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Formation of hyperdeformed states by neutron emission from a dinuclear system
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The hyperdeformed nuclei treated as dinuclear or quasimolecular configurations are suggested to be directly
produced in heavy-ion reactions at bombarding energies near the Coulomb barrier. The excited dinuclear system
formed in the entrance channel of the heavy-ion collision can be cooled down by neutron emission to be
transformed into the hyperdeformed nuclear system. This transition from the excited dinuclear system to a
hyperdeformed configuration is described within the statistical approach. The reactions 48Ca + 124,128,130,132,134Sn,
48Ca + 136,138Xe, 48Ca + 137,138,140Ba, 40Ca + 83,84Kr, 48Ca + 83,84,86Kr, 40,48Ca + 40,48Ca, 58,60Ni + 58,60Ni, and
40Ca + 58Ni are suggested for the population of hyperdeformed states. The production cross sections, quadrupole
moments, and moments of inertia of hyperdeformed states formed in these reactions are calculated, and the
optimal conditions for the experimental identification of such states are proposed.
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I. INTRODUCTION

The evidence of low-spin hyperdeformed (HD) states in
actinides has been experimentally established in induced
fission reactions (n,f ), (t ,pf ), and (d,pf ) [1–3]. These
shape isomer states are caused by a third minimum in the
potential energy surfaces (PESs), which appears at very large
quadrupole deformation parameters β2 � 0.9. Using the shell-
model calculations, it was shown that the third minimum in
the PESs of actinide nuclei belongs to rather a quasimolecular
configuration of two touching nuclei (clusters) [4]. The validity
of the cluster interpretation of the HD isomers was investigated
in Refs. [5–8]. Based on the results of Refs. [7,8], one can be
convinced that certain quasimolecular configurations with the
dumb-bell shapes have the same quadrupole moments and
moments of inertia as those measured for superdeformed (SD)
and HD isomer states.

Up to now there has been little experimental information
on the high-spin HD states of heavy nuclei. Evidence for HD
bands in 152,153Dy and 147Gd was earlier reported in Ref. [9]
with the reactions 120Sn(37Cl,p xn)152,153Dy and 100Mo(51V,
p 3n)147Gd. The ridge structure, which consists of stretched
E2 transitions found in a proton-selected γ -γ matrix in these
reactions, suggested the existence of a HD prolate shape with
a quadrupole deformation of β2 � 0.9. But it was later shown
in Ref. [10] that the candidates for HD states in 147Gd and
152,153Dy have no properties consistent with band structure.
Thus, there is no experimental evidence that proton emission
plays an important role in the population of HD states. Within
semiphenomenological cranked Woods-Saxon and Nilsson
approaches [11,12], the HD structures were predicted to
become yrast states in 147Gd and 152Dy at spins L = 80 and
90, respectively.

In light α-particle nuclei, the similarity between HD and
cluster-type states, i.e., quasimolecular states, was mentioned
in Refs. [13–15]. In a fragment-fragment-γ (the γ rays are
emitted from the fragments) triple coincidence experiment

[16], the possibility of a preferential population of highly
deformed bands in 56Ni was investigated in the 28Si + 28Si
reaction at an energy of a conjectured quasimolecular reso-
nance with a spin L = 38. The possible occurrence of HD
configurations was investigated in the 40Ca and 56Ni dinuclear
systems formed in the 28Si + 12C and 28Si + 28Si reactions,
respectively, by using the spectral properties of emitted light
charged particles (p,d,t,α) [15]. In this experiment, two heavy
fragments were detected in coincidence with a light charged
particle associated with them. In Refs. [17–20], the extremely
elongated nuclear shapes of light nuclei, for example, 24Mg,
36Ar, 56Ni, and 60Zn, have been treated as cluster states.

Investigations of the high-spin SD and HD rotational bands
in different mass regions were performed with the cranked-
shell and mean-field approaches using a few deformation
parameters, and with cluster models in which the cluster
degrees of freedom, taken properly, allow us to simplify
the treatment of a nuclear system in the space of collective
coordinates [22]. There have been many recent developments
in the field of nuclear clusters including the ability to perform
ab initio calculations of the light nuclei, such as Green’s func-
tion Monte Carlo methods [23] and antisymmetrized molecu-
lar dynamics [22,24]. As known from the study of light nuclei
8Be and 32S, the highly deformed shape can be considered as
a symmetric dimolecular shape rather than an ellipsoid. The
semimicroscopic symmetry-adopted cluster approaches have
been applied to predict the SD and HD states in light nuclei
[20,21]. The calculations for heavy nuclei with the cluster
models [8,25–28] have shown that the configurations with
large quadrupole and octupole deformation parameters and the
low-lying collective negative-parity states are strongly related
to dinuclear clustering. With the cluster approach [8,27,28], the
main properties of SD states in several isotopes of Pb and Hg
have been described. In the cluster models [25,26], the charge
(mass) asymmetry coordinate is fixed, and the main collective
coordinate is the relative distance between the centers of
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the clusters. Because of this, the clusters penetrate each
other.

