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Radiative strength functions in 163,164Dy
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The nuclei 163,164Dy have been investigated using the Oslo method on data from the pickup reaction
164Dy(3He,αγ )163Dy and the inelastic scattering 164Dy(3He,3He′γ )164Dy, respectively. The radiative strength
functions for both nuclei have been extracted, and a small resonance centered around Eγ ≈ 3 MeV is observed
in both cases. The parameters of this so-called pygmy M1 resonance (the scissors mode) are compared with
previous results on 160,161,162Dy using the Oslo method, and with data on 163Dy measured by the Prague group
using the two-step cascade method. In particular, the integrated reduced transition probability B(M1 ↑) of the
pygmy resonance is compared with neighboring dysprosium isotopes. We also observe an enhanced strength in
the region above Eγ ≈ 5 MeV in 164Dy. Possible origins of this feature are discussed.
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I. INTRODUCTION

A continuing effort has long been devoted to studying
γ decay from excited nuclei. The radiative strength function
(RSF) represents the mean value of the decay probability via
a γ ray with energy Eγ , and contains rich information on the
average electromagnetic properties of the nucleus.

For high-energy γ transitions (∼7–20 MeV), the RSF is
dominated by the giant electric dipole resonance (GEDR).
At lower energies other resonances have been discovered,
such as the giant magnetic dipole resonance (GMDR, also
called the giant magnetic spin-flip resonance) and the electric
quadrupole resonance; however, these have a significantly
lower strength [1]. In addition, there are other structures
observed in the RSF governed by various collective modes
of the nucleus. These structures are often referred to as pygmy
resonances because of their low strength compared to the
GEDR. There are two known pygmy resonances: the E1
resonance for γ ray energies between 5 and 10 MeV, which is
believed to stem from neutron skin oscillation [2], and the M1
resonance called the scissors mode, which is observed in the
region of Eγ = 3 MeV for rare-earth nuclei [3].

The RSFs below the neutron threshold have been studied
mainly by (γ, γ ′) experiments, also called nuclear resonance
fluorescence (NRF) [4]. Other methods, such as the two-step-
cascade (TSC) method [5] and the Oslo method [6], have also
successfully provided data on the RSFs for many nuclei. The
latter method enables us to extract the RSF for γ ray energies
up to the neutron binding energy Bn. This method has been
used in the present analysis.

Previous experiments have been performed on 160,161,162Dy
[7] using the Oslo method [6]. From these data, the widths
of the M1 pygmy resonance have been found to be about
two times greater than the width found for 163Dy obtained by
the Prague group using the TSC method [8]. In the present
work, we have studied 163,164Dy to investigate the discrepancy
between the measured widths. In particular, we have compared
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the total integrated strength B(M1 ↑) of all the mentioned Dy
isotopes.

Details about the experimental method are presented in
Sec. II, followed by the experimental results for the RSF in
Sec. III. Finally, conclusions are drawn in Sec. IV.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experiment was conducted at the Oslo Cyclotron
Laboratory (OCL), using a 38-MeV beam of 3He particles.
The target of 98.5% enriched 164Dy had a thickness of
1.73 mg/cm2, and the reactions 164Dy(3He,αγ )163Dy and
164Dy(3He,3 He′γ )164Dy were studied.

The γ rays and ejectiles were measured with the CACTUS
multidetector array [9], which consists of a sphere of 28
collimated NaI γ detectors with total efficiency of 15% of
4π , surrounding a vacuum chamber containing eight �E − E

Si particle telescopes with thicknesses of 140 and 1500 µm.
The particle telescopes were placed in the forward direction at
45◦ relative to the beam axis.

