
PHYSICAL REVIEW C 81, 024321 (2010)

Shell model analysis of the neutrinoless double-β decay of 48Ca
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The neutrinoless double-β (0νββ) decay process could provide crucial information to determine the absolute
scale of neutrino masses, and it is the only one that can establish whether a neutrino is a Dirac or a Majorana
particle. A key ingredient for extracting the absolute neutrino masses from 0νββ decay experiments is a precise
knowledge of the nuclear matrix elements (NMEs) describing the half-life of this process. We developed a shell
model approach for computing the 0νββ decay NME, and we used it to analyze the 0νββ mode of 48Ca. The
dependence of the NME on the short-range correlation parameters, on the average energy of the intermediate
states, on the finite-size cutoff parameters, and on the effective interaction used for many-body calculations is
discussed.
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I. INTRODUCTION

Neutrinoless double-β (0νββ) decay, which can only occur
by violating the conservation of the total lepton number, if
observed, will unravel physics beyond the Standard Model
(SM) and will represent a major milestone in the study of
the fundamental properties of neutrinos [1–6]. Recent results
from neutrino oscillation experiments have convincingly
demonstrated that neutrinos have mass and they can mix [7–9].
Neutrinoless double-β decay is the most sensitive process to
determine the absolute scale of the neutrino masses, and the
only one that can distinguish whether a neutrino is a Dirac
or a Majorana particle. A key ingredient for extracting the
absolute neutrino masses from 0νββ decay experiments is a
precise knowledge of the nuclear matrix elements (NMEs)
for this process. Because most of the ββ decay emitters are
open-shell nuclei, many calculations of the NMEs have been
performed within the pnQRPA approach and its extensions
[10–21]. However, the pnQRPA calculations are very sensitive
to variation of the so-called gpp parameter (the strength of
the particle-particle interactions in the 1+ channel) [10–12],
and this drawback persists in despite various improvements
provided by its extensions [13–18], including higher-order
QRPA approaches [19–21]. The outcome of these attempts
was that the calculations became more stable against gpp

variation, but at present there are still large differences among
the values of the NMEs calculated with different QRPA-based
methods, which do not yet provide a reliable determination of
the two-neutrino double-β (2νββ) decay half-life. Therefore,
although the QRPA methods do not seem to be suited to
predict 2νββ decay half-lives, one can use the measured
2νββ decay half-lives to calibrate the gpp parameters, which
are further used to calculate the 0νββ decay NMEs [22].
Another method that recently provided NMEs for most
0νββ decay cases of interest is the Interacting Boson Model
(IBM) [23]. Given the novelty of these calculations, it
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remains to further validate their reliability by comparison with
experimental data.

Recent progress in computer power and numerical algo-
rithms and improved nucleon-nucleon effective interactions
have made possible large scale shell model calculations of
2νββ and 0νββ decay NMEs [24–26]. The main advantage
of large-scale shell model calculations is that they seem to be
less dependent on the effective interaction used, as far as these
interactions are consistent with the general spectroscopy of
the nuclei involved in the decay. Their main drawback is the
limitation imposed by the exploding shell model dimensions
on the size of the valence space that can be used. The most
important success of large-scale shell model calculations has
been the correct prediction of the 2νββ decay half-life for
48Ca [24,27]. In addition, these calculations did not have to
adjust any additional parameters, that is, given the effective
interaction and the Gamow-Teller quenching factor extracted
from the overall spectroscopy in the mass region (including
β decay probabilities and charge-exchange form factors), one
can reliably predict the 2νββ decay half-life of 48Ca.

Clearly, there is a need to check and refine these calculations
further, and to provide more details on the analysis of NMEs
that can be validated by experiments. We have recently
revisited [28] the 2νββ decay of 48Ca using two recently
proposed effective interactions for this mass region, GXPF1
and GXPF1A, and we explicitly analyzed the dependence
of the double-Gamow-Teller sum entering the NME on the
excitation energy of the 1+ states in the intermediate nucleus
48Sc. This sum was recently investigated experimentally [29],
and it was shown that, indeed, the incoherent sum (using only
absolute values of the Gamow-Teller matrix elements) would
provide an incorrect NME, validating our prediction. We have
also corrected by several orders of magnitude the probability
of transition of the ground state (g.s.) of 48Ca to the first excited
2+ state of 48Ti. Future experiments on double-β decay of 48Ca
(CANDLES [30] and CARVEL [31]) may reach the required
sensitivity of measuring such transitions, and our results could
be useful for planning these experiments.