The indications of population of high-spin HD states
in fusion-evaporation reactions with heavy ions have been
discussed in Ref. [29]. In Refs. [8,12], it has been suggested to
directly populate these states in heavy-ion collisions without
going via the stage of compound-nucleus formation that is
in accordance with the dinuclear interpretation of strongly
deformed nuclear states. In this model, two clusters are
in touching configuration. The relative distance between
the centers of the clusters corresponds to the minimum of
the nucleus-nucleus interaction potential and is larger than the
sum of cluster radii. The overlapping of nuclei is hindered
by a repulsive nucleus-nucleus interaction potential at smaller
relative distances. The minimum of nucleus-nucleus potential
energy contains the quasibound states with the energies below
the potential barrier and with large half-lives. These states
should be directly populated by tunneling through the entrance
barrier including the centrifugal potential. In this case, the cold
dinuclear system (DNS) is formed in the entrance channel of
reaction. This DNS, if it lives quite a long time, can be treated
as the HD state. The quadrupole moments of such a DNS with
mass asymmetry |η| = |A1 − A2|/(A1 + A2) � 0.6 (A1 and
A2 are the mass numbers of the DNS nuclei) are equal to or
larger than the quadrupole moment of an ellipsoid with β2 =
0.9 [7]. Asymmetric DNSs have relatively large octupole de-
formation. The experimental identification of the HD state can
be obtained by measuring the consecutive collective rotational
E2 transitions in the HD band in coincidence with the decay
fragments of the DNS trapped in the HD minimum [8].

In the present paper, we use the dinuclear interpretation of
the HD nuclear states and study a new possibility to populate
the HD states directly in the entrance channel of heavy-ion
reactions after the neutron emission. The bombarding energy
is slightly larger than the Coulomb barrier. Taking neutron-rich
isotopes as projectiles, one can lower the neutron binding
energy and increase the probability of neutron emission from
the DNS and, thus, produce the HD states with larger cross
sections. Considering the wide isotopic composition of the
colliding nuclei, the influence of the entrance channel on
the dynamics of the formation of the cold DNS and on the
possibility of emission of γ cascades which get trapped in the
HD minimum will be analyzed. Optimal conditions for such
experiments will be proposed.

II. FORMATION OF HYPERDEFORMED STATES
IN HEAVY-ION COLLISIONS

A. Model

Our treatment is based on the cluster or molecular interpre-
tation of strongly deformed nuclear states. This interpretation
assumes that the DNS is formed after the colliding nuclei
pass over the Coulomb barrier and come to the touching
configuration. The DNS can evolve by diffusion in the relative
distance R between the centers of nuclei and in the charge ηZ =
(Z1 − Z2)/(Z1 + Z2) and mass η asymmetry coordinates (Z1

and Z2 are the charge numbers of the DNS nuclei) [30–32].
The initial DNS with an excitation energy higher than the

depth of the third potential minimum can be deexcited by the
emission of a neutron, which competes with the diffusion in
ηZ to more symmetric or asymmetric configurations and the
diffusion to larger R (DNS decay or quasifission). The residue
daughter DNS configuration can be cold enough and can live
a long enough time to be interpreted as a HD state. Such a
system has also the possibility of the emission of γ quanta
between collective rotational states.

So, our model treats the formation and decay of the HD state
as a three-step process. First, the excited initial DNS is formed
in the entrance channel. Second, the cold DNS corresponding
to HD state is produced by the emission of a neutron. Third,
this rotating DNS emits γ quanta and/or reseparates into two
fragments.

B. HD-state formation cross section

The cross section σHD(Ec.m.) for the formation of the HD
state depends on the capture cross section or the capture
probability Pcap, which is related to the formation of excited
initial DNS and the probability PHD of transformation of this
DNS into HD state (cold DNS):

σHD(Ec.m.) =
Lmax∑

L=Lmin

σHD(Ec.m., L)

=
Lmax∑

L=Lmin

πh̄2

2µEc.m.

(2L + 1)

×Pcap(Ec.m., L)PHD(Ec.m., L). (1)

Here, σHD(Ec.m., L) is the partial cross section and Ec.m. is the
bombarding energy in the center-of-mass system. As shown
below, for each reaction there is a certain interval of angular
momentum L from Lmin to Lmax, where the value σHD is
maximal, and there is a chance to observe the γ transitions
between rotational states of the formed HD band. Out of this
interval, the identification of HD states seems to be difficult.

C. DNS potential energy and nucleus-nucleus
interaction potential

Under the assumption of a small overlap of the nuclei in the
DNS, the potential energy of DNS is calculated as follows [30]:

U (R, η, ηZ, β1, β2, L) = B1 + B2 + V (R, η, ηZ, β1, β2, L),

(2)

where B1 and B2 are the mass excesses of the fragments at their
ground states, and β1 and β2 are their quadrupole deformation
parameters. The experimental values of B1 and B2 are used, if
available, from Ref. [33]. Otherwise, we use the values from
Ref. [34]. The quadrupole deformation parameters are taken
from Refs. [34,35]. The nucleus-nucleus potential

V (R, η, ηZ, β1, β2, L)

= VC(R, ηZ, β1, β2) + VN (R, η, β1, β2) + Vrot(η, β1, β2, L)

(3)
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in Eq. (2) is the sum of the Coulomb potential VC , the
nuclear potential VN, and the centrifugal potential Vrot =
h̄2L(L + 1)/(2�), where � is the moment of inertia of the
DNS formed (see Sec. III). In the entrance channel (the
capture stage), � = µR2, where µ is the reduced mass of
relative motion. For the nuclear part, we use the double-folding
formalism with the Skyrme-type effective density-dependent
nucleon-nucleon interaction [6,30,31]. The densities of the
nuclei are taken in the Woods-Saxon form with the nuclear
radius parameter r0 = 1.15 fm and the diffuseness parameter
a = 0.55 fm [6]. Due to the sum of the repulsive Coulomb and
centrifugal summands with the attractive nuclear one in Eq. (3),
the nucleus-nucleus potential has a pocket with a minimum
situated for pole-pole orientation at the distance R = Rm ≈
R1(1 + √

5/(4π )β1) + R2(1 + √
5/(4π )β2) + 0.5 fm (Ri =

r0A
1/3
i fm). The position of the Coulomb barrier corresponds to

R = Rb ≈ Rm + 1 fm in the DNS considered. Then the depth
of the potential pocket is B

qf
R = V (Rb, η, ηZ, β1, β2, L) −

V (Rm, η, ηZ, β1, β2, L). The barrier B
qf
R , called the quasifis-

sion barrier, prevents the DNS decay in the R coordinate.
The DNS being cold can be trapped in the potential minimum
during a time sufficient to emit the γ quanta between collective
rotational states.

