
usual threshold anomaly observed in tightly bound systems for
which the imaginary part of the optical potential vanishes at
the Coulomb barrier.

We have stated that the two systems formed with the weakly
bound 6Li and 7Li projectiles behave differently: While the
imaginary part of the optical potential for the 6Li + 144Sm falls
to zero as the energy decreases below the Coulomb barrier,
this is not observed for 7Li. We have also found an energy
dependence of the real and imaginary potentials for the 6Li +
144Sm system that resembles the one for the systems formed
with the tightly bound 12C and 16O projectiles on the same
144Sm target, but with the important difference that in the
former case the imaginary part still survives at energies below
the Coulomb barrier.

We attribute the fact that the imaginary part of the optical
potentials for the 6,7Li + 144Sm systems do not vanish at the
Coulomb barrier (as does occur for tightly bound systems)
as an indication that the repulsion due to breakup coupling
cancels the attraction arising from couplings with bound
channels, as has already been interpreted and pointed out in
Refs. [13,17,39,41,51].
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Campo, G. R. Satchler, P. H. Stelson, H. J. Kim, and D. Shapira,
Phys. Rev. C 48, 1147 (1993).

[61] D. Abriola et al., Phys. Rev. C 39, 546 (1989).
[62] D. Abriola et al., Phys. Rev. C 46, 244 (1992).
[63] C. Muri et al., Eur. Phys. J. A 1, 143 (1998).
[64] B. R. Fulton, D. W. Banes, J. S. Lilley, M. A. Nagarajan, and

I. J. Thompson, Phys. Lett. B162, 55 (1985).
[65] J. S. Lilley, M. A. Nagarajan, D. W. Banes, B. R. Fulton, and

I. J. Thompson, Nucl. Phys. A463, 710 (1987).

024613-7


