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Systematics of α-decay half-lives around shell closures
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We present a systematic calculation of α-decay half-lives of even-even heavy and superheavy nuclei in the
framework of the preformed α model. The microscopic α-daughter nuclear interaction potential is calculated by
double-folding the density distributions of both α and daughter nuclei with a realistic effective Michigan three-
Yukawa nucleon-nucleon interaction, and the microscopic Coulomb potential is calculated by folding the charge
density distributions of the two interacting nuclei. The half-lives are found to be sensitive to the density dependence
of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition
inherent in the Wentzel-Kramers-Brillouin approach. The α-decay half-lives obtained agree reasonably well with
the available experimental data. Moreover, the study has been extended to the newly observed superheavy nuclei.
The interplay of closed-shell effects in α-decay calculations is investigated. The α-decay calculations give the
closed-shell effects of known spherical magicities, Z = 82 and N = 126, and further predict enhanced stabilities
at N = 152, 162, and 184 for Z = 100, 108, and 114, owing to the stability of parent nuclei against α decays. It
is worth noting that the aim of this work is not only to reproduce the experimental data better, but also to extend
our understanding of α-decay half-lives around shell closures.
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I. INTRODUCTION

One of the most important decay modes for unstable
medium and heavy nuclei is α radioactivity [1,2]. In recent
years, there has been renewed interest in α decay because of the
development of radioactive beams and new low-temperature
detector technology. Thanks to these new developments,
α decay is now a powerful tool for investigating the details
of nuclear structure [3], for example, α clustering, shell
effect, effective nuclear interaction, and nuclear deformation.
In recent experiments on superheavy nuclei, α decay has been
used as a reliable way to identify new synthesized superheavy
elements (SHEs) and isomeric states, which is a hot topic in
nuclear physics [2,4].

From the theoretical side, the process of α decay is fun-
damentally a quantum-tunneling effect, which was explained
independently by Gamow [5] and Condon and Gurney [6]
in the 1920s. This was the first successful application of
quantum mechanics to a nuclear physics problem and was
rather groundbreaking in the development of nuclear physics.
Subsequently, a number of theoretical calculations were per-
formed by both phenomenological and microscopic methods
to predict absolute α-decay width, to extract nuclear structure
information, and to pursue a microscopic understanding of
α-decay phenomenon. For instance, Buck et al. systematically
calculated the α-decay half-lives of nuclei by using the Cosh
potential [7]. The density-dependent Michigan three-Yukawa
(M3Y) interaction and the mean-field potential have also been
applied to the calculation of α-decay half-lives [8–18].

A semiclassical formulation of the problem of the pen-
etration of an α particle through the barrier, based on the
Wentzel-Kramers-Brillouin (WKB) approximation [19,20],
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was found to be a suitable approximation. The decay width
in general was defined as a product of the frequency of
collisions of the α particle with the barrier (the so-called
assault frequency) and the penetration probability [21,22]. In
the calculation of α-decay half-lives, one has to invoke another
indispensable quantity, that is, the α-cluster preformation
factor (also called the spectroscopic factor, as it is related
to the nuclear structure information). It gives the probability
of finding the α particle preformed in the parent nucleus [21].
This quantity can be obtained microscopically by evaluating
the squared product of the overlaps between the single-particle
states in the many-body state of the α particle and those in
the many-body state of the parent. Tonozuka and Arima [23]
calculated the probability of an α cluster within the framework
of the shell model. Horiuchi and Takemoto et al. [24,25]
studied α-clustering structures in nuclei and in nuclear matter.
Although many attempts have been made, the development of
a theoretical description of the α-cluster preformation factor
is slow, owing to the complexity of both the nuclear potential
and the nuclear many-body problem.

In the present work, the half-lives of new SHEs have
been determined using microscopic potentials within the
semiclassical WKB approximation in combination with the
Bohr-Sommerfeld quantization condition and compared with
the existing theoretical and experimental results to test the
extent of the validity of this formalism and its ability
to predict magic numbers in the superheavy region. The
nuclear potentials have been obtained by the double-folding
of the α- and daughter-nucleus density distributions with
free or density-dependent effective nucleon-nucleon (NN )
interactions. The nuclear potential energy for the α-nucleus
interaction has therefore been obtained microscopically.A
double-folding potential obtained with the M3Y [26,27]
effective interaction supplemented with a zero-range potential
for single-nucleon exchange is more appropriate because of
its microscopic nature [28]. The semirealistic explicit density
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dependence [29] in the M3Y effective interaction has also
been employed to incorporate higher-order exchange and Pauli
blocking effects.

The outline of the paper is as follows. In the next
section, we present the formulas and parameters for effective
NN interaction used in our calculations. In Sec. III, we
describe the microscopic nuclear and Coulomb potentials
between α and daughter nuclei. The extraction of the α-decay
half-life from the microscopic calculations using the folding
potential and the WKB approximation, with implementation of
the Bohr-Sommerfeld quantization condition, is presented in
Sec. IV. The calculated results are discussed in Sec.V. Finally,
Sec. VI gives a brief conclusion.

II. EFFECTIVE NUCLEON-NUCLEON INTERACTION

The double-folding model for calculation of the nucleus-
nucleus potential uses the two frozen densities ρ1(�r1) and
ρ2(�r2), folded with a properly chosen effective NN inter-
action, υNN . The folding model can be considered to be a
semimicroscopic approach, because no free parameters, except
for an overall normalization, enter the calculation [27,30].
Once we have realistic nuclear densities, available from dif-
ferent nuclear models or directly from the electron scattering
data, it still remains necessary to have a realistic effective
NN interaction before the success of the folding model can be
reliability assessed.