From the known Q values, the excitation energies of the
nuclei were calculated from the detected ejectile energy using
reaction kinematics. The particles and γ rays were measured
in coincidence; hence, each γ ray could be assigned to an
initial excitation energy of the nucleus. The γ ray spectra
were unfolded using the known response functions of the
CACTUS detector array [10]. The excited nuclei decayed
through a cascade of γ rays down to the ground state.
By using the first-generation method [11], we were able to
isolate the first (primary) γ rays emitted in each γ decay
cascade. The distribution of primary γ rays was found for
each excitation energy bin, giving an excitation energy vs
γ ray energy matrix denoted by P (Ei,Eγ ). The primary γ ray
spectrum was normalized to unity for each excitation energy
bin, which then represents the decay probability for each
γ ray with energy Eγ decaying from a certain excitation energy
Ei :

∑Ei

Eγ =Emin
γ

P (Ei,Eγ ) = 1. The primary γ ray matrix for
164Dy is shown in Fig. 1. The diagonal line of the matrix
corresponds to decay directly to the ground state (Eγ = Ei);
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FIG. 1. Primary γ -ray matrix for 164Dy, displaying primary
γ rays emitted at each initial excitation energy.

however, it is more probable to decay to the first excited 2+ and
4+ states. Therefore, a ridge is formed in the matrix for decay
to Ei ∼ 150 keV, see Fig. 1.

The original Brink-Axel hypothesis [12,13] states that
the GEDR can be built on every excited state, and that the
properties of the GEDR do not depend on the temperature of
the nuclear state on which it is built. This hypothesis can
be generalized to include any type of collective excitation.
Provided that this hypothesis is valid, the primary γ ray matrix
can be factorized as

P (Ei,Eγ ) ∝ T (Eγ )ρ(Ei − Eγ ), (1)

where P (Ei,Eγ ) is the experimentally obtained and normal-
ized primary γ ray matrix. The function T (Eγ ) represents
the radiative transmission coefficient, and ρ(Ei − Eγ ) is
the level density at the final energy Ef = Ei − Eγ . The above
factorization is based on the essential assumption that the
system is fully thermalized prior to γ emission, so the reaction
can be described as a two-stage process of which the first is
the formation of the compound nucleus, which subsequently
decays in a manner that is independent of the mode of
formation [14]. The formation of a complete compound state is
as fast as ∼10−18 s, significantly less than the typical lifetime of
a state in the quasicontinuum, which is ∼10−15 s. Therefore,
the assumption is believed to be reasonable, and the decay
process is at least mainly statistical. Recently, it has been
shown that Eq. (1) can be valid even in some cases where
full thermalization is not achieved [15].

However, there is experimental evidence that the Brink-
Axel hypothesis is violated for high temperatures (above
1–2 MeV). In particular, the width of the GEDR has been
shown to depend on the temperatures of the final states [16].
For our experimental conditions, the excitation energy (and
thus the temperature) is relatively low and changes slowly with
excitation energy (T ∼ √

Ef ). Therefore, we assume that the
radiative strength function does not depend on temperature in
the energy region under consideration.

The right-hand side of Eq. (1) is normalized to unity,
yielding

P (Ei,Eγ ) = T (Eγ )ρ(Ei − Eγ )∑
E′

γ =Emin
γ

T (E′
γ )ρ(Ei − E′

γ )
. (2)

Using this equation and applying a least-squares fit to the
primary γ ray matrix, a unique functional form of ρ(Ei − Eγ )
and T (Eγ ) is derived [6], while the normalization is yet
to be determined. There are infinitely many normalization
options that reproduce the experimental primary γ ray matrix.
All the solutions are related to each other through the two
transformations [6]

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ) (3)

and

T̃ (Eγ ) = B exp(α Eγ ) T (Eγ ), (4)

where A, B, and α are constants representing the absolute
values of ρ(Ei − Eγ ) and T (Eγ ), and the slopes of the two
functions, respectively. These parameters are determined by
normalizing Eqs. (3) and (4) to known experimental data.
The parameters A and α are identified by normalizing the
experimental level density to known levels found from discrete
spectroscopy at low energies. At higher excitation energies, the
experimental level density is normalized to the level density
determined from the known neutron resonance spacing data [1]
at the neutron binding energy Bn. The present experimental
data extend up to about Bn–1 MeV; an interpolation is thus
required to reach Bn. The back-shifted Fermi gas model
[17,18] was applied for this purpose:

