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Large-scale second random-phase approximation calculations with finite-range interactions
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Second RPA (SRPA) calculations of nuclear response are performed and analyzed. Unlike in most other
SRPA applications, the ground state, approximated by the Hartree-Fock (HF) ground state, and the residual
couplings are described by the same Hamiltonian and no arbitrary truncations are imposed on the model space.
Finite-range interactions are used and thus divergence problems are not present. We employ a realistic interaction,
derived from the Argonne V18 potential using the unitary correlation operator method (UCOM), as well as the
simple Brink-Boeker interaction. Representative results are discussed, mainly on giant resonances and low-lying
collective states. The focus of the present work is not on the comparison with data, but rather on technical
and physical aspects of the method. We present how the large-scale eigenvalue problem that SRPA entails can
be treated, and demonstrate how the method operates in producing self-energy corrections and fragmentation.
The so-called diagonal approximation is conditionally validated. Stability problems are traced back to missing
ground-state correlations.
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I. INTRODUCTION

Extended RPA theories such as second RPA (SRPA) [1],
which go beyond first-order RPA, are often used to describe
the strength, decay width, and fine structure of nuclear giant
resonances (GRs) and other collective low-lying states. They
also appear particularly useful in the case of unitarily trans-
formed realistic interactions, which have not been calibrated
for first-order RPA methods, but rather rely on extended model
spaces to provide converged results. Such interactions also
make “self-consistent” extended-RPA applications possible,
in the sense that the ground state and the residual couplings
can be described by the same Hamiltonian. First applications
using a renormalized Argonne V18 potential, derived with
the unitary correlation operator method (UCOM) [2,3], were
presented in Ref. [4].

Self-consistent extended-RPA applications in large spaces
without arbitrary truncations can be envisioned, in principle,
with any properly constructed finite-range effective interac-
tion. However, they are hardly ever performed for various
technical and conceptual reasons. Phenomenological effective
interactions are fitted to sets of experimental data using mostly
Hartree-Fock(–Bogoliubov) and selected (quasiparticle) RPA
results. Their range of applicability is then restricted to the
selected observables and many-body methods. Zero-range
effective interactions, which greatly simplify numerical ap-
plications, cannot be employed in second-order RPA methods
because they do not provide a natural cutoff in momentum
space. Consequently, no effective interactions have been fitted
to calculations beyond first-order RPA and consistency in
the treatment of the ground and excited states is ordinarily
abandoned in practical applications of such methods.

It is the purpose of the present work to perform and
analyze large-scale (i.e., without arbitrary truncations), “self-
consistent” (i.e., with a single interaction as the sole input)
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SRPA calculations. We employ mostly the VUCOM interaction
used in Ref. [4]. It is derived from the Argonne V18 potential
by means of a unitary transformation, which renormalizes it,
while preserving the phase shifts and retaining the complex
structure of the realistic interaction. We also use the Brink-
Boeker interaction, VBB [5], which is a simple, central,
phenomenological effective interaction. No explicit three-
body force is used at this point. We will not focus on producing
realistic results and comparing them with data, as was done
in Ref. [4], but rather on technical and physical aspects
of the method. We present how the large-scale eigenvalue
problems that SRPA involves can be treated, demonstrate how
the method operates in producing self-energy corrections and
fragmentation, and discuss consistency and stability problems.

In Sec. II we present the SRPA formalism, and in Sec. III the
methods we have used to solve the SRPA eigenvalue problem.
In Sec. IV we discuss our results with the help of illustrative
examples. We conclude in Sec. V.

II. SECOND RPA FORMALISM

In the following we assume a nuclear Hamiltonian consist-
ing, in general, of a one-body part and a two-body part,

H = H1 + H2.

Three-body terms are not included. If the total Hamiltonian is
considered, then

H1 = T = 1

2m

A∑
i=1

p2
i

is the total kinetic energy, while H2 = V contains the
interactions of particle pairs. If the intrinsic Hamiltonian
is considered, then H1 = 0 and H2 = Tint + V includes the
intrinsic kinetic energy of the system,

Tint = 1

2mA

∑
i<j

( �pi − �pj )2.
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We will employ the SRPA as it was formulated in Ref. [6]
in analogy to RPA. The derivation is based on the equations-
of-motion method and relies on a quasiboson approximation.
We will consider closed-(sub)shell spherical nuclei and their
excited states of definite angular momentum and parity Jπ .
Excited states are expanded in the space of particle-hole (ph)
and two-particle–two-hole (2p2h) configurations. The symbol
p (or h) will represent all the quantum numbers of a particle
(hole) state except the magnetic quantum number mp (mh),
that is, the set of quantum numbers {np(h)�p(h)jp(h)tp(h)} of the
nodes (n = 0, 1, . . .), orbital angular momentum, total angular
momentum, and isospin. The combined label (�j )α = jα +
�α − 1/2 is used to label the �j combination uniquely; then � =
[(�j + 1)/2] and j = [�j/2] + 1/2 (where [x] is the integer
part of x). The Greek letters α, β, . . . will be used to denote
single particle states of either kind (p or h).

The operator Q
†
λ that creates an excited state |λ〉 of energy

Eλ = h̄ωλ with respect to the 0+ ground state |0〉 and of angular
momentum JM ,

|λ; JM〉 = Q
†
λ;JM |0〉, Qλ;JM |0〉 = 0, (1)

is written as

Q
†
λ;JM =

∑
ph

X
λ;JM
ph OJM†

ph − (−1)J+M
∑

ph

Y
λ;JM
ph OJ−M

ph

+
∑

p1�p2,h1�h2;Jp,Jh

X λ;JM
p1h1p2h2JpJh

OJM†

p1h1p2h2JpJh

− (−1)J+M
∑

p1�p2,h1�h2

Yλ;JM
p1h1p2h2JpJh

OJ−M
p1h1p2h2JpJh

, (2)

where OJM†

ph creates a ph state and OJM†

p1h1p2h2JpJh
creates a

2p2h state, coupled to the given quantum numbers; see the
Appendix, Eqs. (A1) and (A2).

The 2p2h state (and the corresponding creation operator) is
characterized, besides JM , by Jp and Jh, the angular momenta
to which the two particle states and the two hole states,
respectively, are coupled. The same holds for the amplitudes
X , Y . Henceforth the indices JM and Jp, Jh will be omitted,
but implied throughout.

In order to avoid multiple counting of configurations, an
ordering of the single-particle states is introduced and only the
operators with p1 � p2, h1 � h2 are included in the expansion
(2). For example, the present convention is that α < β if tα <

tβ , or, for states of the same isospin, if (�j )α < (�j )β , or, when
all other quantum numbers are the same, if nα < nβ .

