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Probing the weakly-bound neutron orbit of 31Ne with total reaction and one-neutron
removal cross sections
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A candidate of a neutron-halo nucleus, 31Ne, contains a single neutron in the pf shell. Within the Glauber
and eikonal models, we analyze reactions used to study 31Ne. We show in a 30Ne + n model that the magnitudes
of the total reaction and above all of the one-neutron removal cross sections of 31Ne on 12C and 208Pb targets
strongly depend on the orbital angular momentum of the neutron, thereby providing us with efficient ways to
determine both the spin-parity and structure of the ground state of 31Ne. Besides these inclusive observables,
we also calculate energy and parallel-momentum distributions for the breakup of 31Ne and show their strong
dependence on the orbital of the valence neutron in the bound state of 31Ne.
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I. INTRODUCTION

Exploring nuclei near the neutron and proton driplines is
making rapid progress in and beyond the p- and sd-shell
regions. The Ne isotopes raise interesting structure problems.
The α cluster structure around 20Ne has been known for
many years [1,2]. Recently 17Ne, an 15O + p + p Borromean
system, has been found to have a large charge radius due
to a significant amount of s2 component [3]. For the very
neutron-rich Ne, Na, and Mg isotopes with N ≈ 20, one of the
most important issues is the vanishing of the shell gap, which
causes a mixing of normal and intruder configurations and has
significant influence on the properties of those nuclei [4–10].
The importance of deformation around 30Ne is stressed in
Refs. [7,8], in contrast to the result of a mean-field calculation
[11]. The heaviest Ne isotope synthesized so far is 34Ne. It
may be a dripline nucleus considering that 33Ne is unstable to
neutron decay [12].

The nucleus 31Ne with N = 21 neutrons attracts our special
attention in view of its possible halo structure containing a
1p3/2 and/or 0f7/2 valence neutron. Its neutron separation
energy Sn is 0.33 MeV, though it has large uncertainty [13].
The ground-state spin-parity of 31Ne is thus expected to be
either 3/2− or 7/2−. The former possibility may happen
because the single-particle energy of the neutron orbit with
low orbital angular momentum receives a considerable shift
near the neutron dripline [14,15]. Two calculations, one within
a shell model [4] and one using a microscopic cluster model
of 30Ne + n [16], predict that shell inversion.

The rare isotope 31Ne was first produced in a projectile
fragmentation reaction [17]. Nowadays, an intense beam
provided by the Radioactive Ion Beam Factory (RIBF) at
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RIKEN can produce 31Ne in sufficiently large amounts (several
particles per second). Very recently, the total reaction cross
sections σR of heavy Ne isotopes on 12C target [18] and the
one-neutron removal cross sections σ−n of 31Ne on 12C and
208Pb targets have been measured for the first time around
230 MeV/nucleon [19]. The purpose of this article is to
analyze the sensitivity of σR , σ−n and other dissociation cross
sections to the orbit of the 31Ne valence neutron. During the
completion of this theoretical work, the one-neutron removal
cross sections of 31Ne measured at RIKEN became available
[19]. We seize this opportunity to compare our calculations
with the data to draw conclusions about the structure of the
ground state of 31Ne.

We describe 31Ne as a system consisting of a 30Ne core (c)
and a weakly bound valence neutron (n). The core is assumed
to be in its 0+ ground state though its excitation energy is
fairly low. Considering that structure model we evaluate the
total reaction and one-neutron removal cross sections within
the Glauber formalism [20–23] on both light (12C) and heavy
(208Pb) targets and compare the values obtained for the 1p3/2

and 0f7/2 possible configurations of the 31Ne ground state.
To predict the sensitivity of more exclusive observables (e.g.,
energy and parallel-momentum distributions) to the ground-
state configuration, we also perform calculations within the
eikonal model [20–22,24]. Since both light and heavy targets
are considered, we use the Coulomb correction to the eikonal
model (CCE) [25–27].

This article is structured as follows: After a summary of
the Glauber and eikonal formalisms (Sec. II), we detail the
inputs of our calculations in Sec. III. Our results and analysis
are presented in Secs. IV and V. Section VI contains the
conclusions and perspectives of this study.

II. THEORETICAL FRAMEWORK

As mentioned in the Introduction, we consider in this study
two reaction models. First, the Glauber model [20–23] is used
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to evaluate the total reaction and one-neutron removal cross
sections of 31Ne. Second, the eikonal model [20–22,24] is used
to compute the dissociation cross section as a function of the
energy and parallel-momentum between the 30Ne core and
the neutron after breakup [28,29]. Both models are based on
Glauber’s idea [24] to describe the influence of the collision
onto the initial projectile-target wave function by a multiplying
amplitude eiχ ,

�f = eiχ(b)�i, (1)

where the phase χ is assumed to depend only on the transverse
component b of the projectile-target relative coordinate. In
the present work, this phase is obtained by folding a profile
function that describes nucleon-nucleon effective interactions
with the projectile and target densities. In the eikonal approx-
imation, however, it is more usual to derive it from optical
potentials that simulate the interaction between the projectile
constituents and the target.

In a general interpretation of the eikonal model [20], the
adiabatic approximation employed in the Glauber model is
not assumed, which invalidates the simple ansatz (1) [30].
The adiabatic approximation ignores the excitation energy
compared to the incident energy, leading to a well-known
unphysical result for the Coulomb dissociation. In order to
solve this problem and still maintain Eq. (1), we only need
to correct the Coulomb phase appropriately [25,26]. This
approximate version is the CCE and its accuracy has been
tested by comparison to the exact eikonal calculation in
Ref. [27].

In this section, we briefly present both approaches, empha-
sizing their common points and differences that make them
complementary.