ρbs(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σ
, (5)

where the constant η is applied to adjust ρbs(E) to the
semiexperimental level density at Bn. The intrinsic excitation
energy is given by U = E − C1 − Epair, where C1 is the
back-shift parameter equal to C1 = −6.6A−0.32 MeV, where
A represents the mass number. The pairing energy Epair is
based on the pairing gap parameters �p and �n evaluated
from odd-even mass differences [19] according to Ref. [20].
The parameter a = 0.21A0.87 MeV−1 corresponds to the level
density parameter. The spin-cutoff parameter σ is given
by σ 2 = 0.0888aT A2/3, where the nuclear temperature is
described by

T =
√

U/a. (6)

The normalization of ρ(Ei − Eγ ) for 164Dy is displayed in the
upper panel of Fig. 2.

Finally, T (Eγ ) is normalized by determining the coefficient
B, which gives the magnitude of T (Eγ ). We have the
following relation between the total radiative width of neutron
resonances 〈�γ 〉 at the neutron binding energy and the radiative
transmission coefficient T (Eγ ) [21]:

〈�γ 〉 = 1

4πρ
(
Bn, J

π
i

) ∑
Jπ

f

∫ Bn

0
dEγ BT (Eγ )ρ

(
Bn−Eγ , J π

f

)
,

(7)

where Di = 1/ρ(Bn, J
π
f ) is the average spacing of s-wave

neutron resonances. The summation and integration extends
over all final levels with spin Jf which are accessible by
γ radiation with energy Eγ .
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FIG. 2. Upper panel: Level density of 164Dy, normalized to known
discrete levels and to ρ(Bn) calculated from neutron resonance
spacing data, with an interpolation using the back-shifted Fermi gas
model. Lower panel: Radiative transmission coefficient of 164Dy with
extrapolations. The normalization is performed in the regions between
the arrows.

Due to methodological difficulties, T (Eγ ) cannot be deter-
mined experimentally for low-energy γ rays, Eγ < 1 MeV
[22]. In addition, the data suffer from poor statistics for
γ ray energies Eγ > Bn–1 MeV. We therefore extrapolate
T (Eγ ) with an exponential function, as demonstrated for
164Dy in the lower panel of Fig. 2. For further details of
the normalization procedure, see Ref. [22]. The parameters
used for normalizing ρ(Ei − Eγ ) and T (Eγ ) are given in
Table I.

Note that the uncertainties displayed in Fig. 2 only reflect
statistical uncertainties and do not include the uncertainties
related to the model used for normalization. This is also the
case for the other figures showing experimental data.

III. RADIATIVE STRENGTH FUNCTIONS

Assuming that γ decay taking place in the quasicontinuum
is dominated by dipole transitions (L = 1), the radiative
strength function can be calculated from the normalized
transmission coefficient by

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (8)
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FIG. 3. Normalized RSFs of 163,164Dy.

Using this relation, we obtain the experimental RSFs displayed
in Fig. 3. We observe that they are increasing functions of
γ energy, and we can easily identify the M1 pygmy resonance
in both cases. We expect the RFS to be composed of the pygmy
resonance, the giant electric dipole resonance (GEDR), and the
giant magnetic dipole resonance (GMDR). The Kadmenskiı̆-
Markushev-Furman (KMF) model [23] is employed to char-
acterize the E1 strength. In this model, an excitation-energy
dependence is introduced through the temperature of the final
states Tf , i.e.,

f KMF
E1 (Eγ ) = 1

3π2h̄2c2

0.7σE1Eγ �2
E1

(
E2

γ + 4π2T 2
f

)
EE1

(
E2

γ − E2
E1

)2 , (9)

where σE1, �E1, and EE1 denote the peak cross section,
width, and the centroid of the GEDR, respectively. In general,
the KMF model describes experimental data very well;
however, the temperature dependence violates the Brink-Axel
hypothesis. In line with the previously mentioned argument
that the temperature varies relatively little in our region
of interest, we have assumed that the temperature can be
considered to be constant. Thus, the Brink-Axel hypothesis is
revived.