The SRPA ground state, which formally is the vacuum
of the annihilation operators Qλ, is approximated with the
Hartree-Fock (HF) ground state. The latter is the Slater
determinant that minimizes the expectation value of the
given Hamiltonian, H = H1 + H2. The forward (X, X ) and
backward (Y , Y) amplitudes are the solutions of the SRPA
equations in ph⊕2p2h space

⎛
⎜⎝

A A12 B 0
A21 A22 0 0
−B∗ 0 −A∗ −A∗

12
0 0 −A∗

21 −A∗
22

⎞
⎟⎠
⎛
⎜⎜⎝

Xλ

X λ

Y ν

Yλ

⎞
⎟⎟⎠ = Eλ

⎛
⎜⎜⎝

Xν

X λ

Y ν

Yλ

⎞
⎟⎟⎠ . (3)

The vanishing blocks are due to the choice of ground
state. A and B are the usual N1 × N1 RPA matrices (N1

the number of ph configurations). The N1 × N2 submatrix
A12 (N2 the number of 2p2h configurations) describes the
coupling between ph and 2p2h states, while the N2 × N2

matrix A22 contains the 2p2h states and their interactions.
The angular momentum-coupled expressions for the SRPA
submatrices are given in the Appendix, Eqs. (A3)–(A6). We
note that the matrix elements of A12 have two direct terms
describing the free propagation of a particle (hole) while the
hole (particle) interacts with an intermediate ph state (plus
exchange terms). Thus, self-energy corrections via bubble
diagrams are introduced either to a particle or a hole state,
or a ph excitation is exchanged between a particle and a hole
state.

If we neglect the coupling amongst the 2p2h states, A22

becomes diagonal and its elements are determined by the
unperturbed 2p2h energies (diagonal approximation),

[A22]p1h1p2h2,p′
1h′

1p′
2h′

2

= δp1p′
1
δh1h′

1
δp2p′

2
δh2h′

2
(ep1 + ep2 − eh1 − eh2 ). (4)

The diagonal approximation, although questionable in general,
is worth examining since it greatly simplifies calculations. Its
validity is tested in Sec. IV A.

As long as we are interested only in the single-particle
response, determined by the ph amplitudes, Xλ and Yλ, we
may eliminate the X λ, Yλ amplitudes from Eq. (3) and reduce
the SRPA problem to an energy-dependent eigenvalue problem
of the dimension of the RPA matrix [7],(

A(Eλ) B

−B∗ −A∗(−Eλ)

)(
Xλ

Yλ

)
= Eλ

(
Xλ

Yλ

)
. (5)

In general, the expression for Aphp′h′ (E) will involve the inverse
of [(E + iη2)IN2 − A22], where IN2 is the N2 × N2 identity
matrix. Within the diagonal approximation we have simply

Aphp′h′(E)

= Aphp′h′ +
∑

p1p2h1h2

[A12]ph;p1p2h1h2

[
AT

12

]
p1p2h1h2;p′h′

E − (ep1 + ep2 − eh1 − eh2 ) + iη2
.

(6)

A finite constant η2 > 0 is used in applications to smoothen
the poles of the function and to introduce a width to the 2p2h
states.

A. Quantities of interest

The quantities of interest are transition strength distribu-
tions, or strength functions, RF (E) of transition operators F †,

RF (E) =
∑

λ

|〈λ|F †|0〉|2δ(E − Eλ) (7)

≡
∑

λ

BF (Eλ)δ(E − Eλ), (8)

and their energy moments,

mk =
∑

λ

Ek
λBF (Eλ), (9)
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determined, in general, by the amplitudes X, Y , X , and Y
through

〈λ|F †|0〉 =
∑

ph

[
fphX

λ
ph

∗ − f̃phY
λ
ph

∗]

+
∑

p1p1h1h2

[
fp1p2h1h2X λ

p1p2h1h2

∗ − f̃p1p2h1h2Yλ
p1p2h1h2

∗]
,

(10)

where the coefficients f , f̃ depend on the operator and ground
state. Centroid energies can be defined as

Ē ≡ m1/m0, (11)

where the sums mk may be evaluated over the whole spectrum
[unrestricted summations in Eq. (9)], or only in the energy
region of a resonance. The width of a distribution or a
resonance can be expressed as


 ≡
√

m2

m0
− Ē2. (12)

Smoothened strength functions can be produced, for pre-
sentation purposes, by folding the discrete strength functions
with a Lorentzian of width �, which yields

RF (E) = 1

2π

∑
λ

BF (Eλ)
�

(E − Eλ)2 + �2/4
. (13)

In the limit � → 0, Eq. (8) is recovered.
We will consider IS and IV transitions of definite spin

and parity Jπ , described by standard single-particle transition
operators [8]. Then, for the HF ground state, we have

BF (Eλ) = 1

2J + 1

∣∣∣∣∣∣
∑

ph

[
Xλ

ph
∗ + (−1)J Y λ

ph
∗]〈p||F ||h〉

∣∣∣∣∣∣
2

. (14)

The two-body X , Y amplitudes do not contribute. The energy
moments m0 and m1 will be the same in SRPA as in RPA [9].
A (2J + 1) multiplicity will be included in our final results.

Two-body operators can also be considered. Then all ampli-
tudes contribute to the transition matrix element. For example,
we will consider the double dipole resonance, excited by the
two-body operator FDDR;J = [FIVD ⊗ FIVD]J+ , where FIVD

is the usual (single-particle) isovector 1− operator and J =
0, 2. Transition matrix elements are given in the Appendix,
Eqs. (A7)–(A9).

Finally, we may define the strength distribution of a |ph−1〉
configuration, coupled to a given angular momentum state, via
the quantity

Sph(E) =
∑
λ>0

(∣∣Xλ
ph

∣∣2 − ∣∣Yλ
ph

∣∣2)δ(E − Eλ)

≡
∑
λ>0

sph(Eλ)δ(E − Eλ), (15)

where the summation is over all eigenstates with Eλ > 0. (In
the unperturbed case the centroid of Sph(E) is trivially identical
to the HF ph energy ep − eh and its width is zero.) Similarly,
the strength distribution of a 2p2h state can be defined using
the X and Y amplitudes. Energy moments and centroids, as
well as smoothened distributions, can be defined as usual.

We note that the total m0 and m1 (and centroid) of Sph

will be the same in RPA and SRPA, since Sph is the sum of the

strength functions related to the operator OJM
ph

†
and its adjoint.

m0, in particular, should always amount to one.

B. Related approximations and ground-state correlations

By setting the coupling matrices A12 and A22 and the 2p2h
amplitudes X , Y equal to zero in Eq. (3), we recover the
usual RPA problem. If, in addition, we neglect the ph residual
interaction (i.e., Bph,p′h′ = 0 and Aph,p′h′ = (ep − eh)δpp′δhh′ ),
we obtain a trivial, unperturbed problem, where the eigenstates
|λ〉 are the ph configurations at the HF level and the Y

amplitudes vanish.
By setting only B = 0 in Eq. (3), we obtain a second-

order Tamm-Dancoff approximation (STDA), which amounts
to solving the eigenvalue problem of the A block of the SRPA
matrix. The backward amplitudes Y and Y vanish and ground-
state correlations implicitly taken care of by those are ignored.
Setting also the coupling matrices A12 and A22 equal to zero,
one gets the usual, first-order Tamm-Dancoff approximation
(TDA).