In the present paper we continue our investigations of the
double-β decay of 48Ca, analyzing the 0νββ decay NME. 48Ca
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has the largest Qββ value, 4.271 MeV (the next largest is that
of 150Nd decay, 3.367 MeV), which could contribute to an
increased decay probability. In addition, the high-energy γ

and β radiation emitted in this process could help eliminate
most of the background noise. However, the small natural
abundance of this isotope, 0.187%, increases the difficulty
of an experimental investigation, although new, improved
separation techniques were recently proposed [32]. In addition,
previous calculations [26,33] suggest that its NME is smaller,
by a factor of 4–5, than those of other ββ emitters, such as
76Ge and 82Se [34]. Since these calculations were reported, it
was shown that the short-range correlations (SRCs) might not
have such a dramatic effect on the NME [35,36] as previously
thought, and it was also shown that higher-order terms in
the nucleon currents could be important [36]. In the present
paper we take into account all these new developments in
the analysis of the NME for 0νββ decay of 48Ca, and we
study the dependence of NME on the SRC parameters, on
the finite-size (FS) parameter, on the average energy of the
intermediate states, and on the effective interaction used for
many-body calculations.

II. THE NEUTRINOLESS DOUBLE-β DECAY
MATRIX ELEMENT

The 0νββ decay (Z,A) → (Z + 2, A) + 2e− requires the
neutrino to be a Majorana fermion, that is, it is identical to the
antineutrino. Considering only contributions from the light
Majorana neutrinos [6], the 0νββ decay half-life is given by

(
T 0ν

1/2

)−1 = G0ν
1 |M0ν |2

( 〈mββ〉
me

)2

. (1)

Here, G0ν
1 is the phase-space factor, which depends on the

0νββ decay energy, Qββ , and the nuclear radius. The effective
neutrino mass 〈mββ〉 is related to the neutrino mass eigenstates
mk via the lepton mixing matrix Uek:

〈mββ〉 =
∣∣∣∣∣
∑

k

mkU
2
ek

∣∣∣∣∣ . (2)

The NME, M0ν , is given by

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F − M0ν

T , (3)

where M0ν
GT, M0ν

F , and M0ν
T are the Gamow-Teller (GT), Fermi

(F), and tensor (T) matrix elements, respectively. These matrix
elements are defined as follows:

M0ν
α =

∑
m,n

〈0+
f |τ−mτ−nO

α
mn|0+

i 〉, (4)

where Oα
mn are 0νββ transition operators, α = (GT, F, T ),

|0+
i 〉 is the g.s. of the parent nucleus (in our case 48Ca), and

|0+
f 〉 is the g.s. of the granddaughter nucleus (in our case 48Ti).
Given the two-body nature of the transition operator, the

matrix element can be reduced to a sum of products of two-
body transition densities (TBTDs) and antisymmetrized two-

body matrix elements,

M0ν
α =

∑
jpjp′ jnjn′Jπ

TBTD(jpjp′ , jnjn′ ; Jπ )

×〈jpjp′ ; JπT |τ−1τ−2O
α
12|jnjn′ ; JπT 〉a, (5)

where Oα
12 are given by

OGT
12 = �σ1 · �σ2HGT(r),

OF
12 = HF (r), (6)

OT
12 = [3(�σ1 · r̂)(�σ2 · r̂) − �σ1 · �σ2]HT (r).

The matrix elements of Oα
12 for the jj coupling scheme

consistent with the conventions used by modern shell model
effective interactions are described in the Appendix.