The nucleus-nucleus potential V as a function of R and
the potential energy U at R = Rm(η) as a function of Z1

at different angular momenta L are presented in Fig. 1. For
each ηZ , we minimized U (Rm, η, ηZ, β1, β2, L) with respect
to η. The values of barriers B

qf
R and BηZ

are also shown. The
evolution of the excited DNS is the DNS transition over the
barrier B

qf
R in R (DNS decay) or over the barriers B

sym
ηZ

and
B

asym
ηZ

in ηZ , in the direction to more symmetric and more
asymmetric configurations, respectively. For reactions with
ηZ0 = 0, like 40Ca + 48Ca, there is no barrier B

sym
ηZ

but there are
two equal barriers BηZ

= B
asym
ηZ

, which prevent the diffusion
of the DNS to positive and negative values of ηZ . The DNS
should not spread in ηZ in order to have a larger cross section
of the formation of certain HD state. While the depth B

qf
R

of the potential pocket decreases with angular momentum
L due to the growth of the repulsive centrifugal part of the
nucleus-nucleus potential [Eq. (3)] and vanishes for L > 90 in
the case of the considered DNS, the value of BηZ

only slightly
increases with L. At high angular momenta L > 60, in the
case of 40Ca + 48Ca and of some other reactions, the potential
energy of the DNS, normalized to the energy of the compound
nucleus, is negative. This indicates that the complete fusion
becomes energetically denied.

D. Capture probability

To calculate the value Pcap, we use the formalism of the
reduced density matrix [36] taking into account the influence of
dissipation and fluctuations in the relative distance coordinate
R. At bombarding energies near the Coulomb barrier, one can
visualize a capture as a process in which a part of the initial
Gaussian wave packet populates the nucleus-nucleus potential
pocket behind the Coulomb barrier. By solving the quantum
master equation for the R degree of freedom, we find the
diagonal elements ρ(t, R) of the reduced density matrix in
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FIG. 1. Dependencies of the nucleus-nucleus potential V on R

(upper part) and of the potential energies U of the DNS at R = Rm(η)
on charge number Z1 of one DNS nucleus (lower part) for the reaction
40Ca + 48Ca. The calculated results are presented for L = 0, 20, 40,
60, 80 as labeled on the curves. The value of U is normalized to the
energy of the rotating compound nucleus.

the coordinate representation [36]. The capture probability is
defined with the ratio

Pcap(Ec.m., L) =
∫ Rb

−∞ ρ(τ, R)dR∫ ∞
Rb

ρ(t = 0, R)dR
, (4)

where Rb defines the position of the Coulomb barrier, and
the projectile is assumed to approach the target from the right
side. The value of τ determines the time of capture. For the
trajectory (the mean value of relative distance R) above the
Coulomb barrier, the larger part of the Gaussian wave packet
is trapped in the potential pocket or in a quasibound state.
Then, there is a decay in R from this state. The value of τ is
thus defined as the time within which the quasistationary flux
from the potential pocket sets in. When the trajectory does not
cross the top of the barrier, the value of τ is defined as the time
of returning back to the starting point taken at R = Rb + 1 fm.
The details of calculation of Pcap are presented in Ref. [36].

E. DNS excitation energy

The excitation energy of the initial DNS, formed in the
entrance channel of the reaction at R = Rm, ηZ = ηZ0 and
η = ηin, is E∗

in = Ec.m. − V (Rm, ηin, ηZ0 , β1, β2, L). After the
N/Z equilibrium at given ηZ0 is reached, which seems to
be a fast process, the value of η is changed from ηin to η0.
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FIG. 2. Scheme of formation of the HD state in the entrance
channel of nuclear reaction.

The excitation energy of the DNS increases by the value
of 	Uin = U (Rm, ηZ0 , ηin) − U (Rm, ηZ0 , η0). Because in the
reactions considered the distribution of the DNS in η at given
ηZ0 is strongly peaked at η0, we disregard the distribution of the
DNS in η in the vicinity of η0 [32], where the DNS potential
energy is minimal.