A variety of effective NN interactions has been introduced
into the folding model, but the one that became known as M3Y
is probably the most widely used and certainly is representative
of “realistic interactions.” Explicit forms for M3Y, effective,
interactions are defined by [31]

υNN (E, r) = υ00 (r) + ĵ00(E)δ(r). (1)

For M3Y, Reid form,

υ00(r) =
[

7999
exp (−4r)

4r
− 2134

exp (−2.5r)

2.5r

]
MeV,

(2)

For M3Y, Paris form,

υ00(r) =
[

11062
exp (−4r)

4r
− 2538

exp (−2.5r)

2.5r

]
MeV,

(3)

where the first term in Eq. (1) is the central NN force, and
the second term is the zero-range pseudopotential term that
represents the effects of single-nucleon knock-on exchange.
The magnitude of ĵ 00(E) for an M3Y—Reid interaction can
be expressed as

ĵ00 (E) ≈ −276 [1 − 0.005 (E/A)] MeV fm3, (4)

while use of the MY3—Paris form gives

ĵ00 (E) ≈ −590 [1 − 0.002 (E/A)] MeV fm3, (5)

where E/A is the bombarding energy per projectile nucleon
(MeV).

The effective interaction between two nucleons in a nucleus
depends on the density of the surrounding medium [31,32].

The density-dependent M3Y interaction may be written in the
form

υDD (ρ, r) = f (ρ) υNN (r), (6)

where υNN (r) is the original M3Y interaction (including the
knock-on pseudopotential). The first version [29,33] took
υNN (r) to be an M3Y (Reid) interaction, Eq. (2), together
with the knock-on exchange pseudopotential as in Eq. (4).
The density dependence adopted [33] was

f (ρ) = C[1 + α exp (−βρ)], (7)

where parameters C, α, and β may depend on energy. The
parameter values for the energy range E = 3 to 90 MeV per
nucleon adopted for the density and energy dependence for
Eq. (7) are given in Ref. [34].

One of the possible prescriptions for the density entering
Eq. (7) is that ρ is the density midway between the two
interacting nucleons, but in view of the short range of the
effective interaction it is sufficiently accurate to use the more
convenient form,

ρ = ρα (�r1) + ρd (�r2) , (8)

where ρα and ρd are the densities of the α particle and the
daughter nucleus, respectively. This choice allows for easy
factorization of the density-dependent interaction necessary to
perform the folding calculation in momentum space.

A reasonably good description of elastic α-nucleus scatter-
ing data was obtained by assuming another factorized form of
this density dependence as follows:

f (ρα, ρd ) = C
[
1 − βρ2/3

α

][
1 − βρ

2/3
d

]
. (9)

Because the released energies involved in the cluster
decay processes are very low compared to the energies in
high-energy heavy-ion scattering, C and β were found to
be energy independent and, for the case of the α decay of
superheavy nuclei, C was chosen to be unity and β = 1.6 fm2

[35,36]. This form of the density dependence has been used
frequently in the α-nucleus potential for calculating α-decay
half-lives [35,36].

III. THE α-NUCLEUS POTENTIAL

In the framework of the cluster model, the ground state
of the parent nucleus is assumed to be an α cluster orbiting
the daughter nucleus. The α-core potential is the sum of the
nuclear potential, the Coulomb potential, and the centrifugal
potential.

V (R) = VN (R) + VC(R) + h̄2(� + 1/2)2

2µ R2
, (10)

where R is the separation distance between the center of mass
of the α particle and that of the daughter nucleus. The latter
term represents the Langer modified centrifugal barrier [37].
With the WKB approximation being valid for one-dimensional
problems, the preceding modification from �(� + 1) →
(� + 1/2)2 is essential to ensure the correct behavior of the
WKB scattered radial wave function near the origin [38]. � is
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the angular momentum of the α particle. µ is the reduced mass
of the α-daughter system and is given by

µ = MeMd

Me + Md

, (11)

where Me and Md are the masses of the emitted α particle
and the daughter nucleus, respectively, all measured in units
of MeV/c2.

The nuclear potential VN (R) is obtained from the double-
folding integral of the renormalized M3Y NN potential with
the matter density distributions of the α-particle and daughter
nucleus [27–33].

VN (R) = λ

∫
d�r1

∫
d�r2 ρα (�r1) ρd (�r2) υNN (|�s|) , (12)

where λ is the renormalization factor. ρα and ρd are the
matter density distributions of the α-particle and daughter
nucleus, respectively. The quantity |�s| is the distance between
a nucleon in the daughter and a nucleon in the α particle
(�s = �R + �r2 − �r1). The matter density distribution of the
α particle is a standard Gaussian form, namely,

ρα (r1) = 0.4229 exp
(−0.7024 r2

1

)
, (13)

whose volume integral is equal to the mass number of
the α particle Aα (=4). The matter density distribution for
the daughter nucleus can be described by the spherically
symmetric Fermi function,

ρd (r2) = ρ0

1 + exp
(

r2−c
a

) , (14)

where the value of ρ0 has been fixed by integrating the matter
density distribution equivalent to the mass number of the
residual daughter nucleus Ad .

The half-density radius c and the diffuseness a are given
by [8,9,39]

c = 1.07A
1/3
d fm, a = 0.54 fm. (15)

The M3Y NN interaction [27,31] is given by two direct terms
with different ranges, Eq. (2), and by an exchange term with
a δ interaction, Eq. (4). This exchange term is introduced
to the M3Y interaction to guarantee the antisymmetrization
of identical particles in both the α-particle and the daughter
nucleus.