To calculate the two-body matrix elements in Eq. (5) one
needs the neutrino potentials entering into the radial matrix
element 〈nl|Hα|nl′〉 in Eq. (A1). Following Ref. [36] and using
closure approximation, one gets

Hα(r) = 2R

π

∫ ∞

0
fα(qr)

hα(q2)

q + 〈E〉Gα(q2)qdq, (7)

where fF,GT(qr) = j0(qr) and fT (qr) = j2(qr) are spherical
Bessel functions, 〈E〉 is the average energy of the virtual
intermediate states used in the closure approximation, and the
form factors hα(q2) that include the higher-order terms in the
nucleon currents are

hF (q2) = g2
V (q2),

hGT(q2) = g2
A(q2)

g2
A

[
1 − 2

3

q2

q2 + m2
π

+ 1

3

(
q2

q2 + m2
π

)2
]

+ 2

3

g2
M (q2)

g2
A

q2

4m2
p

,

hT (q2) = g2
A(q2)

g2
A

[
2

3

q2

q2 + m2
π

− 1

3

(
q2

q2 + m2
π

)2
]

+ 1

3

g2
M (q2)

g2
A

q2

4m2
p

. (8)

The gV,A,M form factors in Eq. (8) can include nucleon FS
effects, which, in the dipole approximation, are given by

gV (q2) = gV(
1 + q2/�2

V

)2 ,

gM (q2) = (µp − µn)gV (q2), (9)

gA(q2) = gA(
1 + q2/�2

A

)2 .

Here gV = 1, gA = 1.25, (µp − µn) = 3.7, �V = 850 MeV,
and �A = 1086 MeV.

The SRCs are included via the correlation function f (r)
that modifies the relative wave functions at short distances,

ψnl(r) → [1 + f (r)]ψnl(r), (10)

where f (r) can be parametrized as [36]

f (r) = −ce−ar2
(1 − br2). (11)

024321-2



SHELL MODEL ANALYSIS OF THE NEUTRINOLESS . . . PHYSICAL REVIEW C 81, 024321 (2010)

Recently, the UCOM method of including SRCs [37]
was used for analyzing 0νββ decay matrix elements [36,38].
Reference [36] indicates that the UCOM SRC eliminates the
effects of the FS, and in addition, it slightly violates some
general properties of the Fermi and Gamow-Teller matrix
elements (see, e.g., Ref. [36], p. 3). We decided not to include
the UCOM SRCs in our analysis. The radial matrix elements
of Hα between relative harmonic oscillator wave functions
ψnl(r) and ψn′l′(r), 〈nl|Hα(r)|n′l′〉, become∫ ∞

0
r2drψnl(r)Hα(r)ψn′l′(r)[1 + f (r)]2. (12)

Although the neutrino potentials are quite close to a
Coulomb potential, the integrands in Eq. (7) are strongly
oscillating, and the integrals require special numerical treat-
ment. Having calculated the two-body matrix elements, we
developed a shell model approach for computing the many-
body matrix elements for 0νββ transition, Eq. (5). This
approach is briefly described in the Appendix.

Reference [39] reports a QRPA decomposition of the NME
of 100Mo on the spin and parity of the intermediate states,
and contemplating the large contribution of the negative-
parity states in this case, it suggests that the shell model
calculations would underestimate the NME because of the
limited valence spaces they can use. In particular, in our
case we limit ourselves to the pf model space in which
one cannot construct any negative-parity state in the intermedi-
ate nucleus, 48Sc. We can show, however, that under the reason-
able assumption that 40Ca is a good core, and considering only
0h̄ω correlations in the g.s. wave functions of 48Ca and 48Ti, the
contribution of the negative states in the intermediate nucleus
is zero. For example, assuming that nucleons from the sd shell
can be excited in the odd-odd nucleus 48Sc, using the isospin
symmetry, the closure condition, and the two-body nature of
the 0νββ transition operators Oα , one could get an additional
contribution to the pf part of the NME of the form

〈0+
f T = 2|Oα(1h̄ω)|0+

f T = 4〉, (13)

where

Oα(1h̄ω) =
∑

Õα
f df d [(a†

f ãf )tf (a†
d ãd )td ]�T . (14)