F. Neutron emission and transformation of DNS into HD state

The proposed mechanism of the population of HD states
is schematically presented in Fig. 2. To form the quasibound

cold state of DNS, which is treated here as the HD state,
the excitation energy E∗ = E∗

in + 	Uin of the DNS should
be reduced to the value E∗

HD < δE∗, where δE∗ = 0.2 MeV
is assumed in our calculation. This decrease of the DNS
excitation energy can be provided by the emission of a neutron
which carries away the energy Bnk

+ εn, where εn is the kinetic
energy of the neutron and Bnk

the neutron separation energy,
E∗

HD = E∗ − Bnk
− εn. The index k = 1 or 2 corresponds to

the DNS nucleus. Here, we take into consideration that the
neutron can be evaporated from each nucleus of the DNS. As
shown in Ref. [37], in the case of emission of one neutron,
which we consider here, the neutron spectrum is close to
the Maxwellian distribution. Using the Maxwellian form of
neutron spectrum, the probability wnk

to emit the neutron
with kinetic energies in the interval from E∗ − Bnk

− δE∗
to E∗ − Bnk

and to cool the excited DNS to E∗
HD < δE∗ is

estimated as

wnk
(E∗, Bnk

, δE∗)

=
∫ E∗−Bnk

E∗−Bnk
−δE∗ εn exp[−εn/Tnk

(E∗)]/[Tnk
(E∗)]2dεn∫ E∗−Bnk

0 εn exp[−εn/Tnk
(E∗)]/[Tnk

(E∗)]2dεn

, (5)

where Tnk
(E∗) =

√
E∗ Ak

A1+A2
/a(Ak) and a(Ak) are the temper-

ature and the level density parameter of the kth nucleus of the
DNS, respectively.

In the statistical approach, the evolution of the excited DNS
is prescribed by the competition between the neutron emission
from the system and the DNS transition over the quasifission
barrier B

qf
R in R or over the barriers B

sym
ηZ

and B
asym
ηZ

in ηZ ,
in the direction to more symmetric and more asymmetric
configurations, respectively. The transition over the barrier
B

asym
ηZ

opens the way to fusion [30–32], because the DNS
approaches the compound nucleus with increasing ηZ . Taking
into account the competition of different deexcitation channels
[the factor Pnk

(E∗, Bnk
, L)], the probability PHD(Ec.m., L) of

formation of the HD state by neutron emission from the excited
initial DNS is defined as

PHD =
2∑

k=1

Pnk
(E∗, Bnk

, L)wnk
(E∗, Bnk

, δE∗), (6)

Pnk
= �nk

(E∗, ηZ0 , L)

�n(E∗, ηZ0 , L) + �
qf
R (E∗, ηZ0 , L) + �

sym
ηZ

(E∗, ηZ0 , L) + �
asym
ηZ

(E∗, ηZ0 , L)
,

where �nk
is the width of neutron emission from the kth nucleus

of the DNS, �n = �n1 + �n2 , and �
qf
R , �

sym
ηZ

, and �
asym
ηZ

are the
widths of transitions over the barriers B

qf
R , B

sym
ηZ

, and B
asym
ηZ

,
respectively. The heights and curvatures h̄ω

qf
R , h̄ω

sym
ηZ

, and
h̄ω

asym
ηZ

of these barriers are defined using the DNS potential
energy, defined by Eq. (2). In the considered reactions, the
typical values of h̄ω

qf
R and h̄ω

sym,asym
ηZ

are about 2.5 and 1 MeV,
respectively. The widths of each channel (neutron emission or
transitions over the barriers) strongly depend on the intrinsic

level density of the DNS in the corresponding states; see the
Appendix, Eqs. (A4) and (A5).

III. NUCLEAR PROPERTIES OF HD STATES

A. Moment of inertia, electric quadrupole moment,
E2-transition time

Since the experimental identification of HD states is going
to be based on the registration of collective rotational E2
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transitions, it is necessary to define the nuclear properties of
the HD states as moments of inertia and quadrupole moments.
We calculate these values using the cluster approach proposed
in Ref. [7], where the HD states are treated as the cold DNS
configurations. Since the overlap of nuclei in the DNS is quite
small, the DNS moment of inertia � is calculated in the sticking
limit as

� = k0(�1 + �2 + µR2). (7)

For large angular momenta L, the moments of inertia �i

(i = 1, 2) of the DNS nuclei are obtained in the rigid body
approximation:

�i = 1

5
m0Ai

(
a2

i + b2
i

)
,

ai = R0i

(
1 − β2

i

4π

) (
1 +

√
5

4π
βi

)
, (8)

bi = R0i

(
1 − β2

i

4π

) (
1 −

√
5

16π
βi

)
.

As known from the experimental study, the moments of inertia
of strongly deformed nuclear states are very close to 85% of
those in the rigid body limit [12]. We also set k0 = 0.85 in our
calculations.

The charge multipole moments of the DNS are calculated
as (λ � 2)

Q
(c)
λµ =

√
16π

2λ + 1

∫
ρ(c)(r)rλYλµ(�)dr, (9)

where the charge density ρ(c)(r) is written as the sum of den-
sities of each nucleus: ρ(c)(r) = ρ

(c)
1 (r) + ρ

(c)
2 (r). Assuming

axially symmetric nuclear shapes, one can obtain the following
expression for the multipole moments of the DNS in the c.m.
system:

Q
(c)
λ0 = Q

(c)
λ =

λ∑
λ1=0

λ1+λ2=λ

(−1)λ
λ!

λ1!λ2!

× [
(−1)λ1A

λ1
2 Q

(c)
λ2

(1) + A
λ1
1 Q

(c)
λ2

(2)
]Rλ1

Aλ1
, (10)

where the multipole moments Q
(c)
λ2

(i) (i = 1, 2) of the DNS
nuclei are calculated in their centers of mass. Then the electric
quadrupole moment of the DNS is

Q
(c)
2 = 2e

A2
2Z1 + A2

1Z2

A2
R2 + Q

(c)
2 (1) + Q

(c)
2 (2). (11)

Using the values of � and Q
(c)
2 , we obtain the energy

Eγ (L → L − 2) and the time Tγ (L) of the collective E2
transition between the rotational states with angular momenta
L and L − 2 as [35]

Eγ (L → L − 2) = L(L + 1)/(2�) − (L − 2)(L − 1)/(2�),

Tγ (L) = 408.1

5/(16π )
(
Q

(c)
2

)2
[Eγ (L → L − 2)]5

,

(12)

where Eγ is in units of keV, Q
(c)
2 in 102(e fm2), and Tγ in s.