In a manner analogous to TDA, STDA is equivalent to
a diagonalization of the Hamiltonian in the ph⊕2p2h space.
It should be noted, though, that for Jπ = 0+ the HF ground
state does not decouple from the STDA space (unlike TDA). A
diagonalization in the model space that includes in addition the
HF state would produce a new ground state of lower energy.
The 0+ excitation spectrum would also be affected.

In Sec. IV E we will investigate the possible influence
of ignored ground-state correlations (GSC) on our SRPA
results. A rigorous way to do that would be the use of an
extended SRPA method built on a correlated ground state
as self-consistently as possible [10,11]—or other extended
methods such as a self-consistent Green’s function method [12]
or the equation of motion phonon method [13]. Since, however,
that is a demanding project going beyond the scope of the
present work, we resort instead to simpler approaches.

One way to assess the role of GSC is to ignore them
completely. This is accomplished within the (S)TDA. As a
second approach, we have devised a simple and rather heuristic
renormalized version of SRPA (RSRPA), which takes into
account to some extent the depletion of the Fermi sea.

We start with a renormalized RPA approach (RRPA).
Following the simplified RRPA method of Refs. [14,15]—see
also Ref. [16]—we assume partially occupied single-particle
states and renormalize the residual couplings and the transition
matrix elements accordingly. In particular, when calculating
the matrix elements of A, the H2 terms in Eq. (A3) are
multiplied by a factor

d
[1]
ph,p′h′ = D

1/2
ph D

1/2
p′h′ , (16)

where

Dph ≡ nh − np, (17)

and nα is the occupation probability of the orbital α. The
matrix elements of B, Eq. (A4), are multiplied by the same
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factor. Finally, the single-particle transition matrix elements
fph, f̃ph, are renormalized by a factor D

1/2
ph .

In RSRPA we have to renormalize the matrix elements of
A12 and A22 as well. The former, Eq. (A5), will be multiplied
by the expression Eq. (16), taking account of the occupation
probabilities of the p, h states, as well as by a factor

d
[2]
p1h1p2h2

= 1
2

[
dp1h1,p2h2 + dp1h2,p2h1

]
, (18)

to take into account the occupation probabilities of the p1,2,
h1,2 states. Similarly, the H2 terms in the A22 matrix elements,
Eq. (A6), will be multiplied by d

[2]
p1h1p2h2

d
[2]
p′

1h′
1p′

2h′
2
.

In practice, we will not solve these equations iteratively.
The single-particle energies and eigenstates needed to evaluate
the above matrix elements will be the HF ones, whereas the
occupation probabilities are calculated using the shell model.
Obviously, this method is neither rigorous nor consistent, but
it should help us get an idea regarding the sensitivity of our
results to GSC.

C. Consistency and stability

It is well known, that in self-consistent RPA (meaning that
the same Hamiltonian is used to calculate the HF ground state
and the residual interaction) the spurious state related to the

CM momentum operator �̂P (single spurious state) will appear
at zero energy and be exactly separated from the physical
spectrum, provided that all ph and hp configurations available
in the (sufficiently large) single-particle space are taken into
account. The same does not hold, however, when extensions
of RPA are considered, whether that means considering a
correlated ground state or higher-order configurations. As
was formally shown in Ref. [17], once 2p2h configurations
are included in the model space, a necessary condition for
the single spurious state to appear at zero energy is that all
single-particle amplitudes be taken into account: This means
not only ph and hp amplitudes, but also pp and hh. It was in fact
shown that pp and hh amplitudes affect the spurious state even
with a HF ground state, because at energies equal to ep − ep′ or
eh − eh′ they do not vanish. Obviously our approach does not
include them. This problem will be examined quantitatively in
Sec. IV E.

A more severe problem in HF-based SRPA is the onset
of instabilities. Contrary to RPA, the “self-consistent” use
of the HF ground state does not guarantee that the SRPA
stability matrix will be positive-definite: Thouless’s theorem
was proven specifically for ph excitations [18,19]. Thus RPA is
related to the stability conditions for the HF solution, but SRPA
seems related to an extended variational problem [7,20]. In
practice, we will find that low-lying states appear at imaginary
or negative energies.1 It is not difficult to demonstrate how
negative eigenvalues can occur, already at the STDA level
(B = 0), if we consider Eq. (6): For energies E below typical
2p2h energies, strong (or many) A12 elements, regardless of

1Here we speak of a “negative-energy” excitation when the
eigenstate with Eλ < 0 is normalized to +1 (i.e., the norm of the
positive-energy counterpart is negative).

sign, can cause even the diagonal elements of A(E) to become
negative and destroy the positive-definiteness of the matrix.
Additional ground-state correlations could cure this problem,
through a renormalization of the A12 couplings, as illustrated
above, or by filling the vanishing B submatrices of Eq. (3)
with finite elements (see also Ref. [12] for a related discussion
within an extended dressed RPA).

The question whether SRPA gives meaningful results for
giant resonances despite the problematic solutions at low
energies is also tackled in Sec. IV E and discussed further
in Sec. IV F.

III. SOLVING THE SRPA PROBLEM

In practice we proceed as follows. We first choose a single-
particle space, consisting of harmonic-oscillator eigenstates.
The larger the space, the better the convergence of our results
to their final values. All angular-momentum coupled two-body
matrix elements of the given interaction within the harmonic-
oscillator basis are calculated in advance as described in
Ref. [3] and stored. We solve the HF equations within the
given space and then we use all ph and 2p2h configurations,
which are available within the space and can couple to the
desired angular momentum and parity, to construct the SRPA
matrix. The single-particle space is characterized by either:

εmax = (2n + �)max, the number of energy quanta in the
highest oscillator shell considered. This means that all
single-particle states within the lowest εmax + 1 shells
are used. An additional cutoff �max in � may also be
imposed.

or

nmax and �max. A cutoff �max in � is considered and each
possible �j state is expanded in the lowest nmax + 1
harmonic-oscillator � states.

Since angular momentum is preserved, for an RPA cal-
culation of the Jπ response, one has to include j ’s up to
the maximal occupied one plus J , so that all jp’s with
|jh − jp| � J � jp + jh are included in the space, and may
omit higher jp’s. In SRPA there is no j cutoff provided
by angular momentum conservation. In principle, particle
states with infinitely large j ’s can contribute to allowed 2p2h
configurations and such configurations can couple with ph ones
through finite matrix elements of A12. In particular, infinitely
large jp1 and jp2 can couple to any given Jp, thus resulting in
finite values of 〈p1p2; Jp|H2|ph2; Jp〉 [see right-hand side of
Eq. (A5)]. For restricted nmax, however, upper bounds are
provided by the transformation (Moshinsky) brackets needed
to evaluate the above matrix element in the HO basis [21].
Natural cutoffs on nmax or εmax should be provided by the
properties of the interaction. Perhaps such considerations can
be used, along with the convergence behavior of the SRPA
solutions with respect to the single-particle basis, for the
optimization of the latter, but so far this has not been done.