For the spherical-spherical interacting pair, the double-
folding potential in Eq. (12) can be evaluated easily in
momentum space [27]. It is given by

VN (R)

= 8 λ

∫ ∞

0
dk k2 j0 (kr) υ̃NN (k)

∫ ∞

0
dr1r

2
1 j0 (kr1) ρα (r1)

×
∫ ∞

0
dr2r

2
2 j0 (kr2) ρd (r2) , (16)

where for the M3Y—Reid NN potential,

υ̃NN (k) = 4π

[
7999

4(16 + k2)
− 2134

2.5(6.25 + k2)

]
− 276(1 − 0.005Eα/Aα), (17a)

and for the M3Y—Paris NN interaction,

υ̃NN (k) = 4π

[
11 062

4(16 + k2)
− 2538

2.5(6.25 + k2)

]
− 590(1 − 0.002Eα/Aα). (17b)

One could further improve the double-folding potential by tak-
ing into account the density dependence of the NN interaction.
In this case, Eq. (12) may be rewritten in the form,

VN (R) = λ

∫
d�r1

∫
d�r2 ρα (�r1) ρd (�r2)

× f [ρα (r1) , ρd (r2)]υNN (|�s|) , (18)

where f (ρα, ρd ) may be taken to be either an exponential
dependence on density as in Eqs. (7) and (8) or a power-
law density dependence as in Eq. (9). For the factorized form
of the density dependence considered in the present work,
Eq. (18) can be simplified to a form like Eq. (16). For the
density dependence given by Eq. (9), Eq. (18) becomes the
same as Eq. (16) after replacing ρi with ρi(1 − βρ

2/3
i ) with

i = α or d and multiplying λ by the constant C.
The Coulomb potential is obtained using a similar double-

folding procedure for a proton-proton Coulomb interaction
with the matter densities of the α and the daughter replaced by
their respective charge density distributions ρ ′

α and ρ ′
d . Thus

the double-folding Coulomb potential can be written as

VC(R) =
∫

d�r1

∫
d�r2

e2

| �R + �r2 − �r1|
ρ ′

α (�r1) ρ ′
d (�r2) . (19)

The charge distributions are taken to have a similar form as the
matter distributions, except for the fact that they are normalized
to the number of protons in the alpha and daughter.

IV. HALF-LIVES OF α RADIOACTIVITY

The half-life of a parent nucleus decaying by means
of α emission is calculated using different approaches
[7–9,17,22,35,36] to the tunneling problem in the framework
of the WKB approximation. Two of these approaches are
frequently used in calculating the α-decay half-lives. The
first one [35,36] is a super asymmetric fission model, which
often neglects the Bohr-Sommerfeld condition and the Langer
modification, which are essential ingredients [22] of the
WKB approximation. In this case the renormalization factor λ

becomes a free parameter determined from the best fit of the
experimental α-decay half-lives. The second approach [7–9],
the density-dependent cluster model, which is adopted in
the present work for our study of α-decay half-lives around
shell closures, takes into account the Langer modification
and the Bohr-Sommerfeld condition. A detailed comparison
of the expressions for the decay widths obtained within the
semiclassical WKB approximation using different approaches
to the tunneling problem is performed in Ref. [22].

In the present approach, there are three classical turning
points, denoted R1, R2, and R3, in order of increasing
distance from the origin. These turning points are obtained
by numerical solutions of the equation V (R) = Q, where
Q is the experimental α-decay energy. It should be noted
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that the introduction of the Langer modification, namely,
�(� + 1) → (� + 1/2)2, for the radial one-dimensional WKB
problem introduces the inner turning point, R1, near the origin
even for the � = 0 case. This detail has been missed in some
works [35,36,40,41].

The renormalization factor λ in the nuclear potential,
Eqs. (12) and (18), is not an adjustable parameter but it
is determined separately for each decay by applying the
Bohr-Sommerfeld quantization condition [22],

∫ R2

R1

dR K(R) = (2n + 1)
π

2
= (G − � + 1)

π

2
, (20)

where the wave number K(R) is given by

K(R) =
√

2µ

h̄2 |V (R) − Q|. (21)

The number of nodes are expressed as n = (G − �)/2, where
G is a global quantum number obtained from fits to data
[8,9,42] and � is the orbital angular momentum carried by
the α particle. We perform calculations in the superheavy
region with two possible fitted values of G, namely, 20 and 22.
This system of equations, involving the turning points and the
Bohr-Sommerfeld condition, is numerically solved by a few
iterations to an acceptable level of accuracy.

Once the values of turning points together with the depth
of the nuclear potential have been determined, we can
calculate the α-decay width 	 of the quasibound state, in
semiclassical approximation, by following the procedure of
Gurvit and Kälbermann [43]. Using a one-dimensional WKB
approximation, the barrier penetrability P is calculated within
the action integral as

P = exp

[
−2

∫ R3

R2

dR K(R)

]
, (22)

In the quasiclassical approximation, the α-decay width 	 is
[7,9,42]

	 = Pα F
h̄2

4 µ
exp

[
−2

∫ R3

R2

dR K(R)

]
, (23)

where Pα is the preformation probability of the α particle in
a parent nucleus. It is very difficult to determine the prefor-
mation factor microscopically from current nuclear models
owing to the complexity of the nuclear many-body problem.
Experimentally the preformation factor does not change much
for open-shell nuclei [44]. To simplify our calculations, we
take the preformation factor as a constant for the same kind
of nuclei and its value is chosen to give the best fit between
experimental half-lives and theoretical ones [8,9]. This means
that we have only a single adjustable parameter Pα for different
kinds of nuclei. Here we choose the preformation probability
Pα = 1.0 for even-even superheavy nuclei. Moreover, a set of
parameters of the preformation factors Pα = 0.38 or 0.43, for
even-even nuclei with Z = 52–105, has also been used, as in
Refs. [8] and [9]. These values agree approximately with the
experimental data for open-shell nuclei [44].