B. Method of identification of HD band

One can propose the experimental method of identification
of the HD states by measuring rotational γ quanta in the HD
band in coincidence with the decay into fragments constituting
the HD states formed in the entrance channel with fixed ηZ0 .
This means that the properties of the formed cold system must
fulfill the following conditions:

Tγ � TR � TηZ
, (13)

where TR and TηZ
are the tunneling times through the barrier in

the R and ηZ coordinate, respectively, which can be estimated
using the parabolic approximation for the PES as (i = R, ηZ ,
j = qf, asym)

Ti = 2π

�
j

i

(
1 + exp

2πB
j

i

h̄ω
j

i

)
, (14)

where �
j

i and ω
j

i are the corresponding frequencies in the min-
imum of the potential energy and on the barrier, respectively,
and B

j

i are the heights of barriers for the daughter DNS after
the neutron emission. B

j
ηZ

is the minimal value of the barrier
which prevents the evolution of DNS in ηZ to the direction
of more symmetric or more asymmetric configurations. For
the asymmetric reactions considered, B

asym
ηZ

< B
sym
ηZ

, and the
tunneling through the barrier B

sym
ηZ

can be neglected. In the
case of symmetric reactions, there are two equal barriers
BηZ

= B
asym
ηZ

to the direction of asymmetric configurations,
and the number of barrier assaults per time is twice larger than
for the asymmetric configuration, and this should be taken into
consideration in formula (14). In the considered reactions, the
typical values of h̄ω

qf
R and h̄ω

asym
ηZ

are about 2.5–2.7 and 1 MeV,
respectively.

Using the rates �γ,R,ηZ
= h̄/Tγ,R,ηZ

of different competing
processes (collective γ transition in the HD band and tunneling
in R and ηZ) from the HD minimum in the PES and
�tot = �γ + �R + �ηZ

, one can estimate the probability of
the emission of x γ quanta from the HD state just before its
decay in R as

PxγR = �R(L − 2x)

�tot(L − 2x)

x−1∏
k=0

�γ (L − 2k)

�tot(L − 2k)
. (15)

Then the cross section of emission of at least x γ quanta(um)
from the HD state before its decay in R can be calculated as

σxγR =
Lmax∑

L=Lmin

σHD(Ec.m., L)
[L/2]∑
x ′=x

Px ′γR, (16)

where [Lmin/2] � x. Since the internal angular momentum
of the even-odd daughter DNS is small in comparison to L,
it was not taken into consideration. Since the detection of γ

quanta in coincidence with the decay products of the HD state
provides the identification of the HD state, the cross section
σxγR is called the identification cross section. Measuring the
consecutive E2 γ transitions, one can determine the moments
of inertia and electric quadrupole moments of the analyzed
HD states.
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The cross section of the HD-state decay in R without γ

emission (x = 0) is

σ0γR =
Lmax∑

L=Lmin

σHD(Ec.m., L)
�R(L)

�tot(L)
. (17)

IV. RESULTS OF CALCULATIONS

A. HD-state formation cross section

The isotopic dependence of the cross sections for the
formation of the HD state in the reaction 48Ca + A2 Sn at
L = 40–50 is presented in Fig. 3. While the barriers B

qf
R

and B
sym
ηZ

increase with A2, the value of B
asym
ηZ

decreases.
The influence of this decrease on the probability of neutron
emission is not compensated by the decrease of neutron
binding energy until A2 = 132, at which the minimization
over N/Z leads to the DNS 50Ca + 130Sn. Since the difference
of neutron binding energies of Ca isotopes is more than 2 MeV
[Bn(48Ca) = 8.8 MeV and Bn(50Ca) = 6.42 MeV], there are the
increases of Pn and σHD at A2 = 132. At A2 = 134, the con-
figuration with the minimal potential energy is 50Ca + 132Sn.
Because of the influence of the closed neutron shell N = 82 in
the tin isotope, the neutron emission becomes more suppressed
in this case and σHD becomes smaller than σHD at A2 = 132.
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FIG. 3. Isotopic dependence of neutron binding energies and
quasifission barriers B

qf
R (upper part), barriers Bsym

ηZ
and Basym

ηZ

(middle), and cross sections for the formation of the HD state (lower)
in the reactions 48Ca + A2 Sn at L = 40–50.

B. HD-state identification cross section

The condition (13) sufficiently restricts the interval of
angular momenta at which it is possible to identify HD
states, because the characteristic times of different processes
depend on L. As seen from Eq. (12), the value of Tγ

mainly depends on L through Eγ . The angular-momentum
dependence of TR,ηZ

are defined by the angular-momentum
dependence of the corresponding barriers. While the barrier
in ηZ is weakly affected by the change of L (Bsym