A. Glauber formalism

Provided that 31Ne can be seen as a neutron loosely bound
to a 30Ne core whose wave function is the same as that of an
isolated 30Ne, σ−n can be obtained from the difference between
the projectile and the core interaction cross sections [20,31,32]

σ−n(31Ne) = σI (31Ne) − σI (30Ne). (2)

Computing the interaction cross sections is not easy because it
excludes inelastic scattering, which cannot be properly treated
if no description of the internal structure of the projectile is
considered. Fortunately, if the number of bound excited states
is small, σI can be well approximated by the reaction cross
section σR , which can be easily computed within the Glauber
formalism [20,21,23]. For 31Ne, which has only one known
bound state, i.e., its ground state, this approximation is legiti-
mate. For 30Ne, however, σR(30Ne) will overestimate σI (30Ne)
by σinel(30Ne), in which the projectile is excited toward its
2+ and 4+ bound excited states. Nevertheless, the inelastic
scattering being a phenomenon occurring near the nuclear
surface, its contribution is not expected to be significant at
incident energies of 200–300 MeV/nucleon where the surface
transparency becomes large. The approximation

σ−n(31Ne) ≈ σR(31Ne) − σR(30Ne) (3)

seems thus reasonable.

The Glauber model expresses the nuclear part of the
reaction cross section for a nucleus X impinging on a target
T as the integral of the reaction probability with respect to
the transverse components b of the X-T relative coordinate
[20,21,23]

σR =
∫

(1 − |eiχ(b)|2)db, (4)

where the phase-shift function χ models the nuclear interac-
tions between the colliding nuclei. As mentioned earlier, in
the Glauber formalism, this phase is expressed as a function of
the densities of the target ρT and the impinging nucleus ρX. It
also depends on profile functions �NN describing effective
nuclear interactions between the nucleons. At the optical
limit approximation of the Glauber model (OLA) the nuclear
phase-shift functions are usually given by [20,21,23]

χN (b) = i

∫∫
ρT (r ′)ρX(r ′′)�NN (b − s′ + s′′)d r ′′d r ′,

(5)

where s′ and s′′ are the transverse components of the internal
coordinate of the target (r ′) and the impinging nucleus (r ′′),
respectively. The OLA is therefore equivalent to the double-
folding of an effective nucleon-nucleon interaction. Note that
the profile functions �NN depend on the nucleons considered:
Their expression for identical nucleons (pp or nn) is not the
same as for the proton-neutron (pn) interaction. Therefore, in
our calculations, expression (5) is actually split into four terms.
This is done as follows: Replace ρX�NN with ρ

p

X�Np + ρn
X�Nn

using the proton and neutron densities of the projectile X and
change ρT by ρ

p

T + ρn
T followed by renaming N of �NN in

accordance with the density.
As shown by Abu-Ibrahim and Suzuki, the OLA (5) misses

some higher-order terms, which can be included using the
symmetrized expression [33,34]

χN (b) = i

2

( ∫
d r ′ρT (r ′)

{
1 − exp

[
−

∫
d r ′′ρX(r ′′)

×�NN (b + s′ − s′′)

]}

+
∫

d r ′′ρX(r ′′)

{
1 − exp

[
−

∫
d r ′ρT (r ′)

×�NN (b − s′ + s′′)

]})
. (6)

The Glauber calculations presented in the following are
performed using this expression (6) in Eq. (4). Again the actual
phase-shift function in our calculations is split into four terms.
The details about the calculation of the densities and the profile
functions are summarized in Sec. III.

For the carbon target, the Coulomb contribution to the total
reaction cross section is neglected, the reaction being fully
nuclear dominated. However, this may no longer be done for
heavy targets. For the lead target, we add incoherently to the
nuclear reaction cross section (4) the Coulomb contribution at
first-order (see Sec. IV B).
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FIG. 1. Jacobi set of coordinates used for the eikonal calculations:
r is the projectile internal coordinate, and r = b + ẐZ is the target-
projectile coordinate. The transverse components of the core-target
and neutron-target coordinates are denoted by bc and bn, respectively.

B. Coulomb-corrected eikonal description of reactions

Since we are also interested in the influence of the 31Ne
structure on other observables, like energy and parallel-
momentum distributions, we perform calculations within the
eikonal model [20,21,24]. Indeed this model enables us to
compute differential cross sections considering both Coulomb
and nuclear interactions as well as their interferences [28,29].
The eikonal model assumes a cluster structure of the projectile
and usually describes the interaction between the clusters and
the target by optical potentials.

In this work, the projectile P (31Ne) is assumed to be made
up of a neutron n of mass mn initially bound to a 30Ne core c of
mass mc and charge Zce. This two-body projectile is impinging
on a target T of mass mT and charge ZT e. The neutron has spin
I = 1/2, while both core and target are assumed to be of spin
zero. These three bodies are seen as structureless particles.
Figure 1 schematizes the set of coordinates we use in the
following. The c-n relative coordinate is denoted by r and the
P -T relative coordinate by r , with Z and b its longitudinal and
transverse components, respectively. In Fig. 1, the transverse
parts of the c-T (bc) and n-T (bn) coordinates are shown as
well.

The structure of the projectile is described by the internal
Hamiltonian

H0 = p2

2µcn

+ Vcn(r), (7)

where p is the relative momentum of the neutron to the core,
µcn = mcmn/mP is the reduced mass of the core-neutron pair
(with mP = mc + mn), and Vcn is the potential describing the
core-neutron interaction. This potential includes a central part,
and a spin-orbit coupling term (see Sec. III).

In partial wave lj , the eigenstates of H0 are defined by

H0φljm(E, r) = Eφljm(E, r), (8)

where E is the energy of the c-n relative motion and j

is the total angular momentum resulting from the coupling
of the orbital momentum l with the neutron spin I . The
negative-energy solutions of Eq. (8) correspond either to the
physical bound state of the projectile or to orbitals occupied
by the neutrons of the core, which are forbidden to the valence

neutron by the Pauli principle. The former is denoted by
φl0j0m0 (E0) in the following. These wave functions are normed
to unity. The positive-energy states describe the broken-up
projectile. Their radial part r−1uklj are normalized according
to

uklj (r) −→
r→∞ cos δljFl(kr) + sin δljGl(kr), (9)

where k =
√

2µcnE/h̄2 is the wave number, δlj is the phase
shift at energy E, and Fl and Gl are respectively the regular
and irregular Coulomb functions [35].

