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Proton emission off nuclei induced by kaons in flight
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We study the (K−,p) reaction on nuclei with a 1 GeV/c momentum kaon beam, paying special attention to
the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deeply attractive
kaon nucleus optical potential. Our model describes the nuclear reaction in the framework of a local density
approach and the calculations are performed following two different procedures: one is based on a many-body
method using the Lindhard function and the other is based on a Monte Carlo simulation. The simulation method
offers flexibility to account for processes other than kaon quasielastic scattering, such as K− absorption by one
and two nucleons, producing hyperons, and allows consideration of final-state interactions of the K−, the p,
and all other primary and secondary particles on their way out of the nucleus, as well as the weak decay of the
produced hyperons into πN . We find a limited sensitivity of the cross section to the strength of the kaon optical
potential. We also show a serious drawback in the experimental setup—the requirement for having, together with
the energetic proton, at least one charged particle detected in the decay counter surrounding the target—as we
find that the shape of the original cross section is appreciably distorted, to the point of invalidating the claims
made in the experimental paper on the strength of the kaon nucleus optical.
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I. INTRODUCTION

The issue of the kaon interaction in the nucleus has attracted
much attention in recent years. Although from the study of
kaonic atoms one knows that the K−-nucleus potential is
attractive [1], the discussion centers on how attractive the
potential is and whether it can accommodate deeply bound
kaonic atoms (kaonic nuclei), which could be observed in
direct reactions. A sufficiently large attraction could even
make possible the existence of kaon condensates in nuclei,
which was suggested in Ref. [2]. Stimulated by the success
in reproducing the data for kaonic atoms, many works have
considered strongly attractive potentials, of the order of
200 MeV at normal nuclear matter density [3–7], or explored
the dependence of a few observables to a wide range of
depths from 0 to 200 MeV [8–10]. More moderate attraction
is found in similar work done in Refs. [11–13]. Yet all
modern potentials based on underlying chiral dynamics of the
kaon-nucleon interaction [14–18] lead to moderate potentials,
of the order of 60-MeV attraction at nuclear matter density.
They also have a large imaginary part, making the width of the
deeply bound states much larger than the energy separation
between the levels, which would rule out the experimental
observation of peaks. The agreement of this purely theoretical
shallow potential with the data on kaonic atoms is good [19],
and a fit to all data adding a small phenomenological potential
to the theoretical one performed in Ref. [20] indicates that the
best-fit potential deviates by at most 20% from the theoretical
one in Ref. [15].
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The opposite extreme is represented by some highly
attractive phenomenological potentials, with about 600-MeV
strength in the center of the nucleus [21,22]. These potentials,
leading to compressed nuclear matter of 10 times nuclear
matter density, met criticisms in Ref. [23] and, more recently,
in Ref. [24], which were rebutted in Ref. [25] and followed by
further argumentation in Refs. [26] and [27]. More recently the
lightest K-nuclear system of K̄NN has also been the subject
of strong debate [28–31].

Experimentally, the great excitement generated by peaks
seen at KEK [32] and FINUDA [33,34], originally interpreted
in terms of deeply bound kaons atoms, is receding, particularly
after the study in Ref. [23], regarding the KEK experiment,
and the studies in Refs. [35–37], regarding the FINUDA
ones, found explanations of the experimental peaks based on
conventional reactions that unavoidably occur in the process
of kaon absorption. Also, the thoughts in Ref. [38], with views
opposite to those of FINUDA in Ref. [34], and the reanalysis
of the KEK proton spectrum from K− absorption on 4He [32],
done in Ref. [39], where the original narrow peak appears much
broader and is consistent with the signal seen on a heavier 6Li
target in FINUDA [40], have helped to bring the discussion
to more realistic terms. Nevertheless, the possibility that the
FINUDA peak of Ref. [33] could be a signal of a deeply
bound kaon state is still defended [41]. This brief description
just shows the intense activity and strong interest in this subject
over the past few years.

There are also claims (with very low statistical significance)
of K−pp and K−ppn bound states from p̄ annihilation in
4He at rest measured by OBELIX@CERN [42], as well as
the recent claim of a K−pp bound state, seen from the
pp → K+X reaction in the DISTO experiment [43]. These
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experimental claims are under investigation now because,
before calling in new physics, it is important to make clear that
these data cannot be explained with conventional mechanisms.