The normalization factor F is given by

F

∫ R2

R1

dR
1

K(R)
cos2

[∫ R

R1

dR′ K
(
R′) − π

4

]
= 1, (24)

where the squared cosine term may be replaced by 1/2 without
significant loss of accuracy [9,42,43]. This factor arises from
the normalization of the bound-state wave function in the
region between R1 and R2. Indeed, this factor is related to
the so-called “assault frequency” of the tunneling particle at
the barrier. The time interval 
t for the particle traversing a
distance 
R can be expressed as


t = 
R

ν(R)
= µ 
R

h̄ K(R)
. (25)

The assault frequency ν can be written as the inverse of the
time required to traverse the distance back and forth between
the turning points R1 and R2 as [22]

ν = T −1 = h̄

2µ

[∫ R2

R1

dR

K(R)

]−1

. (26)

In this way, we can write the α-decay width 	 in terms of the
assault frequency ν as

	 = Pα h̄ν exp

[
−2

∫ R3

R2

dR K(R)

]
. (27)

The α-decay half-life is then related to the width 	 by

T1/2 = h̄ ln(2)/	. (28)

To extend the α-decay width to the deformed case, we
assume that a spherical α particle interacts with an axially
symmetric deformed daughter nucleus. The density distribu-
tion of the deformed daughter nucleus is given by

ρd (r2, θ ) = ρ0

1 + exp
[

r2−R(θ)
a

] . (29)

The half-density radius R (θ ) is given by

R (θ ) = C [1 + δ2Y20 (θ ) + δ4Y40 (θ )] . (30)

The angle θ is measured from the symmetry axis of the
deformed nucleus.

We used the same density parameters as in the spherical
Fermi shape, while the values of the deformation parameters
(δ2 and δ4) were taken from Möller et al. [45]. The total α-core
potential is given by

V (R, β) = VN (R, β) + VC(R, β) + h̄2(� + 1/2)2

2µ R2
, (31)

where R is the distance between the mass centers of the
α-particle and the deformed daughter nucleus, while β is the
angle between the separation vector �R and the symmetry axis
of the daughter nucleus. The nuclear and Coulomb potentials
are obtained from the double-folding model. For the spherical-
deformed interacting pair, the double-folding potential is
solved numerically by using the multipole expansion method
as described in Refs. [46–49].
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We now generalize our spherical calculations of the α-decay
half-lives to the deformed case. The polar-angle-dependent
penetration probability of α decay is given by

Pβ = exp

[
−2

∫ R3(β)

R2(β)

√
2µ

h̄2
|Q − V (R, β)| dR

]
, (32)

where R2(β) and R3(β) are the second and third classical
turning points for a certain orientation angle β. The depth λ

of the nuclear potential is renormalized for each orientation
to ensure a quasistationary state by application of the Bohr-
Sommerfeld quantization condition. Here the calculation of
Pβ in each direction is similar to the spherical calculation
but the complexity and time of computation are much more
than for the spherical calculation. The total penetration
factor P is obtained by averaging Pβ in all directions
such that

P = 1

2

∫ π

0
Pβ sin(β) dβ. (33)

This averaging procedure is widely used in both α-decay and
fusion reaction calculations [50–52]. The value of the assault
frequency ν is also obtained by the same averaging procedure
along different orientation angles. Finally, the α-decay width
is given by

	 = Pαh̄ν
1

2

∫ π

0
Pβ sin(β)dβ. (34)

V. RESULTS AND DISCUSSION

α decay was the chosen mode of study because, in the case
of the heaviest elements [1,2], α decay is the main decay mode,
but for superheavies spontaneous fission competes. Another
attractive feature that made α radioactivity the chosen mode
of study is that α particles can be detected rather easily under
favorable conditions such as high efficiency, low background,
and good energy resolution. In even-even parent nuclei there
is less uncertainty in the determination of the released energy
Q value, which is one of the crucial factors for quantitative
prediction of decay half-lives, and all the parent and daughter
nuclei have zero spins and positive parities. Also, as a rule,
in even-even nuclei, α transitions occur from ground state to
ground state, which make their partial half-life systematics
relatively smooth. Thus, the expectation is that the α-decay
systematics of the chosen even-even nuclei would be good
enough to provide a comprehensive study of shell closure in
SHEs.

In the present work, we have calculated α-decay half-lives
from ground state (g.s.) to ground state assuming zero angular
momentum transfers (i.e, � = 0 transition) in even-even nuclei
from Pb nucleus to superheavy nuclei. The Q value is a crucial
quantity that strongly affects the calculation of the decay half-
life, because the half-life is exponentially dependent on the
Q value. In general, half-life calculations are very sensitive
to Q values; in particular, α-decay half-lives, when calculated
with experimental Q values, are found to be in better agreement

with experimental half-lives. This was highlighted by Basu
et al. in Ref. [36]. Therefore, we have adopted experimental
Q values.

A. Behavior of α-decay half-lives near the neutron
magic number N = 126

The aim of the present work was to test the possibility
of extracting magic numbers for SHEs from the behavior
of α-decay half-lives. First, we start with the well-known
neutron magic number N = 126 and study the variation of
α-decay half-lives as a function of nucleon number when N

approaches 126 in the presence and absence of the proton
magic number. In this regard, we considered Pb and Po isotope
chains. We have calculated α-decay half-lives for different
Pb isotopes, assuming a spherical shape, in the framework of
the formulation described in Sec. IV. The input potential for
the α + daughter system is obtained using the M3Y—Paris
NN interaction of Eqs. (3) and (5). Implementation of the
Bohr-Sommerfeld quantization condition, Eq. (20), fixes the
strength of the nuclear potential λ in Eq. (12). The “fitted”
global quantum number G appearing in Eq. (20) is taken to
be 18. As discussed in Ref. [9], Xu et al. obtained a better
set of parameters for the preformation factors Pα = 0.43 for
even-even nuclei, through a least-squares fit to the available
experimental half-lives of the medium mass nuclei with proton
number Z = 52–80. In this regard, two different values are
used for the preformation probabilities Pα = 0.43 and Pα = 1.
These values of the preformation factors lie in the experimental
range Pα = 0.005–1.0 [44].

The calculated α-decay half-lives together with the experi-
mental Q values and the experimental half-lives for Pb isotopes
[14,18] are presented in Table I. It is clearly demonstrated in
Table I that there is a good agreement between our calculated
results with Pα = 0.43 and the corresponding experimental
data on half-lives. Graphically, such good agreement is
demonstrated in Fig. 1 in the cases of different isotopes of
the Pb nucleus. Figure 1 and Table I indicate that the α-decay
half-life of the Pb isotope increases by a factor of more than
10 with the addition of a pair of neutrons to the isotope
178Pb. As the neutron magic number N = 126 is approached,
the increase in α-decay half-life owing to the addition of a

TABLE I. Comparison between experimental α-decay half-lives
[14,18] and results obtained with the M3Y—Paris effective in-
teraction using G = 18 for Pb isotopes using two values of the
preformation probabilities Pα = 1.00 and 0.43.