At the eikonal approximation, the amplitude appearing in
Eq. (1) can be divided into three factors [27]

eiχ = eiχC
PT eiχC

eiχN

, (10)

where the dependence on the transverse coordinate b has been
omitted for clarity. The elastic Coulomb phase χC

PT describes
the projectile-target Rutherford scattering. It reads [24]

χC
PT (b) = 2η ln(Kb), (11)

where K is the wave number of the projectile-target relative
motion and η = ZT Zce

2/(4πε0h̄v) is the P -T Sommerfeld
parameter, with v the initial P -T relative velocity.

Besides the deflection of the projectile trajectory, the
Coulomb interaction also contributes to the breakup of the
projectile. Acting only on the core, it indeed induces a tidal
force between both components of the projectile. The Coulomb
phase χC in Eq. (10) simulates that tidal force (see, e.g.,
Eqs. (16) and (17) of Ref. [27]). The slow decrease of this
phase at large b leads to divergence in the calculation of
the breakup cross sections [27]. To overcome this problem,
Margueron, Bonaccorso, and Brink have proposed a correction
to this Coulomb term [25]. It consists in replacing at first order
the Coulomb phase χC by the first order of the perturbation
theory χFO (see Eq. (22) of Ref. [27]) following

eiχC → eiχC − iχC + iχFO. (12)

Because at large b the first-order phase χFO decays exponen-
tially, correction (12) solves the aforementioned divergence
problem. In addition, it restores most of the missing dynamical
effects in the eikonal model, which enables us to describe
reactions taking on (nearly) the same footing both Coulomb
and nuclear interactions at all orders [27].

In the eikonal model, the nuclear interactions between the
projectile constituents and the target are usually described by
optical potentials chosen in the literature. In that case, the
nuclear phase χN is expressed as integrals over Z of these
potentials [20,21,24]. In the present case, no experimental
data exist to constrain such a potential for the interaction
between the 30Ne core and the target. Following Ref. [23], we
approximate the nuclear phase for each projectile constituent
by the OLA (5). Therefore

χN (b, s) = χN
cT (bc) + χN

nT (bn), (13)

where χN
cT and χN

nT are respectively the c-T and n-T nuclear
phases. They are computed using Eq. (5), in which the density
ρX is replaced by the 30Ne density or a Dirac delta function,
respectively.
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To evaluate elastic-breakup cross sections within the CCE
we proceed as explained in Ref. [27]. The elastic-breakup
amplitude reads

S
(m0)
kljm(b) = ei(σl+δlj −lπ/2+χC

PT )
〈
φljm(E)

∣∣(
eiχC − iχC + iχFO

)
eiχN ∣∣φl0j0m0 (E0)

〉
, (14)

where σl is the Coulomb phase shift [35].
In the following, we consider two breakup observables. The

first is the breakup cross section as a function of the c-n relative
energy E after dissociation

dσbu

dE
= 4µcn

h̄2k

1

2j0 + 1

∑
m0

∑
ljm

∫ ∞

0
bdb

∣∣S(m0)
kljm(b)

∣∣2
. (15)

The second breakup observable is the parallel-momentum
distribution

dσbu

dk‖
= 8π

2j0 + 1

∑
m0

∫ ∞

0
bdb

∫ ∞

|k‖|

dk

k

∑
νm∣∣∣∣∣∣

∑
lj

(lIm − νν|jm)Ym−ν
l (θk, 0)S(m0)

kljm(b)

∣∣∣∣∣∣
2

, (16)

where θk = arccos(k/k‖) is the colatitude of the c-n relative
wave vector k after breakup.

III. DENSITIES AND POTENTIALS

The calculation of the cross sections described in the
previous section requires projectile and target densities and
profile functions. In our study, we follow Ref. [23].

We first construct 30Ne densities. We assume the internal
wave function of this nucleus to be a Slater determinant of
single-particle orbitals generated from the following potential

U (r) = −V0f (r) + V1r
2
0 l · s

1

r

d

dr
f (r) + VC(r)

1 − τ3

2
,

(17)

where τ3 has eigenvalue 1 for neutrons and −1 for protons,
and f is the Woods-Saxon form factor

f (r) = {1 + exp[(r − R)/a]}−1, (18)

where radius R = r0A
1/3 with A = 30. The spin-orbit strength

is set to follow the systematics [36],

V1 = 22 − 14[(N − Z)/A]τ3 (19)

in MeV. The Coulomb potential VC is taken from a uniform
charge distribution. The values of r0 and a are varied around
standard values, and V0 is determined separately for neutrons
and protons to fit Sn and Sp. The resulting values are denoted
V n

0 and V
p

0 , respectively.
The neutron and proton densities of 30Ne, ρn

c , and ρ
p
c

are calculated from the occupied orbits by removing ap-
proximately the effect of the center of mass motion [23].
The root-mean-square (rms) radii for neutron, proton, and
matter distributions (rn

c , r
p
c , rm

c ) are listed in Table I. The
table also contains σR(30Ne) for a 12C target at 100, 240,
and 1000 MeV/nucleon. The second value of the incident

TABLE I. Single-particle potentials for 30Ne, rms radii of 30Ne,
and total reaction cross sections of 30Ne + 12C collision at the
incident energies of 100, 240, and 1000 MeV/nucleon. Lengths,
energies, and cross sections are given in units of fm, MeV, and b.

r0 a V n
0 V

p

0 rn
c rp

c rm
c σR

100 240 1000

0.65 43.71 72.53 3.36 2.58 3.12 1.54 1.29 1.38
1.20 0.70 43.81 73.55 3.40 2.59 3.16 1.56 1.31 1.39

0.75 43.85 74.52 3.46 2.59 3.20 1.59 1.33 1.41

0.65 41.01 68.83 3.44 2.74 3.22 1.58 1.33 1.41
1.25 0.70 41.15 69.79 3.48 2.73 3.25 1.60 1.34 1.43

0.75 41.22 70.72 3.52 2.72 3.28 1.62 1.36 1.44

energy is chosen because it is close to that of the RIKEN
experiment [18,19] and because profile functions are available
at that energy [37]. The choice of �NN is explained later in
this section.