In this work we focus on yet another experiment that
led the authors to claim evidence of a very strong kaon-
nucleon potential, with a depth of the order of 200 MeV
[44]. The experiment looks for fast protons emitted from
the absorption of in-flight kaons by nuclei. Our aim is to
show how this experiment was analyzed and which ingre-
dients are missing. Throughout this work we see that the
interpretation of the data requires a more thorough analysis,
and with all things considered, we reach conclusions different
from those in Ref. [44], in the sense that we do not find
evidence for a a strongly attractive kaon-nucleus optical
potential.

One of the shortcomings of the work in Ref. [44] stems
from employing the Green’s function method [45] in a
variant used in Refs. [46–48] to analyze the data and extract
from there the kaon optical potential. The only mechanism
considered in Ref. [44] for the emission of fast protons is the
K̄p → K̄p process, taking into account the optical potential
for the slow kaon in the final state. However, there are other
mechanisms that contribute to the generation of fast protons,
namely, kaon absorption by one nucleon, K−N → π� or
K−N → π�, followed by decay of the � or the � into
πN , or absorption by pairs of nucleons, K̄NN → �N and
K̄NN → �N , also followed by similar hyperon decays. The
contributions from these processes were also suggested in
Ref. [49]. In the present work, we take into account these
additional mechanisms by means of a Monte Carlo simulation,
while the processes involving K̄N scattering, which are dom-
inant in this reaction, are considered in two ways, one based
on standard many-body methods using Lindhard functions and
the other based on a Monte Carlo simulation. The agreement
of the two calculational methods gives us confidence in
using the Monte Carlo simulation for processes involving
more than one step and/or one- and two-nucleon kaon
absorption.

II. THE (K−, p) REACTION IN NUCLEI: MANY-BODY
APPROACH

We are dealing here with an inclusive reaction, where a kaon
in flight hits a nucleus and a proton is emitted. In the present
case we focus on fast protons, which could be emitted when the
kaons are trapped in the nucleus or are rescattered with small
energy. The reaction is inclusive in the sense that, apart from
the proton observed, anything can happen to the nucleus. In fact
many processes may take place. The original kaon can undergo
quasielastic collisions with the nucleons, transferring them
some energy. The kaon can be absorbed, either by one nucleon
or by pairs of nucleons. The kaon can be trapped in a kaonic
orbit, etc. Once a kaon has experienced a particular reaction,
the final products also suffer their own interactions with the
nucleus before, eventually, a fast proton gets out. Complicated
as it may sound—and we deal with these complications in a
later section—the evaluation of the inclusive cross section is
easy, as one is looking for the most energetic protons and in the
forward direction, which means that these protons must take

FIG. 1. Diagrammatic representation of the inclusive (K−, p)
reaction.

the largest possible energy from the original kaon. In other
words, if a kaon undergoes a quasielastic collision in which
the proton does not fall in this narrow window, the event will
be dismissed because this kaon, having lost a fraction of its
energy, will not have a second chance to produce a fast proton.
Obviously, if the kaon is absorbed, it disappears from the
flux and must also be eliminated in the evaluation of further
processes (the contribution from the absorption mechanisms
will be calculated later). The other relevant observation is that,
if the final fast proton has a secondary collision, it will also
lose energy and will not lie in the desired energy window.
In practical terms this means that we can just care about the
direct K−p → K−p quasielastic reaction at a certain point in
the nucleus and distort the initial K− and final proton waves.
These types of reactions have received much attention and
we describe here the standard procedure of dealing with them
[50,51].

Diagrammatically, the process considered is depicted in
Fig. 1, which shows the kaon inducing a ph excitation and re-
maining in the nucleus, representing what we call a quasielastic
collision. The kaon transfers energy and momentum to a
nucleon that is promoted from below to above the (local) Fermi
sea.

The kaon self-energy for the diagram in Fig. 1 in a Fermi
sea is given by

−i�qe(k) =
∫

d4q

(2π )4
iŪ (k − q)(−i)T (−i)T

× i

q02 − �q2 − m2
K − �(q)

, (1)

where Ū (k − q) is the Lindhard function for ph excitation
and T stands for the K−p → K−p scattering matrix. The
factor [q02 − �q2 − m2

K − �(q0, �q)]−1 is the kaon propagator,
which includes its self-energy in the medium, �(q0, �q). Using
the Cutkosky rules, one easily obtains the imaginary part of
�qe(k) as in Ref. [52]:

�qe → 2iIm�qe, (2)

Ū (k − q) → 2iθ (k0 − q0)ImŪ (k − q), (3)
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D(q) = 1

q02 − �q2 − m2
K − �(q)

→ 2iθ (q0)ImD(q).