The next task is to solve the SRPA eigenvalue problem. First
we note that all the submatrices comprising the SRPA matrix,
Eq. (3), are real in the cases studied here. The submatrices
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A, B, and A22 are also symmetric. The same holds for the
N × N blocks indicated in Eq. (3) (separated by lines). The
dimension 2N of the SRPA matrix is given by twice the number
of ph and of 2p2h configurations available in the model space
(N = N1 + N2). The latter, N2, can be rather large: For the
purposes of the present work we encountered problems with
N up to 106. In the following we present technical information
on how we deal with the SRPA eigenvalue problem in practice.
We shall distinguish three cases:

(i) All eigenvalues and eigenvectors are calculated. This is
feasible for relatively small problems (e.g., N ∼ 104).

(ii) For large problems the complete solution becomes
impossible. Then only a small portion of consecutive
eigenvalues and the respective eigenvectors are calcu-
lated. In most cases, all excitations of interest lie at the
lower end of the spectrum, so it suffices to evaluate only
the lowest (a few tens or hundreds) positive eigenvalues.

(iii) No eigenvalue problem is solved. The response function
is evaluated directly. The strategy is well known and
very practical when one is interested in the single-
particle response, and only in the final result, namely a
smoothened strength function.

1. Small problems: all eigenvalues

Standard library routines can be used to solve small enough
eigenvalue problems. The solution can be sped up considerably
if the SRPA problem is reduced to half the dimension, N × N .
A method relying on a Cholesky decomposition of the matrix
A + B or A − B is the most common way to do it, with
the additional bonus that it produces a symmetric N × N

eigenvalue problem [22]. However, the method will not work
if neither A + B nor A − B is positive-definite, a problem
that can occur when there are instabilities, or just spurious
states at imaginary energies. We employ a modified method
instead, relying on a generalized Cholesky decomposition [23],
which is equivalent to the original one when the matrix
under decomposition is positive definite (thus still producing
a symmetric eigenvalue problem) and still works when it is
not (producing a nonsymmetric eigenvalue problem of half
the dimension), with minimal additional computational effort.
For details, see Ref. [23].

2. Large problems

When the dimension of the matrix is very large, the first
problem that occurs is the storage of the matrix elements.
Fortunately, most of the SRPA matrix elements vanish,
especially when the diagonal approximation is used, Eq. (4),
so it becomes possible to store all the finite ones in memory.
Obviously, one needs to store only one N × N matrix (e.g.,
A or A ± B) and one small, N1 × N1 matrix (B). Moreover,
only the upper (or lower) triangles need be stored, since the
matrices are symmetric.

The dimension and degree of sparseness of the SRPA
matrix depends on the nucleus, type of response, and model
space. As an example, let us mention that in the case of the

2+ response of 40Ca with the VUCOM, and for spaces large
enough for reasonable convergence, there are about a million
configurations; 0.5–1 GB of storage is needed in the diagonal
approximation, but 100 GB could be required for the full
problem (1010 elements in double precision).

Again the dimension of the SRPA problem can be reduced
by half, to speed up the numerical solution. In order to save
matrix operations we choose not to perform a decomposition,
but resort to a more straightforward reduction method [23]:
We solve the nonsymmetric N × N problem,

(A − B)(A + B)Rλ = E2
λR

λ, (19)

where the eigenvectors Rλ = E
−1/2
λ (Xλ + Yλ) obey the nor-

malization condition (Rλ)T (A + B)Rµ = ±δλµ (real and pos-
itive Eλ). The properly normalized X and Y arrays (|Xλ|2 −
|Yλ|2 = ±1) are then given by

Xλ = 1

2

[√
EλIN + 1√

Eλ

(A + B)

]
Rλ (20)

Yλ = 1

2

[√
EλIN − 1√

Eλ

(A + B)

]
Rλ, (21)

where IN is the N × N identity matrix.
Finally, an Arnoldi iteration procedure from the ARPACK

package [24] is employed to solve the problem (19) only for the
k lowest positive eigenvalues E2

λ, where k � N . In principle,
it is possible to solve for the first k eigenvalues lying above
a given energy value E2

offset, not necessarily equal to zero.
In practice, however, such a strategy can prove problematic:
Already at moderate energies the density of eigenstates can be
so large (see Sec. IV), that the Arnoldi iteration will likely fail
to converge.

3. Response function formalism

As long as one-body transition operators are considered,
we may just solve the reduced SRPA problem, Eq. (5). In
general, the reduction procedure involves the inversion of
a large matrix (of the dimension of the 2p2h space), but
when A22 is diagonal, that is reduced to a trivial number
inversion [see Eq. (6)]. There are ways to solve such an
energy-dependent eigenvalue problem [25,26]. An efficient
alternative is to employ the response-function formalism.
Then, instead of explicitly solving the eigenvalue problem,
one can obtain directly the strength function of interest [26,27].
First, the ph Green’s function, a N1 × N1 matrix, is evaluated,

G(E)

= −
(

A(E) − (E + iη1)IN1 B

B∗ A∗(−E) + (E − iη1)IN1

)−1

,

(22)

(η1 → 0+) by numerical matrix inversion. The response
function for a given single-particle field is given by

R(E) = (FT , F̃T )G(E)

(
F
F̃

)
, (23)

where the elements of the N1-dimensional (assumed real)
array F (F̃), in ph space, are the matrix elements of the
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FIG. 1. (Color online) Isoscalar monopole response of 16O, calculated within a single-particle basis of seven oscillator shells. Strength
function is calculated within SRPA and SRPA0 [diagonal approximation; Eq. (4)], as well as RPA, in (a) linear and (b) logarithmic scale.

transition operator, fph (−f̃hp) [see Eq. (10)]. Finally, the
strength function of interest is given by

R(E) = −

π
R(E). (24)

In practice, the Green’s function, response function, and
finally the strength function are evaluated over the energy
range of interest, which is represented by mesh points Ei . The
constants η1 and η2, which provide the ph and 2p2h states,
respectively, with a finite width should, in principle, be small
enough for the structure of the strength function to be resolved
as desired. The mesh size δE = Ei+1 − Ei should be smaller
than both of them (a factor 3–4 suffices). The choice η1 = η2

produces a smoothened strength function that is practically the
same as the discretized strength function (obtained by explicit
diagonalization of the SRPA matrix) folded with a Lorentzian
of width � = 2η1,2 [cf. Eq. (13)].

IV. RESULTS

In the following, we will discuss the features of the SRPA
solutions with the help of illustrative examples. We note that
we will use the acronym SRPA0 when referring specifically
to the diagonal approximation, Eq. (4), and SRPA(0) when
referring explicitly to both solutions, with and without the
diagonal approximation. The intrinsic nuclear Hamiltonian is
employed. In all cases we set the oscillator length parameter
of the single-particle basis equal to b = 1.7 fm (for VUCOM) or
b = 1.8 fm (for VBB).