Since 31Ne is assumed to exhibit a 30Ne-n cluster structure,
its densities are obtained from the 30Ne densities computed
above and the wave function φljm for the 30Ne-n relative
motion. The latter is determined by solving the Schrödinger
equation (8) in either the 1p3/2 or 0f7/2 orbital. The 30Ne-n
interaction is simulated by the same mean-field potential as
for 30Ne (17), but with a different central depth V0.

Figure 2 displays the single-particle energies of 1p3/2 and
0f7/2, ε(p) and ε(f ), as a function of V0 for three choices
of diffuseness parameter a, the radius parameter being fixed
to r0 = 1.25 fm. With increasing a, ε(p) decreases very
rapidly, whereas ε(f ) shows a mild change. It is therefore
possible to obtain the expected shell inversion by considering
a sufficiently large diffuseness (e.g., a = 0.75 fm). For actual
calculations, the strength V0 is set to reproduce the Sn value
of 0.33 MeV (see Table II). Note that these potentials are also
used as Vcn in the calculations of the wave functions φljm that
appear in the eikonal model (see Sec. II B).

The proton and neutron densities of 31Ne, ρ
p

P , and ρn
P , are

calculated including the recoil effect, which means that the
difference between the centers of mass of 31Ne and 30Ne is
treated properly

ρ
p

P (r ′) = ρp
c (r ′) (20)
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FIG. 2. (Color online) Single-particle energies of the 1p3/2 (full
lines) and 0f7/2 (dashed lines) valence neutrons of 31Ne as a function
of V0 for three different diffuseness parameters a (fm). The r0

value is 1.25 fm. Horizontal dotted line at −0.33 MeV denotes the
experimental energy.
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TABLE II. Properties of the potentials describing 31Ne. Using various potential geometries, we adjust Sn = 0.33 MeV
in either the 1p3/2 orbit or the 0f7/2 one. Last-line potential reproduces Sn = 0.60 MeV in the 1p3/2 orbital. Rms radii of
the corresponding densities are listed as well as the total reaction cross sections of 31Ne+12C at incident energies of 100,
240, and 1000 MeV/nucleon. Lengths, energies, and cross sections are given in units of fm, MeV, and b.

r0 a V0 ε(p) ε(f ) rn rn
P r

p

P rm
P σR

100 240 1000

0.65 52.28 −0.22 −0.33 4.25 3.40 2.59 3.16 1.58 1.32 1.41
1.20 0.70 51.82 −0.33 −0.05 7.20 3.66 2.60 3.35 1.70 1.41 1.50

0.75 50.87 −0.33 – 7.35 3.72 2.60 3.40 1.72 1.43 1.52

0.65 47.65 −0.01 −0.33 4.39 3.48 2.74 3.26 1.61 1.35 1.43
1.25 0.70 47.87 −0.24 −0.33 4.47 3.52 2.73 3.29 1.63 1.37 1.45

0.75 47.41 −0.33 −0.07 7.44 3.79 2.73 3.48 1.75 1.45 1.55

1.25 0.75 48.52 −0.60 −0.55 6.62 3.71 2.73 3.43 1.74 1.44 1.54

ρn
P (r ′) = ρn

c (r ′) + ρn(r ′), (21)

where r ′ is the internal coordinate of 31Ne. In these expres-
sions, ρp

c and ρn
c are the contributions of the 30Ne core to the

31Ne densities. They slightly differ from the densities of 30Ne,
because of the recoil effect

ρp/n
c (r ′) = 1

2j + 1

∑
m

∫
ρp/n

c

(
1

A + 1
r+r ′

)
|φljm(r)|2d r,

(22)

where r is the 30Ne-n relative coordinate. In Eq. (21) ρn

denotes the contribution of the valence neutron to the 31Ne
density

ρn(r ′) = 1

2j + 1

∑
m

∫
δ

(
A

A + 1
r − r ′

)
|φljm(r)|2d r.

(23)

Figure 3 displays the matter density of 31Ne (ρP = ρ
p

P + ρn
P )

as well as its contributions from the 30Ne core (ρc = ρp
c +

ρn
c ) and the valence neutron (ρn). The 1p3/2 orbit (left panel)

reaches far in distances and extends the tail of the 30Ne density
significantly beyond 6 fm. On the contrary, the 0f7/2 orbit
(right panel) changes the density only slightly even near the
surface.
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FIG. 3. (Color online) Matter density of 31Ne (full lines) and
contributions from the 30Ne core (dashed lines) and the valence
neutron (dotted lines). The r0 value is 1.25 fm, and a is 0.75 fm
for the 1p3/2 orbit (left panel) and 0.70 fm for the 0f7/2 orbit (right
panel).

Table II lists the valence-neutron single-particle energies
(ε); the rms radii of 31Ne for the neutron, proton, and matter
distributions (rn

P , rp

P , rm
P ); and σR(31Ne) for a 12C target at 100,

240, and 1000 MeV/nucleon. We also give the rms radius of
the valence-neutron orbit rn =

√
〈r2〉. This rn value turns out

to be around 7 fm for the 1p3/2 orbit but, due to the larger
centrifugal barrier, is much smaller for the 0f7/2 orbit: about
only 4 fm. Interestingly, although the matter radii of 31Ne and
30Ne depend on the potential sets (see Tables I and II), their
difference remains unchanged: �r = rm

P − rm
c is 0.19–0.20 for

1p3/2 and 0.04 fm for 0f7/2. The constancy of �r within the
set of the same l suggests that �r is insensitive to the shape
of the potential but determined by Sn and l. Despite the fact
that the single-particle energy is only −0.33 MeV, �r is not
very large even for 1p3/2 because the mass number of the core
nucleus is fairly large.

Since the neutron separation energy Sn of 31Ne is not
accurately known, we also perform calculations with a slightly
deeper potential (see last line of Table II) in order to examine
the Sn dependence of σR(31Ne) and σ−n(31Ne) values. This
potential gives ε(p) = −0.6 MeV instead of −0.33 MeV. The
matter radius is reduced by only 0.05 fm, but the rn value
changes by about 0.8 fm. The decrease of σR(31Ne), and
thus of σ−n(31Ne), on carbon is only about 10 mb. However,
the σ−n(31Ne) value on lead is expected to be considerably
reduced. We will discuss this in Sec. IV B.