(4)

Then

Im�qe(k) = −2
∫

d4q

(2π )4
ImŪ (k − q)|T |2

× Im
1

q02 − �q2 − m2
K − �(q0, �q)

, (5)

where Ū is given by

Ū (k − q) = 2
∫

d3pN

(2π )3

M

E( �pN )

M

E(�k + �pN − �q)

× n( �pN )[1 − n(�k + �pN − �q)]

k0 + p0
N − q0 − E(�k + �pN − �q) + iε

.

(6)

The fast protons with momentum �k + �pN − �q are the en-
ergetic ones that would be observed, hence the corresponding
Pauli blocking factor, 1 − n, is just unity here. From Eq. (6)
one obtains Im Ū as

ImŪ = −2π

∫
d3pN

(2π )3

M

E( �pN )

M

E(�k + �pN − �q)
n( �pN )

× δ(k0 + E( �pN ) − q0 − � − E(�k + �pN − �q)),

(7)

where we have introduced an energy gap between the energy
of the holes and the energy of the particles [53,54]. We thus
obtain the following equation for Im �qe:

Im�qe(k)

= 2
∫

d3pN

(2π )3
n( �pN )

M

E( �pN )

∫
d3q

(2π )3
|T |2 M

E(�k + �pN − �q)

× Im
1

q02 − �q2 − m2
K − �(q0, �q)

∣∣∣∣
q0=k0+E( �pN )−�−E(�k+ �pN −�q)

.

(8)

The physical interpretation comes by recalling that

2ωVopt ≡ �qe, (9)

ImVopt = 1

2ω
Im�qe, (10)


 = −2ImVopt = − Im�qe

ω
, (11)

where ω is the kaon energy and Vopt is the K−-nucleus optical
potential. Our states are normalized to unity in a box of volume
V . The flux of the incoming kaons is vK−/V , and thus the K−
cross section with the nucleons of the Fermi sea of volume V

is given by

σ = 


K−flux
= 


vK−/V
= V




k
ω. (12)

Replacing V with an integral
∫

d3r over the nuclear density
we obtain, upon the change of variables,

�p ≡ �k + �pN − �q, (13)

where �p is the outgoing proton variable,

σ = −2

k

∫
d3r

∫
d3pN

(2π )3
n( �pN, �r)

M

E( �pN )

∫
d3p

(2π )3
|T |2 M

E( �p)

× Im
1

q02 − �q2 − m2
K − �(q0, �q)

∣∣∣∣∣
q0=k0+E( �pN )−�−E( �p)

�q=�k+ �pN − �p
,

(14)

from which
dσ

d�(p̂)E( �p)

= −2

k
pM

∫
d3r

∫
d3pN

(2π )3
n( �pN, �r)

M

E( �pN )

1

(2π )3
|T |2

× Im
1

q02 − �q2 − m2
K − �(q0, �q)

∣∣∣∣∣
q0=k0+E( �pN )−�−E( �p)

�q=�k+ �pN − �p
.

(15)

The integral over �r covers the size of the nucleus. As in
previous works [35,36], we use a realistic nuclear density
profile for 12C, given by the three-parameter Fermi distribution
[55], which reproduces elastic electron scattering data. We
have also tried a more sophisticated nuclear density profile,
which accounts for the finite range of the interaction via a
folding procedure and is preferred by antiprotonic X-rays
and radiochemical data [56]. Although the folded density
is almost 10% lower in the center of nuclei and extends to
longer distances, the final result of our simulation is practically
unaffected by this density change. The integral over �pN is
restricted to the hole (bound) nucleon states within the local
Fermi momentum kF (�r) obtained from the nuclear density at
point �r . This is accounted for by the Pauli blocking factor
n( �pN, �r).

In free space, the cross section for kaon scattering off a
proton in the laboratory frame with the proton emerging in the
forward direction reads

dσ

d�(p̂)

∣∣∣∣
lab

= π

k

1

(2π )3
p̄2|T |2 M

2

1

p̄(k0 + M) − E(p̄)k
, (16)

where p̄ is the momentum of the nucleon,

p̄ = 2pCMECM

M
, pCM = λ1/2

(
s,m2

K,M2
)

2
√

s
. (17)

Equation (16) establishes a link between |T |2 and the forward
cross section, which can be implemented into Eq. (15) to derive
our final formula:

dσ

d�(p̂)E( �p)

= −4p

p̄2

dσ

d�(p̂)

∣∣∣∣
lab

∫
d3re− ∫ ∞

−∞ σρ(b,z′)dz′
∫

d3pN

(2π )3
n( �pN, �r)

× M

E( �pN )
θ (q0)[p̄(k0 + M) − E(p̄)k]