It will prove instructive to consider, among others, a
relatively small SRPA problem, for which we can calculate
all eigenstates—with and without the diagonal approximation.
The purpose of such an exercise is not to perform a realistic
calculation, but to illustrate and discuss selected features
of the method: in particular, how the large amount of
2p2h configurations influences the response function and the
distribution of the SRPA eigenstates.

As such a “toy model” we choose the monopole (0+)
response of 16O in a rather small single-particle space,
consisting of seven oscillator shells, and using the VUCOM in-
teraction. In total, there are 4148 positive-energy eigenstates to
evaluate (N1 = 14, N2 = 4134). The single-particle, isoscalar

monopole strength distribution is shown in Fig. 1 in linear
[(Fig. 1(a)] and logarithmic [(Fig. 1(b)] scale.

Further examples will be introduced in the following as
needed.

A. Diagonal approximation

When looking at Fig. 1(a), we observe that the results of the
diagonal approximation, SRPA0, are very close to the exact
SRPA results. It looks as though the effect of the 2p2h space
on the single-particle response is approximately the same,
whether or not the 2p2h states are considered unperturbed.
We have verified that the approximation is equally good in
larger spaces and for different types of response—always of
single-particle operators. See, for example, the IVD response
of 16O calculated within a space of 13 oscillator shells, as
shown in Fig. 1 of Ref. [4]. The approximation remains quite
good for heavier nuclei, for example, 48Ca whose ISQ response
is shown in Fig. 2(a), calculated within a space of nine shells.

We expect the diagonal approximation to be reliable for soft,
perturbative interactions in general. The additional couplings
within the 2p2h space, ignored in the diagonal approximation,
constitute higher-order corrections to the excitation propagator
with respect to the interaction, as can be demonstrated dia-
grammatically [27]. Results with the Brink-Boeker potential,
VBB, corroborate this speculation. VBB is even softer than the
VUCOM. For example, it produces much smaller second-order
corrections to the nuclear binding energies in the perturbation
expansion beyond Hartree-Fock [28]. In Fig. 2(b) we show
the IVD response of 16O calculated using VBB. The diagonal
approximation is very good in this case.

To be on the safe side, it is always advisable to verify the
quality of the approximation within some tractable space. In
Ref. [29], for example, it was found that it is quite bad in the
case of metallic clusters when the bare Coulomb interaction is
used.

From Fig. 1(a) we deduced that the SRPA and SRPA0
solutions yield almost the same results for the giant resonance.
However, when we look at the strength distribution on a
logarithmic scale, Fig. 1(b), it becomes obvious that the two
solutions give different results for the majority of eigenstates,
which are mostly of 2p2h character. One implication is that
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FIG. 2. (Color online) Quality of the diagonal approximation.
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the diagonal approximation cannot be relied upon when
examining, for example, double giant resonances and the
response function of two-particle operators in general. As an
example, in Fig. 3 we present the strength function of the 0+
component of the double dipole resonance. We notice that the
SRPA0 strength function is very close to the unperturbed one
(HF) and differs significantly from the SRPA result.

In Fig. 4 we show the density of eigenstates (number
of states per 5-MeV excitation energy) when solving the
SRPA problem with and without the diagonal approximation,
as well as the density of unperturbed ph and 2p2h states

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 20  30  40  50  60  70  80  90  100

R
D

D
R

;0
+
(E

) 
[fm

4 /M
eV

]

E [MeV]

SRPA0
SRPA

HF

FIG. 3. (Color online) 0+ component of the double dipole
resonance of 16O, calculated within a single-particle basis of seven
oscillator shells. The strength function (� = 0.5 MeV) is calculated
within SRPA and SRPA0 [diagonal approximation; Eq. (4)], as well
as using the unperturbed (HF) ph and 2p2h states.
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FIG. 4. (Color online) For the 0+ response of 16O, calculated
within a single-particle basis of seven oscillator shells. Number of
SRPA and SRPA0 [diagonal approximation; Eq. (4)] eigenstates per
5-MeV excitation energy, in logarithmic scale. The corresponding
density of unperturbed (HF) ph and 2p2h states is also shown.

(HF). One immediately notices that for the most part the
SRPA0 density of states is very similar to the unperturbed
one.

Finally, below about 40 MeV, where the giant resonance
lies, the SRPA and SRPA0 densities practically coincide. This
is not surprising, given the very small number of eigenstates
present there, but it is not always the case. We note, for
example, that in the case of the 2+ response of 48Ca, where
there are several unperturbed 2p2h states at low energies,
the SRPA0 density of states follows mostly the HF one in
that energy region. The single-particle strength functions,
however, are almost identical [(Fig. 2(a)] and the diagonal
approximation remains well justified.

B. Downward shift of resonances

In Figs. 1 and 2 we notice, as in Ref. [4], that the
GR lies lower in SRPA(0) than in RPA. This result is not
particular to nuclei [29] and is supported by studies within
schematic models [30,31]. It is a general feature of the
coupling to 2p2h excitations [27,32] and shows why traditional
effective interactions cannot be used in SRPA. The self-energy
corrections responsible for the modification of the ph energies
and the lowering of the resonance energies (see also Sec. IV C)
are already parameterized in the interaction, so that realistic
results are obtained already at the RPA level. Employing such
an interaction in SRPA will result in double counting of those
effects.

In practical applications in the literature, this problem
is circumvented through the use of realistic single-particle
energies and subtracting procedures, which remove the real
part of the self-energy, responsible for the shift.

C. Fragmentation in SPRA

As a microscopic theory of collisional damping, SRPA has
been used extensively to describe the spreading width and
strength fragmentation and quenching of collective excitations.
Let us examine our results in this context.
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No spreading width is observed in Fig. 1(a), as there are no
configurations available in the vicinity of the resonance. But
when we look at Fig. 1(b), we realize that there is practically a
continuum of weak SRPA or SRPA0 eigenstates (N = 4148)
extending to high energies. Most are predominantly of 2p2h
nature and their contribution to the single-particle strength
is rather small. Nevertheless, they carry a non-negligible
percentage of the total strength and provide a mechanism of
strength quenching for the giant resonance (by contrast, there
are only N1 = 14 RPA eigenstates). We note, in particular:
(i) As expected, the total energy-weighted strength m1 is
found to be practically the same in all three cases (RPA,
SRPA0, SRPA), and the total strength m0 is found just
about 3% larger in SRPA or SRPA0 than in RPA, but
(ii) the strongest ISM peak appears at 21.36 MeV in the
case of RPA, 16.50 MeV in SRPA0, and 16.25 MeV in
SRPA; (iii) the six lowest eigenstates carry a total strength
of 313.4 fm4 in RPA, which is almost all the RPA strength
(they lie at 21–47 MeV excitation energy), 304.5 fm4 in
SRPA0 (16–34 MeV), and 304.0 fm4 in SRPA (16–34 MeV),
that is, about 3% less in SRPA(0) than in RPA; and finally,
(iv) the width of the ISM strength functions below 40 MeV
is 3.86 MeV in RPA and 3.73 MeV in SRPA, while the
widths over the whole spectrum are 4.65 and 18.94 MeV,
respectively.