ηZ
slowly

increases and B
asym
ηZ

slowly decreases with increasing L),
the value of quasifission barrier B

qf
R decreases much greater

with increasing contribution of the repulsive centrifugal part
of the nucleus-nucleus potential (3) (see also Fig. 1). For
example, the values Tγ , TR, and TηZ

as the functions of
L are presented in Fig. 4 for the HD states formed in the
entrance channel of reactions 48Ca + 142Ce, 60Ni + 60Ni, and
48Ca + 140Ba. The condition Tγ � TR is satisfied only in some
interval of L. At very small angular momentum, the time of
the E2 transition becomes enormous due to the small values
of Eγ (L → L − 2); and at very large L, the value of TR

becomes very small because the quasifission barrier vanishes.
In addition, the values of B

sym,asym
ηZ

in this interval of L should
be quite large to provide the condition TR � TηZ

. Thus, one can
hope to identify the HD states by measuring the consecutive
rotational E2 transitions in the HD band in coincidence with
the decay fragments at 20 < L < 60 and 40 < L < 70 in the
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FIG. 4. Time of collective E2-transition and tunneling times
through the barriers in R and ηZ for the HD states formed in the
entrance channel of the indicated reactions as the functions of angular
momentum L.
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FIG. 5. Probabilities Pn1 and wn1 (lower part), probability of
capture Pcap (middle), and identification cross section σ1γR of the
HD state formed in the 60Ni + 60Ni reaction at L = 30–40 (upper) as
functions of the bombarding energy Ec.m..

reactions 60Ni + 60Ni and 48Ca + 140Ba, respectively; but it will
be difficult to identify the HD states at any angular momenta
in the 48Ca + 142Ce reaction (Fig. 4).

Examples of the dependencies of σ1γR and the factors Pcap,
Pn1 , and wn1 on the bombarding energy Ec.m. are shown in
Fig. 5. The capture probability slowly increases with Ec.m. and
does not affect much the location of the maximum of the func-
tion σ1γR(Ec.m.). This location is mainly determined by Pn1

and wn1 . While Pn1 increases, wn1 decreases with increasing
Ec.m.. The final curve representing the function σ1γR(Ec.m.) has
a maximum, which is usually about 8–10 MeV higher than the
value of the entrance Coulomb barrier V (Rb, η, ηZ, β1, β2, L).
The location of this maximum gives us the optimal bombarding
energy for each considered reaction. With increasing angular
momentum, the value of σHD decreases because of the decrease
of B

qf
R with increasing L, but this dependence is also strongly

shadowed by the conditions in Eq. (13). This leads to a very
individual picture of the dependence σxγR on L for each
reaction.

C. Optimal reactions for the formation and identification
of HD state

We calculate the moments of inertia, electric quadrupole
moments, optimal bombarding energy, range of angular mo-
menta, and cross sections of formation σHD and identification
σxγR for the HD states formed in the entrance channel of the
reactions given in Tables I–IV. The choice of the reactions is
based on the following criteria: (1) In the entrance channel of
the reaction, the DNS should have a local potential minimum
which is populated; and after neutron emission, a cold
quasibound state, treated here as hyperdeformed, is formed.
(2) There should exist the range of angular momenta satisfying
the conditions of Eq. (13). (3) Neutron-rich projectiles and
targets are preferable in order to increase the probability of
neutron emission from the initial DNS. However, only those
nuclei are considered that can be experimentally accelerated
with quite a large intensity. (4) The estimated identification
cross section of the HD state should be suitable for the present
experimental setups.

As one can see from Tables I–IV, the combination of all
these conditions leads to a complicated isotopic dependence
of the value of σxγR . Symmetric reactions lead to larger σxγR

if more neutron-rich nuclei are used. One can compare, for
example, the reactions 40Ca + 40Ca and 48Ca + 48Ca. For the
treated asymmetric reactions with 48Ca, there are no such
marked trends.

TABLE I. Moments of inertia, electric quadrupole moments, range of angular momenta, optimal bombarding energies, and cross
sections σHD and σxγR (x = 0, 1, 2, 3) calculated for the HD states formed in the entrance channel of the reactions 40Ca + 83,84Kr and
48Ca + 83,84,86Kr.

Reactions � Q
(c)
2 Lmin < L < Lmax Ec.m. σHD σ0γR σ1γR σ2γR σ3γR

(h̄2/MeV) 102(e fm2) (MeV) (nb) (nb) (nb) (nb) (nb)

48Ca + 83Kr 90.6 28.4 60 < L < 70 106.5 78 1.1 1.1 0.5 0.2
70 < L < 80 113.3 32 2.7 2.4 1.3 0.73

48Ca + 84Kr 88.7 27.4 60 < L < 70 112.3 192 1.7 1.3 0.53 0.21
70 < L < 80 119.1 109 18 10 3.6 1.3

48Ca + 86Kr 91 27.6 50 < L < 60 104.8 620 0.97 1.7 1.1 0.76
60 < L < 70 110.6 430 5.6 10 6.6 4.1
70 < L < 80 117.2 240 17 34 23 16

40Ca + 83Kr 86.9 30.3 60 < L < 70 114.7 24 6.1 6.4 3.5 2.1
70 < L < 80 121.6 18 1.1 2 1.3 0.83

40Ca + 84Kr 86.2 29.6 60 < L < 70 114.6 50 2.7 2.4 1.1 0.5
70 < L < 80 121.6 19 6.8 4.6 2 0.88
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TABLE II. Same as Table I, but for the reactions 40,48Ca + 40,48Ca, 58,60Ni + 58,60Ni, and 40Ca + 58Ni.