× 1

π
Im

1

q02 − �q2 − m2
K − �(q0, �q)

∣∣∣∣
q0=k0+E( �pN )−�−E( �p)

�q=�k+ �pN − �p
,

(18)
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where we have added the distortion factor for the initial K−
and the final proton p (exponential factor in the equation),
as well as the factor θ (q0) in Eq. (4). Taking into account
that 〈σ tot

K−N 〉 	 45 mb 	 〈σpN 〉 ≡ σ for K−-nucleon collisions
with pK− 	 1 GeV/c and proton-nucleon collisions with
protons having about 600- to 700-MeV kinetic energy, we
have implemented a combined eikonal distortion factor as in
Refs [44] and [46]:∫

d3r →
∫

d3re− ∫ ∞
−∞ σρ(b,z′)dz′

, (19)

where b is the impact parameter, b2 = x2 + y2.
The backward differential cross section of the elementary

process K−p → K−p in the laboratory frame (dσ/d�)lab for
incoming kaons of 1 GeV/c is taken to be 8.8 mb/sr, using the
K−p elastic cross-section data of Ref. [57]. We note that the
authors of Ref. [17] take a value of 3.6 mb/sr as an effective
way to implement effects of Fermi motion, Pauli blocking,
etc., which we consider explicitly here.

III. MONTE CARLO SIMULATION

The procedure just outlined is quite efficient to produce the
cross section for the (K−,p) reaction but, obviously, including
only the quasielastic collisions K−p → K−p. There might be
other processes contributing to generate fast protons, and when
this is the case, it becomes advisable to make a simulation of
the reaction. This procedure was developed in Ref. [58] for
the study of inclusive pionic reactions in nuclei and has also
been applied to other processes, such as photon-induced pion
and proton emission in nuclei [52,59], electron-induced proton
emission [60], nucleon emission following hypernuclear decay
[61,62], and nucleon emission following kaon absorption in
nuclei [35].

As sources of fast protons we consider the quasielastic
K−N scattering process, as well as the absorption of the kaon
by one and two nucleons. The election of which reaction
occurs at a certain point in the nucleus is done as usual.
One chooses a step size δl and calculates, by means of
σiρδl, with i = qe, 1N, 2N , the probabilities that any of the
possible reactions happens. The values of the cross sections are
discussed in Sec. IV. The size of δl is small enough that the sum
of probabilities that any reaction occurs is reasonably smaller
than unity. A random number from 0 to 1 is generated and a
reaction occurs if the number falls within the corresponding
segment of length given by its probability, the segments being
put successively in the interval [0–1]. If the random number
falls outside the sum of all segments, then this means that no
reaction has taken place and the kaon is allowed to proceed
one further step δl.

A. Quasielastic scattering

We describe here how the Monte Carlo simulation treats the
quasielastic reaction discussed in Sec. II. The general strategy
is to let the kaon propagate through the nucleus, determining,
at each step δl, whether it can undergo a quasielastic collision,
according to the probability σqeρδl, where σqe is the K−N →
K−N elastic cross section. If there is a quasielastic collision

at a certain point, then the initial K− momentum and the
nucleon momentum, randomly chosen within the Fermi sea,
are boosted to their CM frame. The direction of the scattered
momenta is determined according to the experimental cross
section. A boost to the laboratory frame determines the final
kaon and nucleon momenta. The event is kept as long as the
size of the nucleon momentum is larger than the local value
of kF . Because we take into account secondary collisions,
we consider the reactions K−p → K−p, K−p → K0n, and
K−n → K−n, with their corresponding cross sections.

Once primary nucleons are produced they are also followed
through the nucleus, taking into account the probability that
they collide with other nucleons, losing energy and changing
their direction. We follow the procedure detailed in Refs [58]
and [59].

We also follow the rescattered kaon on its way through
the nucleus. In the subsequent interaction process we let
the kaon experience whichever reaction of the three that
we consider (quasielastic, one-body absorption, two-body
absorption) according to its probability. If the kaon remains
after the collision, this procedure continues until it finally
emerges out of the nucleus or is absorbed by one or two
nucleons.

B. One-body kaon absorption

We consider the reactions K−N → π� and K−N → π�,
with all the possible charge combinations. Once again, the
probability of this occurring is weighed by their corresponding
cross sections and the directions of the π and of the hyperons
are also determined in the CM frame. The system is then
boosted back to the laboratory frame, where we let the � or
the � propagate through the nucleus, undergoing quasielastic
collisions with the nucleons. Once they leave the nucleus they
are allowed to decay weakly into πN , in this way providing a
source of protons that is not negligible, as we will see.