The target densities used in our calculations are obtained
from experimental data. For both 12C and 208Pb, the proton
densities are derived from empirical charge densities by
removing the finite size effect of protons. The neutron density
of 12C is obtained as explained in Ref. [23]. For 208Pb, the
neutron density is obtained by subtracting the proton density
from the matter density [32] taken from a Hartree-Fock
calculation.

Other key inputs to compute the cross sections of Sec. II are
the profile functions �NN that correspond to effective nucleon-
nucleon interactions. These functions are parametrized in the
usual way [23,37]

�NN (b) = 1 − iαNN

4πβNN

σ tot
NN exp

(
− b2

2βNN

)
, (24)
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where σ tot
NN is the total cross section for the NN collision,

αNN is the ratio of the real to the imaginary part of the
NN -scattering amplitude, and βNN is the slope parameter of
the NN elastic differential cross section. The values of these
parameters are taken from Ref. [37]. Note that they differ
for the interaction between identical nucleons (pp or nn) and
for the interaction between a proton and a neutron (pn). To
analyze the sensitivity of our calculations to this choice of
profile functions, we also perform calculations that ignore the
difference between pp (or nn) and pn interactions. In those
tests, we use the parameters of �NN given in Ref. [23].

The profile functions (24) combined to the densities of
30,31Ne and of the target enable us to compute the phase shifts
(6) for the Glauber calculation. The same parameters are used
to derive the OLA (5) used in the Coulomb-corrected eikonal
calculation. To this end, the densities of the projectile and the
target are expanded on a Gaussian basis

ρ(r) ≈
∑

i

ci exp

(
−1

2
air

2

)
. (25)

This enables us to solve analytically the integrals appearing in
Eq. (5) and partly in Eq. (6). The values ci and ai are available
from the authors.

In the eikonal model, the nuclear phase (5) is added to
the elastic Coulomb phase (11) and the corrected Coulomb
phase (12) to obtain the eikonal phase (10). That phase is then
numerically expanded into multipoles of rank λ. To this end,
we use a Gauss quadrature on the unit sphere similar to the one
considered to solve the time-dependent Schrödinger equation
in Ref. [38]. The number of points along the colatitude is
set to Nθ = 12, and the number of points along the azimuthal
angle is Nϕ = 30 in most cases but goes up to 40 when large λs
are considered. For the carbon target, the calculation requires a
rather large number of multipoles: λmax = 16 in the 1p3/2 case,
and λmax = 12 in the 0f7/2 one. For the lead target, a smaller
number of multipoles is needed: λmax = 8 for the 1p3/2 state
and λmax = 6 for the 0f7/2 one.

The eigenfunctions of the projectile Hamiltonian H0 (8) are
computed numerically with the Numerov method using 1000
radial points equally spaced from r = 0 up to r = 100 fm. This
rather large value is required in order to reach convergence in
the radial integrals appearing in Eq. (14) and in the calculation
of rn, the rms radius of the valence neutron (see Table II). The
integrals over b appearing in Eqs. (15) and (16) are performed
numerically from b = 0 up to b = 400 fm with a step �b = 1
fm. In the 1p3/2 case this integral had to be done up to 600 fm
to reach convergence when a lead target was considered.

IV. DISCUSSION OF THE 1 p3/2 AND 0 f7/2 ASSUMPTIONS
WITHIN THE GLAUBER MODEL

A. Total reaction cross sections

Figure 4 compares σR(31Ne) on a 12C target calculated
within the Glauber model (see Sec. II A) for the 1p3/2 (full line)
and 0f7/2 (dashed line) orbits as a function of the 31Ne incident
energy. The phase-shift function is calculated using Eq. (6).
The projectile density is obtained using the potential sets of
radius r0 = 1.25 fm with diffuseness a = 0.75 fm for the 1p3/2

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 100  1000

σ R
 [b

]

Incident energy [MeV/nucleon]

1p3/2

0f7/2

FIG. 4. (Color online) Total reaction cross section of 31Ne on a
12C target as a function of incident energy. Dotted lines are the results
with the OLA phase shifts (5). See caption of Fig. 3 for r0 and a.

orbit and a = 0.70 fm for the 0f7/2 orbit. At all energies
the relative difference in σR between both configurations is
about 5–10%. For example, as listed in Table II, σR(31Ne) at
240 MeV/nucleon is 1.45 b for the p orbit and 1.37 b for the
f one. Thus the difference of σR(31Ne) depending on whether
the orbital angular momentum of the valence neutron is 1 or
3 amounts to 87 mb. Though not very large, this difference
may be sufficient to determine which assignment is favorable
in comparison with experiment [18].

The reaction cross section is larger for a 1p3/2 neutron
than for the 0f7/2 neutron because the integral appearing in
the phase shifts (6) extends on a larger domain in the former
case than in the latter. This variation in σR(31Ne) with the
projectile configuration, being mostly due to the change in
the valence-neutron orbital is therefore rather small. Indeed,
most of σR(31Ne) is contributed by the 30Ne core, whose
reaction cross section does not vary much with the potential
set: σR(30Ne) = 1.36 b for r0 = 1.25 fm and a = 0.75 fm and
1.34 b for r0 = 1.25 fm and a = 0.70 fm. On the contrary,
the increase in σR due to the addition of the valence neutron,
σR(31Ne) − σR(30Ne), is strongly dependent on the assumed
configuration: The increase turns out to be 96 mb for the
1p3/2 orbit and 26 mb for the 0f7/2 orbit at 240 MeV/nucleon.
Following Eq. (3), this result suggests the one-neutron removal
cross section to be an observable more sensitive to the
projectile configuration (see Sec. IV B).