Reactions � Q
(c)
2 Lmin < L < Lmax Ec.m. σHD σ0γR σ1γR σ2γR σ3γR

(h̄2/MeV) 102(e fm2) (MeV) (nb) (nb) (nb) (nb) (nb)

40Ca + 40Ca 38.1 13.9 20 < L < 30 69.7 1 × 104 1.7 123 122 120
30 < L < 40 76.7 7.3 × 103 16 110 100 96
40 < L < 50 86 2.8 × 103 290 250 130 75

40Ca + 48Ca 44.6 14.8 50 < L < 60 84.6 3.4 × 103 360 200 72 26
60 < L < 70 96 1.5 ×103 1.4 ×103 40 24 6.1

48Ca + 48Ca 51.5 15.6 40 < L < 50 66.5 5.9 ×104 94 23 4.6 1.1
50 < L < 60 75.1 3.2 ×104 3.8 ×103 2.4 ×103 970 390
60 < L < 70 85.2 1.1 ×104 9.7 ×104 1.3 ×103 270 83

58Ni + 58Ni 83.0 31.3 20 < L < 30 104.4 2.2 ×103 570 1.7 ×103 1.2 ×103 760
30 < L < 40 107.6 1.1 ×103 142 450 350 270
40 < L < 50 111.8 600 260 340 210 140
50 < L < 60 116.9 250 190 59 17 6.2

58Ni + 60Ni 86.2 32.1 20 < L < 30 103.1 710 110 420 320 230
30 < L < 40 106.4 540 73 380 320 270
40 < L < 50 110.2 330 87 220 170 130
50 < L < 60 115.2 160 100 61 28 14

60Ni + 60Ni 89.3 32.9 20 < L < 30 99.9 2.2 ×103 200 1.4 ×103 1.2 ×103 980
30 < L < 40 103.3 2 ×103 160 1.4 ×103 1.4 ×103 1.2 ×103

40 < L < 50 106.7 1 ×103 160 770 650 570
50 < L < 60 111.5 510 220 280 180 120

40Ca + 58Ni 56.9 21 10 < L < 20 81.5 580 0.98 61 59 54
20 < L < 30 85.6 420 0.33 46 46 45
30 < L < 40 89.2 170 0.36 20 19 19
40 < L < 50 95.4 49 0.95 6.8 6.2 5.8
50 < L < 60 103 9.5 2.6 3 1.8 1.2

Comparing the calculated values of σ1γR , σ2γR, and
σ3γR , one can see that for some reactions these cross
sections decrease rather slowly with the number of emit-
ted γ quanta, which means that an articulate rotational

band of the formed HD state can be experimentally ob-
served. For example, in the reaction 60Ni + 60Ni at an ini-
tial value of L = 40–50, the calculated value of σ10γR is
260 nb.

TABLE III. Same as Table I, but for the reactions 48Ca + 124,128,130,132,134Sn.

Reactions � Q
(c)
2 Lmin < L < Lmax Ec.m. σHD σ0γR σ1γR σ2γR σ3γR

(h̄2/MeV) 102(e fm2) (MeV) (nb) (nb) (nb) (nb) (nb)

48Ca + 124Sn 122.9 34.1 20 < L < 30 119.7 150 34 120 86 55
30 < L < 40 122.3 100 12 92 80 69
40 < L < 50 124.2 54 5.8 48 42 38
50 < L < 60 127.8 25 4.3 21 18 15

48Ca + 128Sn 125.7 34.9 20 < L < 30 118.4 110 15 51 36 22
30 < L < 40 120.5 52 3.7 31 27 23
40 < L < 50 123.3 19 0.48 10 10 9.5
50 < L < 60 126.8 6 0.61 4.3 3.8 3.4

48Ca + 130Sn 128.6 34.5 40 < L < 50 127 13 0.57 4.6 4.3 3
50 < L < 60 130.4 5.8 0.41 2.6 2.2 1.9
60 < L < 70 134.5 2.4 0.34 1.4 1.1 0.9

48Ca + 132Sn 129.9 34.5 60 < L < 70 133 23 3.8 6.4 4 2.5
70 < L < 80 136.6 19 7.2 8.5 4.8 2.8
80 < L < 90 141.8 8.3 5.6 2.5 0.89 0.36

48Ca + 134Sn 129.8 33.8 50 < L < 60 122.7 13 0.5 4.9 4.4 3.8
60 < L < 70 126.7 5.6 0.47 2.7 2.3 2.1
70 < L < 80 131.3 2.1 0.43 1.3 0.97 0.77
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TABLE IV. Same as Table I, but for the reactions 48Ca + 136,138Xe and 48Ca + 137,138,140Ba.

Reactions � Q
(c)
2 Lmin < L < Lmax Ec.m. σHD σ0γR σ1γR σ2γR σ3γR

(h̄2/MeV) 102(e fm2) (MeV) (nb) (nb) (nb) (nb) (nb)

48Ca + 136Xe 135.1 36.9 20 < L < 30 126.3 110 33 73 45 21
30 < L < 40 128.3 48 7.4 40 33 27
40 < L < 50 130.7 17 2.4 15 13 11
50 < L < 60 134.1 8.5 1.5 7 5.8 4.9

48Ca + 138Xe 138.2 37.3 20 < L < 30 119.7 640 150 380 250 130
30 < L < 40 121.6 280 32 220 190 150
40 < L < 50 126.2 130 15 110 94 83
50 < L < 60 129.3 66 8.4 55 48 42
60 < L < 70 133 27 5.7 21 17 14

48Ca + 137Ba 136.4 37.6 20 < L < 30 131.7 75 52 19 4 0.65
30 < L < 40 133.6 41 21 19 8.5 3.4
40 < L < 50 136.2 29 2.3 26 22 18
50 < L < 60 139.4 15 7.1 7.2 4.5 3.3