C. Two-body absorption

We also take into account the processes K−NN → �N

and K−NN → �N , with all possible charge combinations.
The probability per unit length for two-nucleon absorption,
µK−NN , together with the distribution into the different
possible channels, is discussed in Sec. IV. In these reactions an
energetic nucleon is produced, as well as a � or a � hyperon.
Both the nucleon and the hyperon are followed through the
nucleus as already discussed. Once out of the nucleus, the
hyperon is let decay weakly into πN pairs. Therefore,
the two-body absorption process provides a double source
of fast protons: those directly produced in the absorption
reactions and those coming from hyperon decays.

D. Consideration of the K− optical potential

We also take into account a kaon optical potential,
Vopt = ReVopt + iImVopt, which will influence kaon propaga-
tion through the nucleus, especially after a high-momentum
transfer quasielastic collision, where the kaon will acquire a
relatively low momentum.

As discussed in the Introduction, the literature reveals quite
different values for the real part of the potential. In the present
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study we vary the strength of the potential ReVopt, to study
the sensitivity of the results: starting at −60ρ/ρ0 [14–18],
going through −200ρ/ρ0 MeV [3–10], and continuing down
to −600ρ/ρ0 MeV [21,22]. For the imaginary part of the
optical potential we take ImVopt ≈ −60ρ/ρ0 MeV, as in the
experimental paper [44] and the theoretical study [15].

In the presence of an optical potential, the kaon spectral
function has the form

SK (M̃K ) = 1

π

−2MK ImVopt(
M̃2

K − M2
K − 2MKReVopt

)2 + (2MK ImVopt)2
.

(20)

In the Monte Carlo simulation we implement this distribution
by generating a random kaon mass M̃K around a central value,
MK + ReVopt, which is the bare kaon mass shifted by the real
part of the optical potential. The generated random masses
lie within a certain extension determined by the width of the
distribution 
K = −2ImVopt, the size of which is controlled
by the imaginary part of the optical potential. The probability
assigned to each value of M̃K follows the Breit-Wigner
distribution given by the kaon spectral function.

E. Final observable

After all the processes implemented in the Monte Carlo
simulation, some particles leave the nucleus, and we select the
events that contain a fast proton in the region of interest. To
adapt the calculations to the experiment in Ref. [44] we keep
the protons that emerge within an angle of 4.1◦ in the nuclear
rest frame (laboratory frame). For quasielastic scattering
processes this would correspond to events in which the kaons
emerge backward in the K̄N CM frame and the protons are
most energetic, having of the order of 500–700 MeV of kinetic
energy in the laboratory frame.

To facilitate comparison with experiment, the missing
invariant mass of the 12C(K−,p) reaction is converted into a
binding energy of the kaon, EB , should the process correspond
to the trapping of a kaon in a bound state and emission of the
fast proton, according to√

(EK + M12C − Ep)2 − ( �Pp − �PK )2 = M11B + MK − EB,

(21)

where Ep, �Pp are the energy and momentum of the observed
proton and EK, �PK are the energy and momentum of the initial
kaon.

F. Coincidence simulation

It is very important to keep in mind that the measurements in
the experiment of [44] were done in coincidence. The outgoing
proton was measured by the KURAMA spectrometer in the
forward direction, while another detector, the decay counter,
was sandwiching the target. The published spectrum was
obtained with the requirement of having an outgoing proton in
the KURAMA spectrometer and at least one charged particle
in the decay counter [63].

Obviously, the real simulation of such a coincidence
experiment is tremendously difficult, practically impossible
with high accuracy, because it would require tracing all the

charged particles coming out from all possible scatterings
and decays. Although we are studying many processes and
following many particles in our Monte Carlo simulation,
which is not the case in the Green function method used in
the data analysis [44], we cannot simulate precisely the real
coincidence effect.

What we can do is to eliminate the processes that, certainly,
will not produce a coincidence, a procedure that we refer to as
minimal coincidence requirement [68]. If the kaon in the first
quasielastic scattering produces an energetic proton falling into
the peaked region of the spectrum, then the emerging kaon
will be scattered backward. In our Monte Carlo simulation
we can select events where neither the proton nor the kaon
will have any further reaction after such a scattering. In these
cases, although there is a “good” outgoing proton, there are
no charged particles emerging with the right direction with
respect to the beam axis to hit a decay counter, as the K−
escapes undetected through the backward direction. Therefore,
this type of event must be eliminated for comparison with the
experimental spectra.