To investigate the sensitivity of our calculations to the
construction of the phase-shift function, we also compute
σR(31Ne) using the OLA (5) (dotted lines in Fig. 4). As is
usually observed [23,37], the OLA tends to predict larger cross
sections. However, the difference between the reaction cross
sections obtained with the 1p3/2 configuration and the 0f7/2

one is about the same using OLA (5) as when the phase-shift
function (6) is used.

Figure 5 displays σR(31Ne) on a 208Pb target calculated with
only the nuclear phase shifts. The effect of Coulomb breakup
is discussed in the next subsection. As observed for the carbon
target, the difference between the 1p3/2 (full line) and 0f7/2
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FIG. 5. (Color online) Nuclear contribution to the total reaction
cross section of 31Ne on a 208Pb target as a function of incident
energy. The dotted lines are the results obtained with the average
profile functions taken from Ref. [23]. See caption of Fig. 3 for r0

and a.

(dashed line) configurations is small though non-negligible.
As mentioned earlier, this difference comes mainly from the
valence-neutron contribution. The increase of σR from 30Ne
to 31Ne is even more striking for a 208Pb target. It is almost
10 times larger considering a 1p3/2 valence neutron than a
0f7/2 one. At 240 MeV/nucleon, the reaction cross section
increases from 4.36 b to 4.69 b in the former case while it goes
from 4.33 b to only 4.37 b in the latter.

Since the proton and neutron densities of the lead target are
different, we examine how much the cross sections depend on
the choice of the profile function �NN . Figure 5 compares two
sets of calculations, one which employs different interactions
between pp (or nn) and pn (full and dashed lines), and the
other which uses the averaged interaction taken from Ref. [23]
(dotted lines). As observed in Fig. 5, the choice of the averaged
interaction tends to slightly overestimate the cross sections
below 300 MeV/nucleon.

The enhanced cross section for the 1p3/2 orbit reflects the
spatial extension of the neutron orbit. If its Sn value is increased
to, say, 0.6 MeV as shown in Table II, σR(31Ne) gets smaller
compared to that with Sn = 0.33 MeV: At 240 MeV/nucleon,
it is reduced by 12 mb for carbon and by 65 mb for lead. These
cross sections are still significantly larger than those for the
0f7/2 neutron case.

B. One-neutron removal cross sections

As mentioned in Sec. II A, we evaluate the one-neutron
removal cross section σ−n for 31Ne on carbon and lead targets
using approximation (3). Figure 6 shows the results obtained
on a 12C target as a function of the 31Ne incident energy for
both 1p3/2 (full lines) and 0f7/2 (dashed lines) configurations.
To evaluate the sensitivity of these results to the potential set
used to generate the projectile densities, we have performed
the calculations with the different potentials given in Tables I
and II. Though the 1p3/2 or 0f7/2 orbits vary with the potential

 0
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FIG. 6. (Color online) One-neutron removal cross section of
31Ne, approximated by σR(31Ne) − σR(30Ne), on a 12C target as a
function of incident energy: 1p3/2 (range between full lines) and
0f7/2 (range between dashed lines). The experimental point is from
Ref. [19].

set, they predict very similar σ−n values: In both cases these
values are contained between the pairs of lines shown in Fig. 6.
Hereafter we use the potential set with r0 = 1.25 fm and a =
0.75 fm for the 1p3/2 orbit, and the set with r0 = 1.25 fm and
a = 0.70 fm for the 0f7/2 orbit unless otherwise mentioned.

As discussed in the previous subsection, the interesting
result of this set of calculations is that σ−n is always much
larger for a 1p3/2 valence neutron than for a 0f7/2 one.
At 240 MeV/nucleon, close to the energy of the RIKEN
experiment [19], the former configuration leads to a cross
section of about 96 mb, whereas the latter gives only 26 mb.
This difference is basically due to the larger spatial extension
of the p orbit compared to that of the f orbit, which is due to
the change in the centrifugal barrier. The experimental cross
section amounts to 79(7) mb [19]. This value, being both
close to our 1p3/2 calculation and much higher than our 0f7/2

one, favors a ground-state wave function for 31Ne strongly
dominated by a configuration in which the valence neutron is
in the 1p3/2 orbital coupled to a 30Ne core in its 0+ ground
state. This comparison therefore suggests a 3/2− spin-parity
for the 31Ne ground state rather than the 7/2− deduced from
the naive shell model.

As shown in Fig. 6, the difference in the magnitude of σ−n

increases at lower incident energies. An experiment performed
at such an energy (e.g., a few tens of MeV/nucleon) would
improve the confidence in the identification of the 31Ne
configuration.

To evaluate σ−n for a 208Pb target we may no longer neglect
the Coulomb contribution to the one-neutron removal process.
Since the Coulomb interaction contributes mostly to the
elastic breakup, we add an estimate of the Coulomb-breakup
cross section to the reaction cross section computed within
the Glauber framework. To this end, we use the first-order
of the perturbation theory, considering only the dominant
dipole transition. In that approximation, the 1p3/2 neutron
is excited to continuum states with l = 0 or 2, whereas the
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FIG. 7. Electric dipole transition strength of 31Ne as a function of
the c-n relative energy E after dissociation. For the 1p3/2 transition,
both contributions from the s- and d-wave continuum states are
shown. Results obtained with distorted waves (DW, full lines), plane
waves (PW, dashed lines), and orthogonalized plane waves (OPW,
dotted lines) are shown separately.

0f7/2 neutron is moved to d or g positive-energy states. This
Coulomb contribution to σ−n can be estimated by integrating
the electric dipole transition strength dB(E1)/dE multiplied
by the photon number spectrum over the excitation energy [20].
Figure 7 compares the dB(E1)/dE distributions for the initial
p (thick full lines) and f orbits (thin full line). In the former
case, the partial-wave contributions are shown as well. Note
that the result obtained from the initial 0f7/2 configuration is
multiplied by 10 for readability. These quantities depend on
the choice of a minimum impact parameter bmin from which
the Coulomb breakup is assumed to contribute. However, the
dependence of σ−n on bmin is found to be moderate around
bmin = 12.7 fm, which is obtained from bmin = reff(311/3 +
2081/3), with reff = 1.4 fm.