48Ca + 138Ba 136.2 37.2 20 < L < 30 131 93 64 27 6.2 1.1
30 < L < 40 133.9 53 26 26 12 5.4
40 < L < 50 135.4 24 1.7 22 19 15
50 < L < 60 138.5 9.4 4.4 4.9 3.2 2.4

48Ca + 140Ba 138 36.8 40 < L < 50 134 84 25 35 19 10
50 < L < 60 137.1 69 21 37 23 14
60 < L < 70 140.8 23 12 11 5.3 2.9

V. SUMMARY

Using the cluster approach, we proposed a model of the
HD-state formation in the entrance channel of a heavy-ion
reaction at bombarding energies near the Coulomb barrier.
The initial DNS, formed at an excitation energy of about
18–20 MeV, then can be deexcited by the emission of a neutron
to the cold quasibound state which is identical to the HD state.
The neutron emission from the DNS, which competes with the
quasifission and diffusion of the initial DNS to more symmetric
or asymmetric configurations, is described by using a statistical
approach. One can identify the HD state by measuring the
consecutive collective rotational E2 transitions in coincidence
with the decay fragments of the DNS constituting the HD
configuration. Such requirements to the experiment restrict
the set of possible reactions and the optimal range of angular
momenta.

We propose to consider the reactions 48Ca +
124,128,130,132,134Sn, 48Ca + 136,138Xe, 48Ca + 137,138,140Ba,
40Ca + 83,84Kr, 48Ca + 83,84,86Kr, 40,48Ca + 40,48Ca, 58,60Ni +
58,60Ni, and 40Ca + 58Ni as good candidates for the production
and experimental identification of the HD states. The
estimated identification cross sections σxγR for the HD states
formed in these reactions are of the order of 1 nb to 2.5 µb for
optimal bombarding energies and range of angular momenta.
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APPENDIX

The intrinsic level density of the DNS with the excitation
energy E∗ is defined in Ref. [38] with the folding procedure

ρDNS(E∗, A1, A2, J1, J2)

=
∫ E∗

0

∫ E∗

0
ρ1(E1, A1, J1)ρ2(E2, A2, J2)

× δ(E1 + E2 − E∗)dE1dE2

=
∫ E∗

0
ρ1(E1, A1, J1)ρ2(E∗ − E1, A2, J2)dE1, (A1)

where J1,2 = L�1,2/� are the spins of the DNS nuclei. The
intrinsic level densities ρ1 and ρ2 of the DNS nuclei are
calculated using the Fermi-gas model [39]

ρi(E
∗
i , Ai, Ji) = 2Ji + 1

24
√

2σ 3
i a

1/4
i (E∗

i − δi − Erot)5/4

× exp{2
√

ai(E∗
i − δi − Erot)}, (A2)

where σ 2
i = 6m2

i

√
ai(E∗ − δi − Erot)/π2 and Erot = Ji(Ji +

1)/(2aiσ
2
i ). The pairing correction δi is 24/

√
Ai , 12/

√
Ai,

and 0 MeV for even-even, odd, and odd-odd nuclei,
respectively. The average projection of angular momentum
of the single-particle states is estimated as m2

i ≈ 0.24A
2/3
i .

In our calculations, we take the level density parameter
ai = (0.114Ai + 0.098A

2/3
i )[1 + δWi(1 − exp[−0.051(E∗

i −
δi)])/(E∗

i − δi)] MeV−1 [40] for all DNS nuclei considered.
Here, δWi is the microscopical correction to the nuclear-mass
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formula [34]. Since the damping of the microscopical effects is
taken into account in the level density parameter, we disregard
it in the potential energy [41]. One can see [32] that the
definition (A1) corresponds to the thermal equilibrium in
the DNS.

For a parabolic approximation of the barriers in R and
ηZ , the probabilities of transitions through the corresponding
barriers are (i = R, ηZ , j = qf, sym, asym) [32]

R
j

i (E∗, ηZ0 , L)

=
∫ E∗−B

j

i (L)

0

ρDNS
(
E∗ − B

j

i (L) − ε,A1, A2, J1, J2
)
dε

1 + exp 2π[ε+B
j

i (L)−E∗]

h̄ω
j

i (L)

.

(A3)

The widths of decay in R and spreading in ηZ are defined
through the probabilities R

j

i of these processes as

�
j

i (E∗, ηZ0 , L) = R
j

i (E∗, ηZ0 , L)

2πρDNS(E∗, A1, A2, J1, J2)
. (A4)

The probability of neutron emission is written as in Ref. [32]
Rnk

(E∗, ηZ0 , L)

=
∑
J d

k

∫ E∗−Bnk

0
ρDNS(E∗ − Bnk

− ε,Ak − 1, Ak′ , J d
k , Jk′

)
× TJd

k
(Ak − 1, ε)dε,

TJd
k

=
J d

k +1/2∑
S=|J d

k −1/2|

Jk+S∑
l=|Jk−S|

Tl(Ak − 1, ε), (A5)

where k �= k′ and J d
k is the spin of kth nucleus of the

DNS after emission of a neutron. The value of Rnk
can

be calculated by using the neutron binding energy Bnk
, the

level density ρDNS(E∗ − Bnk
− ε,Ak − 1, Ak′ , J d

k , Jk′ ) of
the daughter DNS. The transition coefficients TJd

k
(Ak − 1, ε)

are calculated as in Ref. [42]. The neutron binding energies
are taken from Ref. [33], if available, or from the theoretical
predictions [34]. The neutron emission width is given as

�nk
(E∗, ηZ0 , L) = Rnk

(E∗, ηZ0 , L)

2πρDNS(E∗, A1, A2, J1, J2)
. (A6)
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