As we see in the next section, the main source of the
energetic protons is K−p quasielastic scattering, and therefore,
the minimal coincidence requirement removes a substantial
part of the potentially “good” events, changing the form of the
final spectrum. Furthermore, events with one- or two-nucleon
absorption or/and with several quasielastic rescatterings have a
good chance of producing a charged particle that goes through
the decay counter. Thus, the final spectrum obtained from our
Monte Carlo simulations with minimal coincidence require-
ment will probably overshoot the experimental spectrum by
an amount that will depend on the capability of the events
having the given energy EB of producing, apart from the
corresponding energetic proton, additional charged particles
hitting the decay counters.

IV. INPUT CROSS SECTIONS

A. K̄ N cross sections

The elastic and inelastic two-body K̄N cross sections for
kaons of about 1 GeV/c are taken from the Particle Data Group
(PDG) [64]. The values are as follows:

σK−p→K−p = 21.22 mb σK−p→K̄0n = 7.15 mb,

σK−n→K−n = 18.5 mb, σK−p→π0� = 4.32 mb,

σK−p→π+�− = 1.76 mb, σK−p→π−�+ = 1.4 mb,

σK−p→π0�0 = 1.58 mb, σK−n→π−� = 6.35 mb,

σK−n→π−�0 = 0.97 mb, σK−n→π0�− = 1.15 mb.

From the PDG we also know the total cross sections:

σ tot
K−p = 51.7 mb, σ tot

K−n = 38 mb

⇒ 〈
σ tot

K−N

〉 = 45 mb [see Eq. (18)].

Because these are larger than the sum of the partial cross
sections that we are using explicitly, we define

σK−p→X = 14.27 mb, σK−n→X = 10.0 mb,
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which takes care of all possible reaction channels, such
as K−p → η� and K−p → η�, where no fast nucleons
come out. Thus, we introduce an extra segment of length
σK−p,n→Xρδl in the interval [0–1] for the Monte Carlo decision
of these reactions to occur. If this is the case, the K− simply
disappears, as the particles produced in these reactions cannot
contribute to our observable.

B. Two-nucleon absorption cross sections

The probability per unit length for two-nucleon absorption
is proportional to the square of the nucleon density:

µK−NN (ρ) = Cabsρ
2.

We assume a total two-body absorption rate of 20% that of one-
body absorption at about nuclear matter density, something
that one can infer from data on K− absorption in 4He [65]. In
practice, this is implemented in the following way:

〈µK−NN 〉 = Cabs〈ρ2〉 = 0.2〈µK−N 〉 = 0.2
〈
σ tot

K−N

〉〈ρ〉,
where σ tot

K−N accounts for the total one-nucleon absorption
cross section, and in symmetric nuclear matter, it is given
by 〈

σ tot
K−N

〉 = (
σ tot

K−p + σ tot
K−n − σK−p→K−p − σK−n→K−n

)/
2

= 21.45 mb.

Taking 〈ρ〉 = ρ0/2, where ρ0 = 0.17 fm−3 is normal nuclear
matter density, we obtain

Cabs ≈ 6 fm5.

The different partial processes that can take place in a two-
nucleon absorption reaction are

K−pp → p�, p�0, n�+,

K−pn → n�, n�0, p�−,

K−nn → n�−.

Ideally, their corresponding branching ratios should be
obtained from relevant microscopic mechanisms, such as the
kaon-exchange processes depicted in Fig. 2. There might be

0 + −

0 0 −

FIG. 2. Two-nucleon K− absorption diagrams from a kaon-
exchange picture.

other processes, however, for instance, those involving pion
exchange. In the present exploratory work, we consider a much
simpler approach consisting of assigning equal probability to
each of the aforementioned reactions. Noting that the chance
of the kaon finding a pn pair is twice as large as that for pp or
nn pairs, we finally assign a probability of 3/10 for having a
p� pair in the final state of K−NN absorption, 4/10 for n�,
1/10 for p�, and 2/10 for n�.

C. Nucleon and hyperon cross sections

Apart from following the kaons, our calculations also need
to consider the quasielastic scattering of nucleons and � and
� hyperons on their way through the residual nucleus. The
nucleon-nucleon cross sections σNN for different momenta
are taken from the parametrization in Ref. [66], as also applied
in other simulations [35,37]. Given the uncertainties in the
hyperon-nucleon cross sections, we may use the relation
σYN = 2σNN/3 based on a simple nonstrange quark counting
rule. This approximation is used for �N scatterings. However,
other, more refined fits to experimental data also exist, and
in the case of �N scattering, we use the parametrization of
Ref. [67], as also done in Ref. [36].