Here the index f labels pf states, and the index d labels sd

states. Because the sd core is completely filled up in both
the initial and the final wave function, the sd particle-hole
product in Eq. (14) can only couple to td = 0, and therefore in
Eq. (14) �T = tf � 1. One can conclude that this additional
contribution is zero, because it cannot account for the �T = 2
transition between the initial and the final state. Under our
assumptions, similar contributions from other major shells are
also zero. Including weak 2h̄ω contributions in the initial and
the final g.s. wave functions would result in small contributions
from the negative-parity states in the intermediate nucleus, but
these contributions would require a renormalization of the
pf part of the effective interaction, and a direct comparison
with the present results would be rather difficult. We plan
to investigate these effects further and report the results in a
forthcoming publication.
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FIG. 1. (Color online) Comparison of neutron and proton occu-
pation probabilities between the GXPF1 interaction and the FPD6
interaction.

III. RESULTS

In this study of the 0νββ decay NME we used five different
effective interactions available for the shell model description
of the pf -shell nuclei: GXPF1 [40], GXPF1A [41], KB3
[42], KB3G [43], and FPD6 [44]. These effective interactions
were constructed starting from a G matrix [45] in the pf

shell, which was further adjusted to describe some specific
(but different) sets of experimental energy levels of some
pf -shell nuclei. Although their matrix elements are quite
different, their predictions of the spectroscopic observables
around A = 48 are not very far apart. Recent experimental
investigations [46,47] of the nucleon occupation probabilities
in 76Ge and 76Se and the subsequent theoretical analysis

TABLE I. Neutron and proton occupation probabilities for nuclei
involved in the decay.

Nucleus (N/P) Interaction 0f7/2 1p3/2 0f5/2 1p1/2

48Ca N GXPF1 7.883 0.073 0.033 0.011
48Ti N GXPF1 5.545 0.237 0.167 0.051
48Ti P GXPF1 1.846 0.110 0.033 0.011

48Ca N GXPF1A 7.892 0.067 0.032 0.009
48Ti N GXPF1A 5.535 0.248 0.168 0.048
48Ti P GXPF1A 1.839 0.119 0.032 0.010

48Ca N KB3 7.800 0.0706 0.105 0.024
48Ti N KB3 5.422 0.266 0.248 0.064
48Ti P KB3 1.770 0.120 0.089 0.022

48Ca N KB3G 7.795 0.070 0.112 0.024
48Ti N KB3G 5.416 0.260 0.263 0.061
48Ti P KB3G 1.763 0.120 0.097 0.021

48Ca N FPD6 7.693 0.161 0.117 0.029
48Ti N FPD6 5.253 0.369 0.310 0.068
48Ti P FPD6 1.673 0.196 0.101 0.031
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TABLE II. Parameters for the short-range correlation
(SRC) parametrization of Eq. (11).

SRC a b c

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

[36,48] highlighted the relevance of these observables for
obtaining an accurate description of the nuclear structure of
the nuclei involved in double-β decay. Figure 1 compares the
neutron and proton occupation probabilities in 48Ca and 48Ti
for two different effective interactions, GXPF1 and FPD6.
One can see very small differences between the results of
the two interactions. One can come to the same conclusion
when comparing similar occupation probabilities for all five
interactions reported in Table I.

In the present calculations we considered both SRC effects
and FS effects. Although the radial dependence of the neutrino
potential is very close to that of a Coulomb potential, many
previous calculations [25,26,33,34] took into account the SRC
missing in the two-body-product wave functions, via the
Jastrow-like parametrization described in Eqs. (10)–(12). Until
recently, the parameters a, b, and c used were those proposed
by Miller and Spencer [49], which have the effect of decreasing
the NME by about 30%. Recently, [36] the SRC effects were
revisited, using modern nucleon-nucleon interactions, such as
CD-Bonn and AV18, and it was found that the decrease in the
relative wave functions at short distances is compensated by a
relative increase at longer distances, and the overall NMEs do
not change very much compared with the NMEs without SRC
effects. Reference [36] proposed a parametrization of these
results in terms of similar Jastrow-like correlation functions
as in Eqs. (10) and (11); the corresponding parameters are
listed in Table II. In addition, Ref. [35] introduced an effective
0νββ operator that takes into account the SRC effects and
the contribution of the missing shells from the valence space

FIG. 2. (Color online) Dependence of the NME on the effective
interaction used and the short-range correlation (SRC) model. M-S,
Miller-Spencer.