The coupling with 2p2h configurations affects not only
the collective excitations, but at the same time the single-
particle states. Within the present formalism one can demon-
strate this through the strength of the ph configurations.
In Fig. 5, for example, we show the HF, RPA, and SRPA
strength distribution Sph(E), Eq. (15), of the ph configurations

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  20  40  60  80  100

E[MeV]

HF
(c)

 0
 0.2
 0.4
 0.6
 0.8

 1

st
re

ng
th

ν0
p 3

/2
  t

o
νp

3/
2

RPA
(b)

 0
 0.2
 0.4
 0.6
 0.8

 1 SRPA
(a)

FIG. 5. (Color online) Fragmentation and shift of ph states—0+

response of 16O in a space of seven shells. Thin dark bars show how
the spectroscopic strength Sph(E), Eq. (15), of the ph configurations
|(νp3/2)(ν0p3/2)−1; 0+〉 (contributing to the monopole strength) is
distributed within (a) SRPA, (b) RPA, and (c) HF. Thicker bars denote
the distribution of |(ν1p3/2)(ν0p3/2)−1; 0+〉 (one particle shell only).

10-6

10-3

100

 10  100

st
re

ng
th

ν0
p 3

/2
  t

o
νp

3/
2

E[MeV]

RPA
(b)

10-6

10-3

100
SRPA

(a)

FIG. 6. (Color online) Same as Fig. 5 without HF, both axes in
logarithmic scale.

|(νp3/2)(ν0p3/2)−1; 0+〉, contributing to the 0+ strength of
Fig. 1. In HF, these are well-defined transitions at energies
equal to ep − eh with strength 1. In RPA the ph transitions
appear fragmented. There is a cluster of configurations at
energies around 30 MeV, which can be attributed to the
2h̄ω transition |(ν1p3/2)(ν0p3/2)−1; 0+〉. A second cluster
of states is visible around 60 MeV roughly corresponding
to 4h̄ω configurations, and so on. In SRPA the strength
distribution appears even more fragmented, as well as shifted
to lower energies. The shift reflects an effective compression
of the single-particle spectrum (a modification of the nucleon
effective mass), with respect to HF, and leads to the downward
shift of the collective states, discussed above.

Although we can visually identify the different shells con-
tributing to the strength distribution, and observe an energetic
shift, the total m0 and m1—and thus the centroid—of any given
ph configuration is the same in RPA and SRPA. Nevertheless,
in RPA we find only 1% of the |(ν1p3/2)(ν0p3/2)−1; 0+〉 m0

strength above 40 MeV. In SRPA the strength in the same
region is 14%. When we look at the distributions in logarithmic
scale, Fig. 6, we realize that the ph strength distributions
span the whole space available, reflecting the extended
spectroscopic functions of the particle and hole states.

D. Truncation procedures

As is obvious from Figs. 1 and 4, the majority of basis
states (unperturbed ph and 2p2h states) lies at high energies
relative to the giant resonance. Figure 7 (see caption for details)
illustrates what would happen if we truncated the model space
by setting an upper cutoff E2p2h,max to the 2p2h energies taken
into account. Had we set, for example, E2p2h,max = 100 MeV,
we would have excluded 75% of the configurations available
in this particular space and the eigenenergies would have been
at least 2 MeV higher than their converged (with respect to
E2p2h,max) values. Inclusion of the energetically lowest 50% of
configurations would still not warrant good convergence.

We found that the convergence of the eigenenergies and
the saturation of the model space follow the same pattern as
demonstrated in Fig. 7, regardless of model-space size and
type of response.
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FIG. 7. (Color online) For the 0+ response of 16O, calculated
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states are used (maximal 2p2h energy).

Finally, we should note that most finite A12 elements are
small. The distribution of their values is always cusp shaped
around zero and a vast majority of them have amplitudes no
larger than 5% the value of the strongest element. It would
be computationally economical to neglect those elements.
We found, however, that such a procedure influences the
position of the resonances as well as the shape of the strength
distribution and cannot be blindly trusted.

E. Consistency and stability issues

The self-consistent RPA that we have used produces a
spurious state at practically zero energy, and leaves the rest
of the spectrum uncontaminated [8], as expected. The SRPA
dipole spectrum, however, may contain spurious admixture, as
discussed in Sec. II C. In order to quantify this problem, we
have examined the IS dipole response. We found that relatively
strong spurious states appear mostly at about 5–8 MeV. Using
a transition operator of the usual radial form (∝ r3 − 5

3 〈r2〉r)
and its uncorrected form (∝ r3), we found that only the lowest
part of the dipole spectrum is strongly affected by the choice of
operator, while there are no significant contaminations in the
spectrum around and beyond the IV GDR peak. An example
is shown in Fig. 8.

Let us note that including a small percentage of 2p2h states
would not shift the spurious state far away from zero, but for
large spaces such as those used here the effect is noticeable. As
we couple the ph states to more and more 2p2h configurations,
the spurious RPA state moves away from zero and may occur at
imaginary, or even negative energies (or, equivalently, positive
energies, but assuming negative norm; this is the case in Fig. 8).
It may also appear fragmented, as spurious admixtures enter
the rest of the spectrum, or as additional eigenstates occur in
its proximity.

As anticipated in Sec. II C, another problem with the HF-
based SRPA is the onset of instabilities. We find, in particular,
that low-lying states (0h̄ω 2+ states and the collective 3−
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excitation) appear at imaginary or negative energies. This
is the case, for example, in Fig. 2(a): The norm of the
collective quadrupole state at 4.4 MeV is, in fact, negative; the
positive-norm counterpart appears at −4.4 MeV. As discussed
previously, the problem seems to be the inadequate treatment
of ground-state correlations.

Obviously, SRPA is not appropriate for describing low-
lying states. The question is then whether it still gives
meaningful results for giant resonances. We have tested
the sensitivity of our results to GSC with the help of the
renormalized SRPA devised in Sec. II B and of STDA (SRPA
setting B = 0) and, in first order, the corresponding RRPA and
TDA. Examples are shown in Fig. 9 for the octupole response
of 16O and Table I for the quadrupole response of 48Ca. In all
cases the diagonal approximation has been employed.