The dipole strength obtained for the 1p3/2 configuration
is concentrated at low excitation energy. The s wave gives
a larger contribution to that distribution than the d wave at
E < 0.5 MeV, but the d wave dominates over the s wave with
increasing energy. On the contrary, dB(E1)/dE for the 0f7/2

initial state, besides being much smaller than the 1p3/2 one, has
a completely different energy dependence: It is flat and extends
to high energies. This suggests that differential observables,
like energy or parallel-momentum distributions, could be used
to discriminate between these two possible configurations
(see Sec. V).

To evaluate the sensitivity of this calculation to the c-n
final-state interactions, we evaluate the dipole strength for
the initial 1p3/2 bound state using distorted waves (DW, i.e.,
positive-energy eigenstates of the c-n Hamiltonian (8); full
lines), plane waves (PW; dashed lines), or orthogonalized
plane waves (OPW, i.e., plane waves orthogonalized to the
Pauli-forbidden bound states of Hamiltonian (8) [26]; dotted
lines). Interestingly only the s-wave contribution is sensitive
to the continuum description: That value is much reduced in
the vicinity of its maximum when DW are considered instead

of PW or OPW. Nevertheless, these changes do not affect the
results as much as to modify our conclusions.

At 240 MeV/nucleon, and using DW, we obtain 0.81 b for
the Coulomb contribution to σ−n: 0.32 b from the s wave and
0.49 b from the d waves. This value is added incoherently to
the nuclear contribution to σ−n, which is estimated to be about
0.33 b in the Glauber model. The resulting σ−n value turns
out to be 1.14 b. As expected, the dipole strength obtained
for the f orbit is much smaller: Its contribution to σ−n is
a mere 57 mb. The nuclear contribution is evaluated in the
Glauber model to be about 34 mb, leading to a total σ−n =
91 mb. This is about one order of magnitude smaller than
the cross section for the p orbit. The experiment performed
at RIKEN gave σ−n = 712(65) mb [19]. Thus again slightly
below our theoretical prediction for the 1p3/2 configuration,
and much higher than the cross section obtained for the 0f7/2

orbit. This confirms the shell inversion predicted by former
structure calculations [4,16], in agreement with the analysis of
Nakamura et al. [19]. Note that evaluations of the Coulomb
contribution using PW or OPW lead to similar results: large
σ−n for the 1p3/2 configuration and small σ−n for the 0f7/2

one.
As mentioned in the last paragraph of the previous sub-

section, the Coulomb breakup contribution is very sensitive
to Sn of the 1p3/2 orbit. We have repeated the calculation
assuming Sn = 0.6 MeV. The σ−n value for Sn = 0.6 MeV is
predicted to be 0.75 b, of which 0.49 b is due to the Coulomb
breakup. Changing Sn from 0.33 to 0.6 MeV thus reduces
σ−n by 0.32 b. This is much larger than the corresponding
reduction (65 mb) in the nuclear breakup contribution. Since
σ−n changes significantly as a function of Sn mainly because
of the Coulomb dissociation, a close analysis of σ−n on a
208Pb target can give some constraint on the Sn value of
31Ne. The one-neutron removal cross section obtained with
Sn = 0.6 MeV being closer to the experimental value suggests
that the one-neutron separation energy of 31Ne might be
higher than 0.33 MeV. However, this reduction from theory
to experiment may also be due to a spectroscopic factor for
the 1p3/2 configuration smaller than 1. Other observables, like
energy or parallel-momentum distributions for elastic breakup,
may provide further valuable information.

V. EIKONAL CALCULATION OF ENERGY AND
PARALLEL-MOMENTUM DISTRIBUTIONS

Besides the significant difference in magnitude between the
one-neutron removal cross section, the distinction between
the 1p3/2 and 0f7/2 configurations for 31Ne could be made
by looking at differential breakup observables, like energy or
parallel-momentum distributions. To analyze the influence of
the 31Ne configuration on such cross sections, we perform
elastic-breakup calculations within the Coulomb-corrected
eikonal model (CCE, see Sec. II B and Ref. [27]). Unlike
the Glauber model, the CCE solves the divergence problem
posed by the Coulomb interaction between the projectile and
the target. This enables us to take account of nuclear and
Coulomb interactions on the same footing and to include their
interference in the description of the reaction process. The
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FIG. 8. Energy distribution for the elastic breakup of 31Ne on
carbon at 240 MeV/nucleon. The total cross section for the initial
1p3/2 bound state is plotted as well as its major partial-wave
contributions. The result obtained with the initial 0f7/2 bound state,
multiplied by 10, is shown for comparison.

following calculations are performed with the inputs detailed
in Sec. III.

The elastic-breakup cross sections obtained for 31Ne im-
pinging on a carbon target at 240 MeV/nucleon are shown in
Fig. 8 as a function of the energy E between the 30Ne core and
the neutron after dissociation. The total cross section for the
1p3/2 configuration is displayed with the thick full line, while
its dominant s–g contributions are plotted with interrupted
lines. The breakup cross section obtained considering the 0f7/2

ground state is depicted with the thin full line. Note that it
is multiplied by 10 for readability. Both distributions differ
significantly. First, as already mentioned in Sec. IV B, the
magnitude of the 0f7/2 cross section is much lower than the
1p3/2 one. Second, the 1p3/2 distribution is strongly peaked
at low energy, whereas the 0f7/2 distribution extends over
a broader energy domain. This confirms that in addition to
one-neutron removal cross sections, energy distributions could
be used to determine the configuration of 31Ne ground state.

The two bumps observed in the 0f7/2 cross section at about
5 and 9 MeV correspond to f5/2 and g9/2 resonances of widths
�0f5/2 � 1.5 MeV and �0g9/2 � 3 MeV, respectively. These
resonances are produced by the c-n potential used in this
calculation (see Table II) but were not fitted to any known
state. In the present work they have thus no physical meaning.
However, this result indicates that if 31Ne were to exhibit
resonant states with a strong 30Ne-n cluster structure, these
could be revealed by a measurement of elastic breakup on a
light target [39].