TABLE III. Different contributions to the NME for the
GXPF1A interaction with 〈E〉 = 7.72 MeV.

SRC M0ν
GT M0ν

F M0ν
T M0ν

None 0.556 −0.219 −0.015 0.711
Miller-Spencer 0.465 −0.141 −0.014 0.570
CD-Bonn 0.688 −0.222 −0.014 0.845
AV18 0.634 −0.204 −0.014 0.779

using the general theory of effective interactions [45] and
found that the NME for the 0νββ decay of 82Se did not
change significantly compared with the result of the “bare”
operator.

Figure 2 shows our NMEs for all five effective interactions,
for all three SRC sets of parameters listed in Table II, and
for no SRC. One can see that the preceding semiquantitative
analysis is reflected in the dependence of the NME on the
choice of SRC. The results do not show significant dependence
on the effective interaction used, although one can see a
20% spread of NMEs for the same choice of SRC. All
NMEs reported here contain the higher-order terms described
in Eqs. (7)–(9). A comparison with the NMEs calculated
without the higher-order terms in the potential will be reported
elsewhere. To be consistent [50] with the calculation of the
phase factor G0ν

1 , we used R = 1.2A1/3 fm in Eq. (7). Our
choice for the h̄ω parameter entering the harmonic oscillator
wave functions was 45A−1/3 − 25A−2/3, which was shown to
provide a better shell model description of observables than
the simple 41A−1/3 ansatz. Table III lists the GT, F, and T
contributions to the overall NMEs for all SRC choices, when
the GXPF1A interaction was used. One can see that all these
contributions add coherently in Eq. (3) and that the tensor
contribution is negligible in all cases.

Figure 3 shows the dependence of the NMEs of the average
energy of the intermediate states. Varying 〈E〉 from 2.5 to
12.5 MeV, one gets less than 5% variation in the NME. This

M
0

FIG. 3. (Color online) Dependence of the NME on the average
energy of the intermediate states 〈E〉 for the GXPF1A interaction.
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FIG. 4. (Color online) Dependence of the NME on the axial cutoff
parameter �A for the GXPF1A interaction.

result suggests that the closure approximation is quite good,
although a direct study might be necessary to determine the
exact magnitude of the error. All other NME results reported
here used 〈E〉 = 7.72 MeV. Figure 4 shows the dependence of
the NME of the axial cutoff parameter �A, with �V kept fixed
at 850 MeV. The variation is within 5%, indicating a weak
dependence of the FS cutoff parameters. The FS effects were
implemented via the cutoff parameters �V and �A in the form
factors given in Eq. (9). In most of our results, except those in
Fig. 4, we use the same FS cutoff parameters as in Refs. [6]
and [36], that is, �V = 850 MeV and �A = 1086 MeV. In
Fig. 4 we present the dependence of the NME on �A, with
�V kept at its nominal value. As with the 〈E〉 dependence, the
results vary by less than 5%.

Similar, but less complete, results on the 0νββ decay of 48Ca
were recently reported in Refs. [33] and [38], and Ref. [38]
reports the 48Ca NMEs including the higher-order terms in the
nucleon currents, but only for the KB3 interaction and without
the new SRC models of Ref. [36]. Reference [33] reports
results for three effective interactions, but without including
the higher-order terms in the nucleon currents or the new SRC
models of Ref. [36]. For cases where we use similar models,
our results seem to be consistent with those of Refs. [33]
and [38].