Parent
nucleus M3Y—Paris, T1/2 (ms) Expt.

Z A Pα = 1.00 Pα = 0.43 Q (MeV) T1/2 (ms)

82 178 0.13 0.30 7.790 0.23
82 180 1.76 4.10 7.415 5.00
82 184 249.16 579.45 6.774 610.00
82 186 3431.46 7980.13 6.470 12000.00
82 190 7.12 × 106 1.66 × 107 5.697 1.80 × 107

82 194 1.38 × 1012 3.20 × 1012 4.738 9.80 × 1012
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FIG. 1. α-decay half-lives for different isotopes of the Pb nucleus
with mass number AP . Half-lives are calculated in the framework of
the double-folding model with M3Y—Paris using Eqs. (3) and (5)
along with Eqs. (27) and (28) with global quantum number G = 18
for two values of preformation probability, Pα = 1.00 and 0.43.
Experimental Q values and half-lives were obtained from Refs. [14]
and [18].

neutron pair to the parent nucleus becomes too large. For
example, the α-decay half-life of 186Pb is larger than that of
184Pb by a factor of about 13, while the α-decay half-life of
194Pb is larger than that of 184Pb by a factor of about 5 × 109.
This is mostly a Q-value effect and reflects the fact that the
nucleus tends to be more stable as the proton and/or neutron
numbers approach a magic number [53].

To study the correlation between the variation of the
half-lives around the nucleon magic number and the nuclear
shell effect, the half-lives of Po (Z = 84) isotopes are given as
a function of the neutron number in Fig. 2. The experimental
Q values and half-lives are obtained from Refs. [11,54,55].
It should be noted that the Po nucleus is different from the
Pb nucleus in that the latter has proton magic number Z = 82,
while the first nucleus has not. So, we expect different behavior
of α-decay half-lives of Po isotopes compared to that of
Pb isotopes.
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 P  = 1.00

 P  = 0.43
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FIG. 2. The same as Fig. 1 but for different isotopes of the
Po nucleus calculated using three values of preformation probability,
Pα = 1.00, 0.43, and 0.38. The global quantum number G is used as in
Ref. [9] (G = 18 for 82 < NP � 126, while G = 20 for NP > 126).
Experimental Q values and half-lives are obtained from Refs. [11],
[54], and [55].

FIG. 3. Experimental released energies Q of α decay [54] for
different isotopes of the Po nucleus with the neutron number NP .

In Fig. 2 the change in half-lives with neutron number
clearly shows that the shell effect plays an important role in
α-decay half-lives. The closer the daughter nucleon number to
the magic number, the greater the decrease in the half-life of the
parent nucleus. Overall, the α-decay half-lives of the Po parent
nucleus increases with increasing neutron number from NP =
104 up to NP = 124 and then decreases slightly at spherical
shell closure NP = 126. The addition of two neutrons to the
magic number NP = 126 of the Po parent nucleus produces too
sharp decrease, by a factor more than 1013, in its half-life for
α emission. This is demonstrated in Table II upon comparing
either the experimental or the theoretical α-decay half-lives
for Ap = 210 and 212. This reflects the stability gained by
the Po nucleus when NP reaches the neutron magic number
NP = 126. On the contrary, the Po nucleus becomes unstable
when the neutron number slightly exceeds the magic number.

One knows that the shell effect for α radioactivity is related
to the Q value, which is maximum when the daughter nucleus
has a magic number of neutrons and/or protons. According to
Eqs. (21) and (22), shell effects are included in the penetration
probability, which is related to the Q value. So the change in
penetration probability is attributable to changes in Q. These
features are clearly shown in Figs. 3 and 4.

FIG. 4. Calculated penetration probability for different isotopes
of the Po nucleus with the neutron number NP .
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TABLE II. The same as Table I but for different isotopes of the Po nucleus calculated using three values
of preformation probability, Pα = 1.00, 0.43, and 0.38. The global quantum number G is used as in Ref. [9]
(G = 18 for 82 < NP � 126, while G = 20 for NP > 126). Experimental Q values and half-lives were
obtained from Refs. [11], [54], and [55].

Parent
nucleus M3Y—Paris, T1/2 (s) Expt.

Z A Pα = 1.00 Pα = 0.43 Pα = 0.38 Q (MeV) T1/2 (s)