The general trend can be described as follows: We begin
with minimal GSC in STDA. Inclusion of the B matrix and
the backward amplitudes (SRPA) pushes the solutions to
somewhat lower energies and in general affects their strength.
The downward shift, which can lead to imaginary solutions,
was interpreted recently in the framework of random-matrix
theory [33]: The matrix B couples the positive- and negative-
energy branches of the (S)RPA solutions and causes an
attraction between them. Strong enough coupling leads to a

TABLE I. Isoscalar 2+ spectrum of 48Ca calculated in a basis
of nine oscillator shells. Energy E (in MeV) and strength B (in
fm4) of the two main low-lying states and of the giant resonance
peak (GQR) within RPA and SRPA, “renormalized” RPA and SRPA
(RRPA, RSRPA; see text), and TDA and STDA (SRPA with B = 0).
(Whenever the GQR is split into two or three major peaks, the centroid
and total strength is given.)

E1 E2 EGQR B(E1) B(E2) B(GQR)

RPA 2.19 8.12 27.22 450.05 79.18 915.2
RRPA 2.42 8.16 27.41 373.09 69.36 892.2
TDA 2.61 8.39 27.42 127.05 46.06 813.1

SRPA −4.44 i × 0.803 19.51 223.18 – 1021.3
RSRPA −3.14 1.34 20.18 161.95 22.25 991.3
STDA −4.26 0.46 19.72 182.28 41.14 831.1
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merging of the two branches at zero energy and eventually
to imaginary or complex solutions. Finally, we find that
subsequent renormalization of the matrix elements (RSRPA)
shifts the solutions back to higher energies (i.e., slightly closer
to the RPA solutions), plausibly because of the weaker A12

couplings.
The effect of renormalization appears rather small in

the case of giant resonances and higher-lying transitions in
general, but this is not the case for the low-lying quadrupole
and octupole states: their energy shifts in RSRPA, relative to
RPA, are noticeably more moderate than in SRPA. The STDA
results confirm in general that the lower-lying states are more
sensitive to GSC than the higher ones. We note that, since
STDA is a Hermitean problem, it will eliminate the imaginary
solutions of SRPA by construction [see, e.g., Fig. 9(a)]. As
we observe in Table I, however, the same does not hold for
the negative solutions. It is thus confirmed that the strong
resonance shifts (with respect to RPA) in this case are induced
by the A12 couplings, as discussed in Sec. II C.

In most cases the RSRPA solutions lie higher than the STDA
(i.e., renormalization has a stronger effect on the energies) with
the notable exception of the giant monopole resonance (not
shown), where the backward amplitudes seem more relevant.

Finally, regarding our first-order calculations, renormaliza-
tion affects the RPA results very weakly. The same conclusion
was reached in Ref. [16], where a more consistent RRPA was
applied. The backward amplitudes, though, missing in TDA,
are found important for the description of low-lying states.

F. Validity of SRPA

The results presented above suggest that giant resonances
(at least for J > 0) are only moderately sensitive to the
treatment of GSC and that SRPA may be good enough to
describe them. Of course, a comprehensive inclusion of GSC
in the SRPA formalism would generate many additional finite

elements in the B sections of the SRPA matrix (not just a
renormalization of the existing matrix elements). It cannot be
predicted how strongly those could affect the results. In the
applications shown in Ref. [20], the so-called extended SRPA
including correlations did not produce strong corrections to
the SRPA strength functions, especially after renormalizing
the ground state [34,35].

Some insight into the validity of SRPA could be gained
by comparing with exact results within solvable schematic
models. Schematic models, however, will always show RPA,
SRPA, etc., to fail for various domains of interaction strength
values. As there is no straightforward connection with the
physical situation encountered in nuclear physics, it is not
easy in general to infer under what conditions each method
is reliable. Furthermore, some models may be too simple to
account for certain effects, such as the energetic shift with
respect to RPA [10].

Nonetheless, existing studies of SRPA do not contradict our
conclusions. In Ref. [31] a comparison of SRPA results with
exact calculations was made for the one-phonon response. An
extended schematic model was used to include fragmentation
effects (see also Refs. [30,36]). The aim was to show that
second-order time-dependent density-matrix theory, STDDM,
constitutes a good second-order method (an improvement to
SRPA) thanks to the appropriate treatment of ground-state cor-
relations. Eventually all methods examined are shown to fare
badly at certain interaction-strength regimes corresponding to
strong GSC. When, however, GSC are more moderate, both
SRPA and STDDM give similar and rather good results for the
position and strength of the most collective state, while SRPA
fails at lower energies.

Assuming that in nuclei we are dealing with small GSC
(judging from the small calculated depletion of the Fermi
sea), it is plausible that SRPA reproduces rather well the most
collective one-phonon state (i.e., the giant resonance), but it
fails at other energy regimes. Obviously this is in concordance
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with our conclusions, based on STDA and a rudimentary
renormalized SRPA.

In short, the adequacy of the simple SRPA method to
describe the energy region of giant resonances cannot be
proven conclusively at this point, but it is still supported by
the present results as well as previous studies. In any case,
here we have used SRPA as the simplest, most straightforward
extension of RPA to second order, in order to demonstrate
various second-order effects in large-scale calculations. That
SRPA seems to produce stable results (stable with respect to
GSC) in the region of giant resonances is a fortunate outcome,
which would merit further investigation within more realistic
(yet solvable) models in the future.

V. CONCLUSIONS

The present work constitutes a feasibility and justification
study of large-scale SRPA calculations. The motivation was
the prospect of studying nuclear collective excitations using
SRPA (or some appropriate extension thereof) and unitarily
transformed nuclear Hamiltonians, which have not been fitted
to first-order RPA results. The discussion, however, has been
kept general. We showed how the large model spaces of
SRPA can be treated and discussed the salient features of the
solutions, including the energetic shift relative to the RPA
solutions and the fragmentation of strength. The diagonal
approximation was found reliable for soft interactions and for
single-particle (one-phonon) strength distributions.

We found that low-lying states become unstable in SRPA,
due to an inadequate treatment of ground-state correlations.
Nevertheless, giant resonances and higher-lying solutions in
general do not appear sensitive to ground-state correlations.
We have thus concluded that SRPA can be applied in the giant-
resonance region with reasonable confidence. As schematic
models do not provide a conclusive verdict, we intend to
investigate this result with more rigorous methods in the
future. One possibility would be to compare with large-scale
diagonalizations of the nuclear Hamiltonian within tractable
model spaces.

SRPA is primarily the theory of collisional damping. A
more comprehensive method to study nuclear collective states
should consider also coupling to collective low-lying phonons
[37,38] (or even multiple phonons [13]). It is not easy to tell
at this point how strongly those could enhance or (partly)
cancel the effect of coupling to the large amount of 2p2h
states considered in SRPA. In Ref. [32] it was shown that
the resonance shifts due to the 2p2h states are stronger than
those due to collective phonons, although both mechanisms
are expected to contribute to the damping width.

Notwithstanding some particular shortcomings of the
present SRPA formalism, this work paves the way for system-
atic studies of giant resonances using finite-range interactions
and extended RPA theories without adjustable parameters and
arbitrary truncations of the model space.
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APPENDIX: USEFUL EXPRESSIONS

Here we present the angular momentum-coupled expres-
sions for the ph and 2p2h creation operators, for the SRPA
matrix elements, and for the double-dipole transition matrix
elements.