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have presented a new shell model
analysis of the NMEs for neutrinoless double-β decay of
48Ca. We included in the calculations the recently proposed
higher-order terms of nucleon currents, three old and recent
parametrizations of the SRC effects, FS effects, and effects
of changing the average energy of the intermediate states.
We also treated carefully the few other parameters entering
into the calculations. We found very small variation in the
NMEs with the average energy of the intermediate states or FS
cutoff parameters and moderate variation versus the effective
interaction and SRC parametrization. We have also shown that
if the g.s. wave functions of the initial and final nucleus can be

accurately described using only pf orbitals, the contribution
from the negative-parity states of the intermediate nucleus 48Sc
can be neglected.

Our overall average NME using all values presented in
Fig. 2 is 0.86, although elimination of the Miller-Spencer SRC
parametrization would significantly increase this value. We
estimate the error owing to the effects studied here to be about
18%. Using the present value of the NME and the recom-
mended [50] phase-space factor G0ν

1 = 6.5 × 10−14 yr−1, one
can conclude that a future measurement of the 0νββ decay
half-life of 1026 yr, which seems to be the limit imposed by
the present energy resolution of the CANDLES detector [32]
(see also Fig. 21 in Ref. [51]), could detect a neutrino mass
〈mββ〉 of about 230 ± 45 meV. New improvements in detector
technology could further reduce this limit.

We believe that our analysis has covered the most important
effects relevant to the accuracy of the NME for the double-β
decay of 48Ca. The successful prediction of the 2νββ decay
half-live of 48Ca using the shell model approach in the same
model space suggests that the 0νββ decay half-life could
be reliably predicted. Our analysis indicates that closure
approximation is accurate at the level of 5% error. However,
a direct comparison with the sum on intermediate states,
calculated within the shell model, would be more reassuring.

As in all other 0νββ decay calculations reported so far, no
quenching factors have been used. This is probably the least
investigated potential effect on the 0νββ decay NME. It is
possible that the GT-like operators are quenched even if they
have finite range. No definitive conclusion exists about these
effects, although Ref. [35] seems to indicate that they might
not play a major role. One could try gaining some insight
into this problem by investigating the fictitious 0νββ decay of
a light nucleus, such as 16Be, and by increasing the valence
space one could study the changes in different contributions to
the NME.
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APPENDIX

The matrix element of Oα
12 for nonantisymmetrized jj -

coupling two-particle states can be decomposed into products
of reduced matrix elements of the spin, relative, and center of
mass operators,

〈n1l1j1, n2l2j2; JπT =1|Oα
12|n′

1l
′
1j

′
1, n

′
2l

′
2j

′
2; JπT = 1〉

=
∑
Sλ

〈
l1

1

2
(j1), l2

1

2
(j2)

∣∣∣∣∣1

2

1

2
(S), l1l2(λ)

〉
J

×
〈
l′1

1

2
(j ′

1), l′2
1

2
(j ′

2)

∣∣∣∣∣1

2

1

2
(S), l′1l

′
2(λ)

〉
J

× 1√
(2S + 1)

〈
1

2

1

2
; S‖S(0)

α ‖1

2

1

2
; S

〉
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×
∑

nn′lNL

〈nl,NL|n1l1, n2l2〉λ

×〈n′l, NL|n′
1l

′
1, n

′
2l

′
2〉λ〈nl|Hα(r)|n′l〉,

(A1)

where〈
l1

1

2
(j1), l2

1

2
(j2)

∣∣∣∣∣1

2

1

2
(S), l1l2(λ)

〉
J

=
√

(2j1 + 1)(2j2 + 1)(2S + 1)(2λ + 1)

⎛
⎜⎝

l1
1
2 j1

l2
1
2 j2

λ S J

⎞
⎟⎠

(A2)

and the last factor is a 9j symbol. As mentioned in the text,
the order of the spin-orbit coupling must be consistent with
the convention considered in the derivation of the effective
interaction used for the many-body calculations (�l + �s in most
cases). The reduced spin matrix elements are〈

1

2

1

2
S‖�σ1 · �σ2‖1

2

1

2
S

〉
= √

2S + 1 [2S(S + 1) − 3] ,

(A3)〈
1

2

1

2
S‖1‖1

2

1

2
S

〉
= √

2S + 1.