84 188 8.47 × 10−5 1.97 × 10−4 2.23 × 10−4 8.082 3 × 10−4

84 190 1.16 × 10−3 2.69 × 10−3 3.05 × 10−3 7.693 2.5 × 10−3

84 192 1.75 × 10−2 4.08 × 10−2 4.61 × 10−2 7.319 3.3 × 10−2

84 194 2.37 × 10−1 5.52 × 10−1 6.24 × 10−1 6.987 3.9 × 10−1

84 196 3.85 × 10◦ 8.96 × 10◦ 1.01 × 101 6.657 5.9 × 10◦

84 198 0.93 × 102 2.17 × 102 2.46 × 102 6.309 1.9 × 102

84 200 2.47 × 103 5.74 × 103 6.49 × 103 5.981 6.2 × 103

84 202 4.87 × 104 1.13 × 105 1.28 × 105 5.701 1.4 × 105

84 204 6.04 × 105 1.41 × 106 1.59 × 106 5.485 1.9 × 106

84 206 3.82 × 106 8.89 × 106 1.01 × 107 5.327 1.4 × 107

84 208 1.49 × 107 3.47 × 107 3.93 × 107 5.215 9.1 × 107

84 210 1.28 × 106 2.99 × 106 3.38 × 106 5.407 1.2 × 107

84 212 1.08 × 10−7 2.51 × 10−7 2.83 × 10−7 8.954 3.0 × 10−7

84 214 1.11 × 10−4 2.58 × 10−4 2.92 × 10−4 7.833 1.6 × 10−4

84 216 1.27 × 10−1 2.96 × 10−1 3.35 × 10−1 6.906 1.5 × 10−1

84 218 1.88 × 102 4.38 × 102 4.95 × 102 6.115 1.9 × 102

TABLE III. The same as Table I but for Cm, Cf, Fm, and No isotope chains using the preformation
probability Pα = 1.00 with two possible fitted values of the global quantum number G, namely, 20 and
22. Moreover, α-decay half-lives are also calculated by including the deformation effect of the daughter
nucleus, where the deformation parameters are taken from Möller et al. [45]. Experimental Q values and
half-lives were obtained from Refs. [11], [54], and [55].

Parent Deformed, T1/2 (ms):
nucleus Spherical, T1/2 (ms) G = 20 Expt.

Z A G = 20 G = 22 Q (MeV) T1/2 (ms)

96 238 3.28 × 108 1.87 × 108 1.04 × 108 6.620 2.30 × 108

96 240 3.50 × 109 1.99 × 109 1.03 × 109 6.397 2.30 × 109

96 242 2.51 × 1010 1.43 × 1010 0.79 × 1010 6.216 1.40 × 1010

96 244 9.09 × 1011 5.15 × 1011 3.17 × 1011 5.902 5.70 × 1011

96 246 2.60 × 1014 1.47 × 1014 0.83 × 1014 5.475 1.50 × 1014

96 248 1.92 × 1016 1.08 × 1016 0.51 × 1016 5.162 1.20 × 1016

98 240 8.44 × 104 4.84 × 104 2.91 × 104 7.719 6.50 × 104

98 242 4.55 × 105 2.60 × 105 1.62 × 105 7.516 2.60 × 105

98 244 2.31 × 106 1.32 × 106 0.80 × 106 7.329 1.20 × 106

98 246 1.86 × 108 1.06 × 108 0.66 × 108 6.861 1.30 × 108

98 248 3.81 × 1010 2.16 × 1010 1.23 × 1010 6.361 2.90 × 1010

98 250 5.01 × 1011 2.83 × 1011 1.87 × 1011 6.128 4.10 × 1011

98 252 1.66 × 1011 9.38 × 1010 6.43 × 1010 6.217 8.60 × 1010

98 254 5.17 × 1012 2.92 × 1012 2.30 × 1012 5.926 1.70 × 1012

100 246 2.55 × 103 1.46 × 103 0.93 × 103 8.374 1.30 × 103

100 248 4.43 × 104 2.54 × 104 1.59 × 104 8.002 3.90 × 104

100 250 1.84 × 106 1.05 × 106 0.70 × 106 7.557 2.0 × 106

100 252 7.26 × 107 4.12 × 107 2.96 × 107 7.152 9.10 × 107

100 254 1.57 × 107 0.89 × 107 0.64 × 107 7.307 1.20 × 107

100 256 2.14 × 108 1.21 × 108 0.97 × 108 7.027 1.20 × 108

102 252 3.59 × 103 2.05 × 103 1.45 × 103 8.549 3.60 × 103

102 254 4.06 × 104 2.32 × 104 1.76 × 104 8.226 5.70 × 104

102 256 2.49 × 103 1.42 × 103 1.10 × 103 8.581 2.90 × 103
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FIG. 5. α-decay half-lives for different isotopes of the 96Cm, 98Cf,
100Fm, and 102No nuclei with the neutron number NP . Half-lives
are calculated using the M3Y—Paris NN interaction assuming
(a) spherical daughter nuclei with G = 22 (solid line with filled
symbols) and (b) both spherical (solid line with filled symbols)
and deformed (dotted lines with filled symbols) daughter nuclei
with G = 20. Open symbols in (a) and (b) are for experimental
half-lives [11,55].

B. Half-lives around the expected neutron
submagic number N = 152

We calculate the α-decay half-lives of Cm, Cf, Fm, and
No isotopes using their experimental released energies Q [54].
The agreement between the calculated α-decay half-lives,
assuming spherical daughter nuclei, in the framework of the
double-folding model with M3Y—Paris NN force using the
preformation probability value Pα = 1, and the experimental
ones [55] are presented in Figs. 5(a) and 5(b). Two possible
values of the “fitted” global quantum number G appearing
in Eq. (21) are taken, G = 20 and 22. In Fig. 5(b), we
further compare our predicted half-lives assuming spherical
daughter nuclei with the deformed ones, as described in
Sec. IV, for the previous isotopes using the same NN

interaction, M3Y—Paris, with the global quantum number
G = 20. The results of this calculation are also reported in

Table III, together with both the spherical calculation and the
experimental data for comparison. With such deformations,
the calculated α-decay half-lives decrease by a factor of 2–3
compared to the spherical calculations. It is concluded that,
owing to deformed barrier effects, the nuclear deformation
mainly affects the barrier penetration probability of the α

particle and hence decreases α-decay half-lives. Moreover,
the general trends of α-decay half-lives with neutron number,
shown in Fig. 5(b), are identical for both spherical and
deformed calculations.

Figures 5(a) and 5(b) show that the α-decay half-lives
increase as the value of Z decreases, which reflects the stability
gained by these nuclei when two protons are removed. An
obvious decrease that is not that prominent in the α-decay
half-lives for Cf and Fm nuclei exists around the parent neutron
number NP = 154. We may conclude that N = 152 is a
daughter-neutron submagic number. This is exactly the reason
why this decrease is not as prominent. It should be noted that
the effects of the deformed neutron shell at neutron number
N = 152 have been experimentally observed for a long time
[2,56,57]. Moreover, a deformed shell gap at N = 152 is
predicted by the macroscopic-microscopic approach [58], and
a recent experiment supported its existence at Z = 100 and
N = 152 [59]. The results shown in Figs. 5(a) and 5(b) are re-
ported in Table III. The table shows a good agreement between
the calculated α-decay half-lives and the experimental data.