The creation operators are written as

OJM†

ph =
∑

mp,mh

(−1)jh−mh〈jpmpjh − mh|JM〉a†
pmp

ahmh (A1)

OJM†

p1h1p2h2JpJh
=

∑
mp1 mp2 mh1 mh2 MpMh

〈jp1mp1jp2mp2 |JpMp〉

× 〈jh1mh1jh2mh2 |JhMh〉
× (−1)Jh−Mh〈JpMpJh − Mh|JM〉
× (1 + δp1p2

)−1/2(
1 + δh1h2

)−1/2

× a†
p1,mp1

a†
p2,mp2

ah2,mh2
ah1,mh1

. (A2)

The matrix elements of the N1 × N1 matrices A and B are
given by

[A]ph;p′h′ = (ep − eh)δpp′δhh′ + 〈ph−1; J |H2|p′h′−1; J 〉
= (ep − eh)δpp′δhh′ +

∑
J1

(−1)jh+jp′−J1 (2J1 + 1)

×
{

jp jh′ J1

jp′ jh J

}
〈ph′; J1|H2|hp′; J1〉 (A3)

[B]ph;p′h′ = 〈(ph−1; J )(p′h′−1; J )|H2|0〉
=
∑
J1

(−1)jh+jp′ +J−J1 (2J1 + 1)

×
{

jp jp′ J1

jh jh′ J

}
(1 + δpp′ )1/2(1 + δhh′ )1/2

×〈pp′; J1|H2|hh′; J1〉. (A4)

The matrix elements of the N1 × N2 matrix A12 and of the
N2 × N2 matrix A22 are given by

[A12]ph;p1p2h1h2JpJh = 〈ph−1; J |H2|(p1p2; Jp)(h1h2; Jh)−1; J 〉
= [1 − (−1)jh1 +jh2 −JhP (h1, h2)]δh1h

× (−1)jp+jh2 +J+Jh (1 + δh1h2 )−1/2ĴpĴh

×
{

Jp J Jh

jh1 jh2 jp

}
〈p1p2; Jp|H2|ph2; Jp〉

−[1 − (−1)jp1 +jp2 −JpP (p1, p2)]δp1p

× (−1)jp1 +jp2 +J+Jh (1 + δp1p2 )−1/2ĴpĴh

×
{

Jh J Jp

jp1 jp2 jh

}
〈hp2; Jh|H2|h1h2;Jh〉,

(A5)
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[A22]p1p2h1h2JpJh;p′
1p′

2h′
1h′

2Jp′Jh′

= δp1p′
1
δh1h′

1
δp2p′

2
δh2h′

2
δJpJp′ δJhJh′

(
ep1 + ep2 − eh1 − eh2

)
+〈(p1p2;Jp)(h1h2;Jh)−1; J |H2|(p′

1p′
2;Jp′ )(h′

1h′
2; Jh′ )−1; J 〉

= δp1p′
1
δh1h′

1
δp2p′

2
δh2h′

2
(ep1 + ep2 − eh1 − eh2 )

+ δp1p′
1
δp2p′

2
δJpJp′ δJhJh′

[
1 + (−1)Jpδp1p2

](
1 + δp1p2

)−1

×〈h′
1h′

2;Jh|H2|h1h2;Jh〉
+ δh1h′

1
δh2h′

2
δJpJp′ δJhJh′

[
1 + (−1)Jhδh1h2

](
1 + δh1h2

)−1

×〈p1p2;Jp|H2|p′
1p′

2;Jp〉
+ [1 − (−1)jp1 +jp2 −JpP (p1, p2)]

(
1 + δp1p2

)−1/2

× [1 − (−1)jh1 +jh2 −JhP (h1, h2)]
(
1 + δh1h2

)−1/2

× [1 − (−1)jp′
1
+jp′

2
−Jp

P (p′
1, p′

2)]
(
1 + δp′

1p′
2

)−1/2

× [1 − (−1)jh′
1
+jh′

2
−Jh

P (h′
1, h′

2)]
(
1 + δh′

1h′
2

)−1/2

× δh2h′
2
δp2p′

2
(−1)1+jp1 +jp2 +jh1 +jh2 ĴpĴp′ ĴhĴh′

×
∑
L

(−1)Jh−Jh′ +J−L(2L + 1)

{
Jp Jp′ L

Jh′ Jh J

}

×
{

Jp Jp′ L

jp′
1

jp1 jp2

}{
Jh Jh′ L

jh′
1

jh1 jh2

}

×
∑
J1

(−1)jh1 +jp′
1
−J1 (2J1 + 1)

×
{

jp1 jh′
1
J1

jh1 jp′
1

L

}
〈p1h′

1;J1|H2|p′
1h1;J1〉. (A6)

In the above, eα are the HF single-particle energies and the
operator P (α, β) exchanges the indices α and β. The two
direct terms in A12 describe the free propagation of the hole
h while the particle p interacts with an intermediate ph state
(terms with h1 = h or h2 = h, i.e., containing δh1,2h), and the
free propagation of a particle while the hole h interacts with
an intermediate ph state (terms with δp1,2p). The four terms in
A22 describe: the free propagation of a 2p2h state; the free

propagation of the two particles while the two holes interact;
the free propagation of the two holes while the two particles
interact; and the free propagation of a ph pair while the other
particle and hole interact.

Finally, we give the transition matrix elements of the double
dipole operator (the Jp, Jh quantum numbers are implicit):

〈λ|F †
DDR;J |0〉 =

∑
ph

[
Xλ

ph
∗ + (−1)J Y λ

ph
∗]

f
DDR;J
ph

+
∑

p1p2h1h2

[
Xλ∗

p1p2h1h2
+ Yλ∗

p1p2h1h2

]
f

DDR;J
p1p2h1h2

, (A7)

where

f
DDR;J
ph = (−1)jp+jh+J

∑
p′

{
1 1 J

j h jp jp′

}

×〈p||FIVD||p′〉〈p′||FIVD||h〉

+ (−1)jp+jh+1
∑

h′

{
1 1 J

jp jh jh′

}

×〈p||FIVD||h′〉〈h′||FIVD||h〉, (A8)

and

f
DDR;J
p1p2h1h2

= 2

√
(2Jp + 1)(2Jh + 1)

(1 + δp1p2 )(1 + δh1h2 )

×

⎡
⎢⎣〈p1||FIVD||h1〉〈p2||FIVD||h2〉

⎧⎪⎨
⎪⎩

jp1 jh1 1

jp2 jh2 1

Jp Jh J

⎫⎪⎬
⎪⎭

− (−1)jh1+jh2−Jh

×〈p1||FIVD||h2〉〈p2||FIVD||h1〉

×

⎧⎪⎨
⎪⎩

jp1 jh2 1

jp2 jh1 1

Jp Jh J

⎫⎪⎬
⎪⎭
⎤
⎥⎦ . (A9)
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