V. RESULTS AND DISCUSSION

First, we would like to compare the results obtained
with the diagrammatic many-body method with those of the
Monte Carlo simulation when only quasielastic scattering
is considered. This is shown in Figs. 3 and 4 for different
optical potentials: Vopt = (−60,−60)ρ/ρ0 MeV and Vopt =
(−200,−60)ρ/ρ0 MeV correspondingly. As we can see,
the two calculations are practically identical in the region
of interest. The Monte Carlo simulation produces slightly
larger cross sections because it also takes into account the
multiple quasielastic scattering processes. It is clear that
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=(−60,−60) ρ/ρ
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 − many body approach
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0
 − Monte Carlo simul., only QE

FIG. 3. (Color online) Results of the direct many-body evaluation
(solid line), and of the Monte Carlo simulation considering only
the quasielastic scattering processes (dashed-dotted line), for Vopt =
(−60, −60)ρ/ρ0 MeV.
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FIG. 4. (Color online) The same as Fig. 3, but for Vopt =
(−200, −60)ρ/ρ0 MeV.

these additional events, which contain a “good” final proton
and more than one quasielastic collision, are rather rare.
However, as we will see, kaon absorption mechanisms produce
a substantial number of energetic nucleons, which need to be
taken into account.

Before discussing the contributions of the new processes,
let us explore the sensitivity of the spectrum to the kaon
optical potential. In Figs. 5 and 6 we show the results obtained
with the many-body method employing potential depths of
60, 200, 400, and 600 MeV at normal nuclear density. In
Fig. 5 the absolute distributions are plotted together with the
experimental spectrum [44]. Increasing the depth of the kaon
optical potential produces an enhancement of the cross section
in the bound region of kaons, as one might expect intuitively.
The height of the theoretical distributions is much larger than
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FIG. 5. (Color online) Results obtained using the many-body
method for kaon potential depths of 60, 200, 400, and 600 MeV
at normal nuclear density. Experimental data are shown with black
bars.
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FIG. 6. (Color online) The same results as in Fig. 5, but rescaled
to the height of the experimental spectrum [44]. Experimental data
are shown by black bars.

that of the experimental cross section. We have tested that
our theoretical normalization is correct. Indeed, if we remove
the distortion of the incoming kaons and ougoing protons in
the many-body method, we obtain that the strength of the
integrated cross section for the reaction on 12C is six times
that of the elementary reaction, K−p → K−p, at backward
angles. The distortion implemented here reduces the nuclear
cross section by about a factor 3.5, which is also the same
distortion effect obtained in Ref. [46].

The different size of the theoretical distribution compared
to the experimental data in fact shows the removal of events
implemented by the concidence test applied in Ref. [44],
demanding that some extra charged particle is detected in a
decay counter surrounding the target together with the forward
fast proton. It is, however, claimed in Ref. [44] that the required
coincidence does not change the shape of the spectrum.
Assuming this, we can rescale our calculations to give them the
size of the experimental distribution, as illustrated in Fig. 6.
The region of most interest corrresponds to a deep binding
energy for the kaon (i.e., high momenta for the proton), about
50 MeV or more to the left of the peak, as the quasielastic
approach ignores many processes populating the spectrum
at low proton momenta. We observe that, to obtain a good
description of the spectrum from −EB ∼ 0 down to an −EB

of about −100 MeV, one would need optical potential depths
as large as 400 MeV, or even 600 MeV, at normal nuclear
density, not the 190 MeV claimed in Ref. [44], and even then
we observe that the shape is not well reproduced for any of the
potentials.

In our opinion, these results indicate the existence of
other contributions from processes that are not yet taken into
account and/or that the assumption of an energy-independent
reduction factor owing to the coincidence requirement might
not be correct. These effects can be investigated within the
Monte Carlo simulation developed in this work. In Fig. 7
we show the results of the Monte Carlo simulation obtained
with an optical potential Vopt = (−60,−60)ρ/ρ0 MeV, taking
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FIG. 7. (Color online) Calculated proton spectra with Vopt =
(−60, −60)ρ/ρ0 MeV, taking into account only quasielastic pro-
cesses (dash-dotted line) and including all processes (solid line).

into account only quasielastic processes (dash-dotted line)
and considering as well one- and two-nucleon absorption
processes (solid line). We can see that there is a non-negligible
amount of strength gained in the region of “bound kaons”
owing to the new mechanisms. Although not shown separately
in Fig. 7, we have seen that one-nucleon absorption and
multiscatterings contribute to the region −EB > −50 MeV.
To some extent, this strength can be simulated by the
parametric background used in Ref. [44]. However, this is
not true anymore for the two-nucleon absorption processes,
which contribute to all values of −EB , starting from almost as
low as −300 MeV.