These resonances are also present in the 1p3/2 calculation,
but the bumps they generate are less marked than in the 0f7/2

case. The 1p3/2 orbit, being two quanta of orbital angular
momentum further away from the resonances than the 0f7/2

state, is indeed less prone to be excited toward that part of the
continuum.
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FIG. 9. Same as Fig. 8 for a lead target. Note the change in the
energy axis.

We also perform a similar calculation for a 208Pb target.
The corresponding energy distributions are plotted in Fig. 9.
As in the nuclear breakup case, the two configurations lead
to very different results. Not only is the magnitude of the
distribution strongly dependent on the initial state (note that
the 0f7/2 cross section is multiplied by 10), but also its shape
clearly reveals the configuration of 31Ne ground state. As in
Figs. 8 and 7, the 1p3/2 energy distribution is peaked at low
energy and decreases rapidly with E. The 0f7/2 cross section,
on the contrary, is much flatter.

Another observable that is often used to discriminate
the orbital of valence nucleons is the parallel-momentum
distribution [40–42]. In that case, the breakup cross section
is evaluated as a function of the parallel momentum between
the core and the neutron after dissociation. Figure 10 depicts
the parallel-momentum distribution for the elastic breakup of
31Ne on a carbon target at 240 MeV/nucleon. The results
obtained with both the 1p3/2 (thick line) and 0f7/2 (thin line)
configurations are shown. Note that here also the latter is
multiplied by 10 for clarity.

The signature of the initial configuration is even clearer
here than in the energy distribution. Besides the signif-
icant change in magnitude, we observe that the 0f7/2
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FIG. 10. Parallel-momentum distribution for the elastic breakup
of 31Ne on carbon at 240 MeV/nucleon. The cross section for the
initial 1p3/2 bound state is compared to that obtained with the initial
0f7/2 bound state. The latter is multiplied by 10.
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parallel-momentum distribution is much broader than that of
the 1p3/2 configuration. This distribution can be understood
as a reminiscence of the initial bound-state wave function
expressed in the momentum space [40,42]. The large spatial
expansion of the 1p3/2 wave function translates into a narrow
momentum distribution, which is revealed in this breakup cross
section. On the contrary, the narrower spatial distribution of the
0f7/2 state leads to the broader parallel-momentum distribution
observed in Fig. 10.

VI. CONCLUSION AND PERSPECTIVES

The very neutron-rich isotope 31Ne (N = 21) is located
in a region where mixing of normal and intruder shell
configurations is expected. In a naive shell model, the 31Ne
ground state would be seen as a 30Ne core in its 0+ ground
state to which a 0f7/2 valence neutron is added. However,
some calculations predict this valence neutron to be in a
1p3/2 intruder orbital instead [4,16]. If this were the case,
the low angular momentum of the orbital combined to the low
one-neutron separation energy of 31Ne (Sn � 0.33 MeV [13])
would suggest this nucleus to exhibit a one-neutron halo.

Recently, the new RIBF facility at RIKEN has produced
a 31Ne beam at about 230 MeV/nucleon. This beam is
sufficiently intense to allow the measurement of its total
reaction and one-neutron removal cross sections on carbon
and lead targets [18,19]. The present work aims at analyzing
the sensitivity of these cross sections to the structure of the
exotic isotope 31Ne. To this aim we use the Glauber model
detailed in Ref. [23] to evaluate σR and σ−n. This theoretical
work shows that both σR and σ−n computed considering a
1p3/2 configuration for 31Ne are larger than those obtained
with a 0f7/2 valence neutron. Especially, the difference in
σ−n is significant enough to doubtlessly discriminate between
the two possible configurations. During the completion of
this theoretical work, the one-neutron removal cross sections
of 31Ne measured at RIKEN became available [19]. The
comparison of these data to our calculations suggests a
strong 1p3/2 configuration in the wave function of 31Ne
ground state, confirming, independently from the analysis
of Nakamura et al. [19], the expected shell inversion in
31Ne. We therefore conclude the spin-parity of that ground
state to be 3/2− rather than 7/2− as suggested by the naive
shell model.

Since other observables could be used to test this shell
inversion, we have also performed prospective calculations
within the Coulomb-corrected eikonal approximation [27]
for the breakup of 31Ne on both carbon and lead targets.
These calculations confirm that a 0f7/2 configuration would
lead to much smaller breakup cross sections than if the
valence neutron were in the intruder 1p3/2 orbital. They also
show that the shape of the energy and parallel-momentum
distributions could be used to distinguish between the two
possible configurations. Indeed, whereas assuming a 1p3/2

valence neutron gives energy distributions peaked at low
energy, the 0f7/2 configuration leads to distributions that reach
much higher energies. We have also observed that the parallel-
momentum distribution is much narrower when the bound
state is assumed in the p partial wave than in the f one. The
measurement of these distributions would therefore provide
a complementary way to confirm the structure information
obtained from the recent RIKEN measurement of σ−n.

At such a distance from the valley of stability and near the
region of the island of inversion, the 31Ne ground state may
not be composed of a single configuration. An extension of the
reaction models used in this work to a multiple-configuration
description of the projectile structure, as the one proposed by
Summers et al. [43], would definitely improve the reaction
model. Such a model would indeed help understanding the
influence of a multiple-configuration structure of the projectile
on reaction observables.
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Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29
(1980).

[3] W. Geithner, T. Neff, G. Audi, K. Blaum, P. Delahaye,
H. Feldmeier, S. George, C. Guénaut, F. Herfurth, A. Herlert
et al., Phys. Rev. Lett. 101, 252502 (2008).

[4] A. Poves and J. Retamosa, Nucl. Phys. A571, 221 (1994).
[5] E. Caurier, F. Nowacki, A. Poves, and J. Retamosa, Phys. Rev.

C 58, 2033 (1998).
[6] Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev.

C 60, 054315 (1999).

[7] M. Kimura and H. Horiuchi, Prog. Theor. Phys. 107, 33
(2002).

[8] M. Kimura and H. Horiuchi, Prog. Theor. Phys. 111, 841
(2004).
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