It was found that a constant temperature of Tf = 0.3 MeV
gives a good fit to the experimental data, in agreement with
Ref. [7]. For deformed nuclei, the GEDR is split into two and
is therefore described as the sum of two strength functions
given by Eq. (9). The GMDR is thought to be governed by
the spin-flip M1 resonance [22] and can be described by a

TABLE I. Parameters used for normalizing ρ and T .

Nucleus Epair C1 a D σ (Bn) Bn ρ (Bn) Jt 〈�γ 〉 η

(MeV) (MeV) (MeV−1) (eV) (MeV) (MeV) (106 MeV−1) (meV)

163Dy 0 −1.293 17.653 62(5) 5.435 6.271 0.96(12) 0 112 0.52
164Dy 0.832 −1.291 17.747 6.8(6) 5.541 7.658 1.74(21) 5

2 113 0.56
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TABLE II. Parameters used for the radiative strength functions.

Nucleus E1
E1 σ 1

E1 �1
E1 E2

E1 σ 2
E1 �2

E1 EM1 σM1 �M1 β2

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

163Dy 12.37 278.50 3.17 15.90 139.04 5.12 7.51 1.49 4.00 0.300
164Dy 12.26 280.41 3.12 15.95 140.00 5.15 7.49 1.49 4.00 0.314

Lorentzian function:

fM1(Eγ ) = 1

3π2h̄2c2

σM1Eγ �2
M1(

E2
γ − E2

M1

)2 + E2
γ �2

M1

, (10)

where σM1, �M1, and EM1 give the peak cross section, width,
and the centroid of the GMDR, respectively. The GEDR and
GMDR parameters are taken from the systematics of Ref. [1]
calculated with the deformation parameter β2 [1]. The M1
pygmy resonance fpy is described by a Lorentzian function
similar to the one given in Eq. (10). All parameters are listed
in Table II.

The theoretical strength function is then given by

f = κ(fE1 + fM1) + fpy, (11)

where fE1, fM1, and fpy represent the contributions from the
GEDR, GMDR, and the M1 pygmy resonance, respectively.
The parameter κ is a normalization constant. Together with
the pygmy-resonance parameters σpy, �py, and Epy, κ is
used as a free parameter when performing a least-squares
fit to adjust the total theoretical strength to the experimental
data.

The fit to the experimental data points is shown in Fig. 4 for
both nuclei. The upper panels show the contributions κfE1

and κfM1 and the sum of these two contributions. In the
lower panels the sum κ(fE1 + fM1) is subtracted from the
experimental data, and the fit to the M1 pygmy resonance is
displayed. We notice that the fit to the experimental data around
the M1 pygmy resonance is good, especially for 163Dy. When
comparing the pygmy-resonance parameters of 163,164Dy (see
Table III) to those extracted for 160,161,162Dy reported in
Ref. [7], we find a smaller width of the pygmy resonance.
The previous measurements for 160,161,162Dy yielded widths
in the range of �py = 1.26–1.57 MeV using a constant
temperature of Tf = 0.3 MeV. In the present work, with
the same constant temperature, we find widths of �py =
0.86 and 0.80 MeV for 163Dy and 164Dy, respectively. The
nucleus 163Dy has been investigated earlier by the Prague
group, analyzing TSC spectra from the 162Dy(n, 2γ )163Dy

TABLE III. Fitted pygmy-resonance parameters and normaliza-
tion constants.

Nucleus Epy σpy �py κ

(MeV) (mb) (MeV)

163Dy 2.81(9) 0.72(12) 0.86(19) 1.78(14)
164Dy 2.81(6) 0.53(6) 0.80(12) 1.72(6)

reaction [8]. In their work, the width of the pygmy reso-
nance was reported to be �py = 0.6 MeV. For this specific
case (163Dy), the measured �py from the Oslo data and
the data from the Prague group are comparable within the
uncertainties.