It is very important to keep in mind that in the spectrum
from Ref. [44] the outgoing forward protons were measured
in coincidence with at least one charged particle in the decay
counters surrounding the target. While a detailed simulation
of these experimental conditions is prohibitive, we can at least
see their consequences by applying the minimal coincidence
requirement. As described in Sec. III F we eliminate the events
that, definitely, will not produce a coincidence, that is, those
in which, after a primary quasielastic collision producing a
fast forward proton and a backward kaon, neither particle
suffers any further reaction. While it is clear from Fig. 7
that the main source of energetic protons in the 12C(K−, p)
spectrum is the K−p quasielastic scattering process, many of
these potentially “good” events will be eliminated by the the
minimal coincidence requirement. As a result, the shape of
the spectrum will change substantially, as clearly illustrated
in Fig. 8 upon comparing the bare spectrum obtained with a
kaon potential depth of 60 MeV (solid line) with that obtained
after the minimal coincidence cut (dashed line). The figure
also shows the spectra corresponding to a potential depth
of 200 MeV, before (dot-dashed line) and after (dotted line)
the coincidence cut. We clearly see that the sensitivity of the
spectra in the bound region to the optical potential employed is
practically lost when the coincidence requirement is applied.
These results demonstrate the limited capability of the (K−,p)
reaction with in-flight kaons to infer the depth of the kaon
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No one K−N QE scattering,  U=−60 ρ/ρ
0

No one K−N QE scattering,  U=−200 ρ/ρ
0

FIG. 8. (Color online) Calculated 12C(K−, p) spectra for Vopt =
(−60, −60)ρ/ρ0 MeV and Vopt = (−200, −60)ρ/ρ0 MeV, taking
into account all contributing processes (solid and dot-dashed lines)
and imposing the minimal coincidence requirement (dashed and
dotted lines).

optical potential. Actually, the bare spectrum would be a more
appropriate observable for this task.

To further understand the effects of the coincidence require-
ment we introduce additional constant suppression factors to
the calculated spectrum [68], as shown in Figs. 9 and 10.
Figure 9 shows our results using a shallow kaon nucleus optical
potential, Vopt = (−60,−60)ρ/ρ0 MeV, as obtained in chiral
models. Comparing to experimental data, we can conclude that
our results would need a reduction factor of about ∼0.7, more
or less homogeneous in the “bound” region, −EB < 0 MeV,
while the suppression should be weaker in the continuum and
basically negligible for −EB > 50 MeV. This picture is natural
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FIG. 9. (Color online) The 12C(K−, p) spectrum obtained with
Vopt = (−60, −60)ρ/ρ0 MeV and the minimal coincidence require-
ment, for several reduction factors. Experimental points are taken
from Ref. [44].
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FIG. 10. (Color online) The same as Fig. 9, but for Vopt =
(−200, −60)ρ/ρ0 MeV.

from the physical point of view, because the spectrum to the
right of the peak is populated with lower-momentum protons.
These are mostly produced in many-particle final states,
which have a better chance to be scored by the coincidence
detectors.

However, from Fig. 10, where the calculations
with a deep kaon nucleus optical potential of Vopt =
(−200,−60)ρ/ρ0 MeV are shown, we can conclude that
it is much more difficult to obtain an overall description
of the data with such a potential, even admitting a strong
supression in the bound region and a negligible one in the
continuum.

Despite the previously described behavior, one cannot
conclude that the experimental spectrum supports especially
one potential depth over the other. However, we want to make
clear that, in trying to reproduce the actual data, one necessarily
introduces large uncertainties owing to the experimental set up.
Contrary to what is assumed in Ref. [44], Fig. 8 clearly shows
that the spectrum shape is affected by the required coincidence.
In fact, the distortion of the experimental spectrum owing to
the coincidence requirement can easily be much bigger than
the difference between different potential depths, as shown
by the sensitivity of the spectrum to the optical potential
displayed in Figs. 5 and 8. Thus, the experiment in Ref. [44] is
not appropriate for extracting information on the kaon optical
potential. The theoretical analysis in Ref. [44] was based on
the assumption that the shape of the spectrum does not change
with the coincidence requirement. Because we have shown
this not to be the case, the conclusions obtained there do not
hold. Certainly, the experimental data without the coincidence
requirement from Ref. [44] would be a much more useful
observable.
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