C. Half-lives around the expected neutron
magic number N = 162

It is shown clearly in Figs. 1, 2, 5(a), and 5(b) that the cal-
culated α-decay half lives are in quite good agreement with the
experimental ones when the experimental Q values are used.
In this regard, we can extrapolate our calculations to a region of
nuclei where the experimental α-decay half-lives are unknown.
The α-decay energies Q were obtained from Ref. [54]. The
results for the calculated α-decay half-lives for different
isotopes of the Sg, Hs, and 110 nuclei with neutron number NP

are shown in Fig. 6 with two different values of the global quan-
tum number, G = 20 and 22. The calculated α-decay half-lives
were compared with the estimated values by the well-known
Viola-Seaborg semiempirical formula, which is given by

log10 Tα = (aZ + b) Q−1/2 + (cZ + d) , (35)

where the half-life Tα is in seconds, the Q value is in
megaelectronvolts, and Z is the atomic number of the parent
nucleus. Instead of using the original set of constants of Viola
and Seaborg, we used more recent values that were proposed
by Dong et al. [60] through a least-squares fit to even-even
nuclei between Z = 84 and Z = 110, with N > 126.

Figure 6 shows that the α-decay half-lives with G = 20
are in close agreement with the Viola-Seaborg values for all
isotopes. Moreover, the general trends of α-decay half-lives
that can be seen when we approach a magic number are clearly
shown in Fig. 6 around the parent neutron number NP = 164.
Thus, we may conclude that the daughter neutron number N =
162 is a magic number. Concerning the behavior of α-decay
half-lives with the number of protons, Fig. 6 shows an increase
in α-decay half lives by more than 103 when Z is reduced by
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FIG. 6. α-decay half-lives for different isotopes of the 106Sg,
108Hs, and 110 nuclei with the neutron number NP . Half-lives are
calculated using the M3Y—Paris NN interaction assuming spherical
daughter nuclei with G = 20 (solid line with filled symbols) and
G = 22 (solid line with open symbols) and compared with the
calculated half-lives from the Viola-Seaborg formula (dotted line
with open symbols).

two protons at Z = 110 and NP = 162. This factor is reduced
to about 102 at Z = 108. Therefore the number of protons
Z = 108 has more stability in our calculations.

D. Half-lives around the expected neutron
magic number N = 184

We now extend the same method to isotopes of superheavy
nuclei with Z = 112–120, where our results for the α-decay
half-lives are compared with those estimated from the Viola-
Seaborg formula in Fig. 7. We used the theoretical Q values
extracted from the difference in mass excesses based on the
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FIG. 7. The same as Fig. 6 but for superheavy nuclei with
Z = 112, 114, 116, 118, and 120. Q values are extracted from the
mass excesses, Eq. (36), based on the finite-range liquid drop model
(FRLDM) of Ref. [45].

finite-range liquid drop model, FRLDM [45], as follows:

Qth = M − (Mα + Md ) = 
M − (
Mα + 
Md ) , (36)

where M , Mα , Md , 
M , 
Mα , and 
Md are the atomic
masses and the atomic mass excesses of the parent nucleus,
the emitted α particle, and the residual daughter nucleus,
respectively, all expressed in units of energy.

The curves in Fig. 7 show an increase in the value of
the α-decay half-lives for all studied superheavy isotopes
at the parent neutron number NP = 188. A relatively strong
decrease occurs at NP = 184 and the values of the α-decay
half-lives are almost the same at NP = 186 and 188. It
should be noted that the existence of enhanced stability at
N = 184 is consistent with the suggested magic numbers in
the relativistic continuum Hartree-Bogoliubov theory (RCHB)
for all effective interactions used in Ref. [61]. The predicted
proton magic number Z = 114 is clear in Fig. 7 from the large

TABLE IV. Comparison between experimental α-decay half-lives [62–64] and results obtained with M3Y—Paris, M3Y—Reid, DDM3Y1,
and DDM3Y2 effective interactions using G = 22 for superheavy elements.

Parent nucleus T1/2 Expt.

Z A M3Y—Paris M3Y—Reid DDM3Y1 DDM3Y2 Q (MeV) T1/2

118 294 0.42 ms 0.41 ms 0.09 ms 0.06 ms 11.81 ± 0.06 0.89+1.07
−0.31 ms

116 292 27.53 ms 26.93 ms 5.92 ms 4.08 ms 10.80 ± 0.07 18+16
−6 ms

116 290 9.06 ms 8.86 ms 1.95 ms 1.35 ms 11.00 ± 0.08 7.1+3.2
−1.7 ms

114 288 0.51 s 0.50 s 0.11 s 0.08 s 10.09 ± 0.07 0.8+0.32
−0.18 s

114 286 0.10 s 0.10 s 0.02 s 0.016 s 10.35 ± 0.06 0.16+0.07
−0.03 s

112 284 16.68 s 16.31 s 3.58 s 2.47 s 9.35 ± 0.05 9.8+18
−3.8 s

110 270 43.99 µs 43.09 µs 9.87 µs 7.07 µs 11.24 ± 0.05 100+140
−40 µs

108 266 1.25 ms 1.22 ms 0.28 ms 0.20 ms 10.38 ± 0.02 2.3+1.3
−0.6 ms

108 264 0.40 ms 0.39 ms 0.09 ms 0.06 ms 10.59 ± 0.05 0.54 ± 0.3 ms

106 266 5.96 s 5.83 s 1.31 s 0.93 s 8.84 ± 0.02 25.7 ± X s
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TABLE V. The same as Table IV but with G = 20.

Parent nucleus T1/2 Expt.