We note from Fig. 4 that σM1 for 163Dy is significantly larger
than for 164Dy. The reason for this is not yet understood. To
obtain a more precise comparison, the total integrated strength
B(M1 ↑) given by

B(M1 ↑) = 9h̄c

32π2

(
σ�

E

)
M1 py

, (12)

is calculated for 160−164Dy, and the results are displayed in
Fig. 5. When calculating the weighted average of the Oslo
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FIG. 4. Experimental RSFs of 163Dy (left panels) and 164Dy
(right panels). The dashed lines in the uppermost panels show
the contributions from the giant dipole resonances multiplied by
κ; the solid line represents the sum of these two contributions,
κ(fE1 + fM1). The fit to the experimental data points in 164Dy
is performed up to Eγ = 5.3 MeV. In the lower panels, the sum
κ(fE1 + fM1) is subtracted from the experimental data, and the fit
to the M1 pygmy resonance is displayed (solid line).
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FIG. 5. (Color online) Integrated B(M1 ↑) strength of the pygmy
resonance for Dy isotopes measured with the Oslo method (filled
circles) and their average value (solid line). The TSC data point for
163Dy [8] is also displayed (filled square).

data, a value of 6.6(4)µ2
N is found.1 The B(M1 ↑) value from

the TSC experiment is not included in the fit, because no errors
are given in Ref. [8]. We observe that all the measured values
agree within the uncertainties.

For 164Dy, we observe an increase in the RSF compared
to theory for energies above Eγ ≈ 5.0 MeV. Similar features
have been observed in (γ, γ ′) experiments on other nuclei, e.g.,
116,124Sn [24] and 208Pb [25]. For these nuclei, the structure
is thought to be governed by the so-called neutron skin
oscillation, a collective mode of E1 character that for stable
nuclei is located in the region of Eγ = 5–10 MeV. This feature
has been observed in nuclei with a high neutron-to-proton
ratio N/Z and is interpreted as an oscillation of the neutron-
enriched periphery of the nucleus versus a core consisting of
equally many protons and neutrons, N = Z [2,26]. Enhanced
strength is also observed in the RSF of 117Sn measured at
OCL [27]. Unfortunately, the present experimental technique
cannot provide information on the electromagnetic character
of the enhanced strength in 164Dy. However, it might be a
reasonable guess that the observed strength stems from the E1
skin oscillation, since we note that Dy nuclei have a high
neutron-to-proton ratio of N/Z = 1.36–1.48 for the stable
isotopes. Evidence of both the M1 pygmy resonance and
the E1 pygmy resonance in one and the same nucleus has,
however, not been reported earlier.

Data on 160Dy from a previous experiment [7] also appear
to have excess strength, see Fig. 6. Unfortunately, the strength
function in the interesting region (Eγ > 7 MeV) suffers from

1The B(M1 ↑) values for 160,161,162Dy are calculated from
Ref. [6]. The values of 161,162Dy are the weighted averages of the
values obtained from the (3He,α) and (3He,3He′) reactions.
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poor statistics. However, this could be a hint that the same
feature is present in this nucleus.

IV. SUMMARY AND CONCLUSIONS

The nuclei 163,164Dy have been investigated using the Oslo
method. The radiative strength functions have been extracted,
displaying the M1 pygmy resonance. This resonance has been
studied in detail, and it is found that the measured widths are
smaller than what has previously been measured in other Dy
nuclei at OCL. However, the pygmy widths of 163,164Dy in the
present work are still larger than what has been measured for
163Dy by means of the TSC method. When comparing the total
integrated strength B(M1 ↑) of the M1 pygmy resonance, the
results for all the nuclei agree within the uncertainties.

For 164Dy, we have observed an excess of strength for Eγ >

5 MeV compared to model calculations; similar features can
also be seen in 160Dy. The enhanced strength might be due to
neutron skin oscillations. If that is the case, this is the first time
both the scissors mode and the neutron-skin oscillation mode
is seen in one and the same nucleus.
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