The expressions for the matrix elements of the tensor
operator will be given elsewhere. Our calculations show that
the tensor term makes a small contribution to the NME in
most cases. The higher-order terms in the nucleon currents,
however, decrease the overall NME by about 20%–25%. The
antisymmetrized form of the two-body matrix elements can be
obtained using

〈jpjp′ ; JπT |t−1t−2O
α
12|jnjn′ ; JπT 〉a

= 1√(
1 + δjpj ′

p′

)(
1 + δjnjn′

)
× [〈jpjp′ ; JπT |t−1t−2O

α
12|jnjn′ ; JπT 〉

− (−1)jn+jn′+J 〈jpjp′ ; JπT |t−1t−2O
α
12|jn′jn; JπT 〉].

(A4)

Having the two-body matrix elements ready, one can calculate
the NME in Eq. (5) if TBTD(jpjp′ , jnjn′ ; Jπ ) values are
known. Most of the shell model codes do not provide TBTDs.
One alternative approach is to take advantage of the isospin
symmetry that most of the effective interactions have, which
creates wave functions with good isospin. The approach
described here also works when the proton and neutron
are in different shells. If these conditions are satisfied, one
can transform the two-body matrix elements of a �T = 2

operator using the Wigner-Eckart theorem, from �Tz = −2 to
�Tz = 0, which can be further used (see below) to describe
transitions between states of the same nucleus. Denoting〈

O�T =2
�Tz=−2

〉 = 〈T = 1 Tz = −1|O�T =2
�Tz=−2|T = 1 Tz = 1〉,

(A5)

one gets for �Tz = 0 the two-body matrix elements

〈pp|O�T =2
�Tz=0|pp〉=〈nn|O�T =2

�Tz=0|nn〉
= 〈

O�T =2
�Tz=−2

〉×C1 2 1
1 0 1

/
C1 2 1

1 −2 −1, (A6)

and

〈pn T = 1|O�T =2
�Tz=0|pn T = 1〉

= 〈
O�T =2

�Tz=−2

〉 × C1 2 1
0 0 0

/
C1 2 1

1 −2 −1, (A7)

where C1 2 1
Tzi �Tz Tsf

are isospin Clebsch-Gordan coefficients. The
transformed matrix elements in Eqs. (A6) and (A7) preserve
spherical symmetry and they can be used as a piece of a
Hamiltonian, Hα

ββ , that violates isospin symmetry.
One can then lower by 2 units the isospin projection of

the g.s. of the parent nucleus that has the higher isospin
T>, 48Ca in our case, thus becoming an isobar analog state
of the granddaughter nucleus that has isospin T< = T> − 2,
48Ti in our case. Denoting by |0+

i< T>〉 the transformed state,
one can now calculate the many body-matrix elements of the
transformed 0νββ operator,

M0ν
α (Tz = T<) = 〈0+

f T<|Hα
ββ |0+

i< T>〉. (A8)

Choosing |0+
i< T>〉 as a starting Lanczos vector and

performing one Lanczos iteration with Hα
ββ , one gets

Hα
ββ |0+

i< T>〉 = a1|0+
i< T>〉 + b1|L〉, (A9)

where |L1〉 is the new Lanczos vector. Then one can calculate
the matrix elements in Eq. (A8):

M0ν
α (Tz = T<) = b1〈0+

f T<|L1〉. (A10)

The transition matrix elements in Eq. (5) can then be
recovered using, again, the Wigner-Eckart theorem,

M0ν
α = M0ν

α (Tz = T<) × C
T> 2 T<

T> −2 T<

/
C

T> 2 T<

T< 0 T<
. (A11)

Although it looks complicated, this procedure is rather easy
to implement. The transformation of the g.s. of the parent to
an analog state of the granddaughter can be performed very
quickly, and one Lanczos iteration represents a small load
compared with the calculation of the g.s. of the granddaughter.
The additional calculations described in Eqs. (A8)–(A10)
require smaller resources than those necessary to calculate
the TBTDs. This procedure has the advantage that it can
be implemented using public shell model codes, such as
Antoine [52].
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