Z A M3Y—Paris M3Y—Reid DDM3Y1 DDM3Y2 Q (MeV) T1/2

118 294 0.74 ms 0.73 ms 0.16 ms 0.11 ms 11.81 ± 0.06 0.89+1.07
−0.31 ms

116 292 48.70 ms 47.54 ms 10.61 ms 7.13 ms 10.80 ± 0.07 18+16
−6 ms

116 290 16.00 ms 15.62 ms 3.49 ms 2.35 ms 11.00 ± 0.08 7.1+3.2
−1.7 ms

114 288 0.90 s 0.88 s 0.20 s 0.13 s 10.09 ± 0.07 0.8+0.32
−0.18 s

114 286 0.18 s 0.18 s 0.04 s 0.03 s 10.35 ± 0.06 0.16+0.07
−0.03 s

112 284 29.64 s 28.94 s 6.45 s 4.34 s 9.35 ± 0.05 9.8+18
−3.8 s

110 270 76.37 µs 74.66 µs 17.32 µs 12.09 µs 11.24 ± 0.05 100+140
−40 µs

108 266 2.18 ms 2.13 ms 0.49 ms 0.34 ms 10.38 ± 0.02 2.3+1.3
−0.6 ms

108 264 0.69 ms 0.68 ms 0.16 ms 0.11 ms 10.59 ± 0.05 0.54 ± 0.3 ms

106 266 10.49 s 10.25 s 2.34 s 1.61 s 8.84 ± 0.02 25.7 ± X s

increase in the α-decay half-lives by reducing Z = 116 by two
protons. In this case the value of the α-decay half-life increases
by a factor of 1.4 × 106 at NP = 184, reflecting great stability
of the parent nucleus at Z = 114.

E. Sensitivity of superheavy half-lives to
the nucleon-nucleon force

Most recent calculations of α-decay half-lives use M3Y—
Reid or its density-dependent version, DDM3Y, given by
Eq. (9). The calculations are usually performed in the WKB
framework using two different approaches. The first approach,
the super asymmetric fission model [35,36,40,41], is based
on multiplying the NN force by a normalization factor
determined from the best fit to the experimental α-decay
half-lives. The second approach, the density-dependent cluster
model [8,9], determines the normalization factor λ in the
nuclear potential, Eqs. (12) and (18), by applying the Bohr-
Sommerfeld quantization condition [22]. In the present study,
we used the second approach and derived the α-nucleus
potential using four types of M3Y NN force.

In Tables IV and V, the α-decay half-lives of some
known superheavy nuclei [62–64] are shown for two choices
of the global quantum number G of the Bohr-Sommerfeld
quantization condition. The results obtained using Eqs. (3)
and (5) for the free NN interaction are labeled M3Y—
Paris in Tables IV and V, while M3Y—Reid represents the
results obtained using Eqs. (2) and (4). The density-dependent
NN interaction, DDM3Y1, calculations use Eqs. (2), (4),
and (6)–(8) in Eq. (18), while calculations performed with
density-dependent NN interaction, DDM3Y2, make use of a
power-law dependence on ρ through Eqs. (2), (4), and (9) in
Eq. (18).

One can see that the introduction of density dependence
in the NN interaction in the density-dependent cluster model
reduces the lifetimes by about an order of magnitude compared
to the free NN results. Also, comparing the α-decay half-lives
for some nuclei, listed in Tables IV and V and the corre-
sponding quantities calculated for the same nuclei in Ref. [36]
using the DDM3Y2 force within the super asymmetric fission

model, one concludes that the Bohr-Sommerfeld condition,
when applied to density-dependent NN interactions, reduces
the α-decay half-lives by about an order of magnitude [22].
Moreover, a good agreement exists between the calculations
of the α-decay half-lives with the free NN force as in
M3Y—Reid or M3Y—Paris and the experimental half-lives
of the superheavy nuclei listed in Tables IV and V. The
free NN force M3Y—Paris slightly enhances the α-decay
half-lives compared to the Reid version. The exponential form
of the density dependence, DDM3Y1, increases the α-decay
half-lives by a factor of about 1.5 compared to the DDM3Y2
NN force. Comparing the results of α-decay half-lives in
Tables IV and V, one observes that the half-lives are reduced
when the value of the global quantum number is increased from
G = 20 to G = 22. It should be pointed out that the change in
the global quantum number can be used to compensate for a
density-dependent interaction.

VI. SUMMARY AND CONCLUSION

Nuclear potentials have been calculated by the double-
folding model with an M3Y—Paris NN interaction with the
matter density distributions of a daughter nucleus and an
α particle. The Coulomb potential is also obtained from the
double-folding technique to be consistent with the microscopic
nuclear potential. In the framework of the WKB approxi-
mation, α-decay half-lives of heavy elements and SHEs are
calculated and compared with the experimental data. The
obtained α-decay half-lives agree reasonably well with the
available experimental data. Deformation of the daughter
nucleus reduces the calculated α-decay half-lives by a factor
of 2–3, compared to the spherical shape, and does not affect
the behavior of α-decay half-lives with neutron number.

The change in α-decay half-lives with neutron number
shows that shell effects play an important role in the behavior
of α-decay half-lives around magic numbers. The closer the
daughter nucleon number to the magic number, the greater the
decrease in the half-lives of the parent nuclei. The α-decay
calculations give the closed-shell effects of known spherical
magicities, Z = 82 and N = 126, and further predict enhanced
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stabilities at N = 152, 162, and 184, with Z = 100, 108, and
114, owing to the stability of parents nuclei against α decays.

Moreover, the study has been extended to the newly
observed superheavy nuclei. The α-decay half-lives of super-

heavy nuclei are sensitive to the input of density dependence
in the NN interaction of nucleons in the α particle and the
daughter nucleus, as the half-lives can decrease by an order of
magnitude compared to the results with a free NN interaction.
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(1979).

[21] R. G. Lovas, R. J. Liotta, A. Insolia, K. Varga, and D. S. Delion,
Phys. Rep. 294, 265 (1998).

[22] N. G. Kelkar and H. M. Castañeda, Phys. Rev. C 76, 064605
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