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We study one-quasiproton excitations in the rare-earth region in the framework of the nuclear density functional
theory in the Skyrme-Hartree-Fock-Bogoliubov variant. The blocking prescription is implemented exactly, with
the time-odd mean field fully taken into account. The equal filling approximation is compared with the exact
blocking procedure. We show that both procedures are strictly equivalent when the time-odd channel is neglected
and discuss how nuclear alignment properties affect the time-odd fields. The impact of time-odd fields on
calculated one-quasiproton band-head energies is found to be rather small, of the order of 100–200 keV; hence,
the equal filling approximation is sufficiently precise for most practical applications. The triaxial polarization
of the core induced by the odd particle is studied. We also briefly discuss the occurrence of finite-size spin
instabilities that are present in calculations for odd-mass nuclei when certain Skyrme functionals are employed.
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I. INTRODUCTION

The nuclear density functional theory (DFT) [1–3] plays
a central role in the quest for a microscopic and quantitative
description of atomic nuclei. The energy functionals related to
effective two-body density-dependent interactions are the main
building blocks of the mean-field theory of the nucleus wherein
the self-consistency is imposed through the Hartree-Fock-
Bogoliubov (HFB) formalism. This framework has provided a
consistent description of a broad range of phenomena, ranging
from nuclear masses to collective excitations. Over the last few
years, however, with the influx of high-quality experimental
data on exotic nuclei, it has become evident that the standard
local functionals (e.g., extended Skyrme functionals) are
too restrictive when one is aiming at detailed quantitative
description and extrapolability [4–7]. Consequently, various
strategies have been devised to develop realistic nuclear
energy density functionals (EDFs) [8]. These include (i)
using the density matrix expansion technique [9,10] to relate
the functional to low-momentum interactions; (ii) extending
EDFs by adding higher-order terms in the local densities
[11]; and (iii) improving spin and isospin properties [12–15].
In any case, regardless of the strategy, the fine-tuning of the
coupling constants of the functional to a suitably chosen
set of experimental data is necessary to provide quality
description [16].

When aiming at spectroscopic-quality functionals [6], the
data coming from odd-mass nuclei are crucial: the energies,
angular momenta, and parities of one-quasiparticle (q.p.)
excitations provide us with basic knowledge about the un-
derlying shell structure. Moreover, binding energies of odd-A
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systems are instrumental for determining the magnitude of
collective effects such as pairing. Theoretically, however,
because nuclei with an odd number of particles have nonzero
angular momentum (J > 0), that is, they are spin-polarized,
their treatment is considerably more involved compared to
the Jπ = 0+ ground-state configurations of doubly even
nuclei.

Mathematically, the local EDF is a time-even scalar
constructed from various local densities and currents related to
particle and pairing density distributions [17,18]. The resulting
mean field contains both time-even and time-odd terms. While
the time-odd fields automatically vanish in the ground state of
doubly even nuclei, they are nonzero in J > 0 configurations in
which time-reversal symmetry is internally broken [2,3]. Time-
odd fields have been investigated in the context of high-spin
states [19–22], Gamow-Teller excitations [23], single-particle
(s.p.) spectra [6,13,24], and collective dynamics [25–28]. The
general consensus is that they can appreciably impact the
nuclear collective motion. Nevertheless, our knowledge of
the coupling constants characterizing individual time-odd
fields is fairly limited, and the impact of those terms on nuclear
ground states still needs to be assessed. Conversely, one can
ask whether experimental data on nuclear ground states can
help constrain the time-odd fields of the nuclear EDF.

There have been very few systematic theoretical studies
of one-q.p. states along isotopic or isotonic chains. Regional
systematics of one-q.p. excitations, and their consequences on
various observables in spherical and deformed nuclei, are given
in, for example, Refs. [29–33] (macroscopic-microscopic
approach) and Refs. [13,24], and [34–37] (nuclear DFT).
The only global DFT study of ground state spin and parity
for odd-mass nuclei is that by Bonneau et al. [38]. It
is to be noted, however, that most of these studies were
restricted in one way or another, for example, by assuming
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axial symmetry, neglecting the time-odd fields, or doing an
approximate treatment of blocking. The results in Refs. [6,7],
and [38] clearly indicate that the currently used nuclear density
functionals give a rather poor description of s.p. states, so it is
imperative to evaluate the magnitude of the effects owing to
theoretical limitations and approximations.

The goal of this study is to review the description of
odd-mass nuclei in the framework of the nuclear DFT and
assess the magnitude of time-odd polarizations through large-
scale surveys. We compare various treatments of blocking,
associated approximations, and resulting uncertainties. We
discuss the choice of the orientation of the alignment vector,
which is important for maintaining s.p. characteristics during
the blocking procedure. We also assess the impact of the
time-odd fields on binding energies of one-q.p. states and
estimate the polarization owing to the axial symmetry breaking
in certain orbits.

This paper is organized as follows. Section II summarizes
the main features of the nuclear Skyrme DFT. We pay
special attention to the treatment of odd-mass nuclei through
the so-called blocking approximation and the equal filling
approximation (EFA). In Sec. III we present the details of
the calculations and discuss various optimization techniques
that enable large-scale calculations for odd-mass nuclei.
The results are presented in Sec. IV. We first compare the
EFA approximation with the exact blocking prescription. We
estimate the effect of the time-odd fields on one-q.p. states
in the rare-earth region and make selected comparisons with
experiment. We also comment on the finite-size instabilities
related to certain energy functionals that show up when study-
ing polarized systems. Finally, the conclusions are contained
in Sec. V.

II. DENSITY FUNCTIONAL THEORY TREATMENT
OF ONE-QUASIPARTICLE STATES

The nuclear DFT in a Skyrme variant has been presented in
great detail in a number of articles [2,18,39]. In the following
we recall only the salient features of the theory that are needed
in this study.

A. Representations of the density matrix

The cornerstone of the nuclear DFT is the general one-body
density operator ρ̂. Two representations of the density matrix
are often considered. In the coordinate representation, the s.p.
space is spanned by the continuous basis of states |rσ 〉 = |r〉 ⊗
|σ 〉 [2,40–42]. In the configuration representation, a basis of
discrete states |n〉 is introduced, where n stands for all the s.p.
quantum numbers. The choice of one particular representation
depends on the context.

If |�〉 is the many-body state, the nonlocal density matrix
in coordinate representation reads

ρ(rσ, r ′σ ′) = 〈�|c†r ′σ ′crσ |�〉 , (1)

where c
†
rσ is a fermionic field operator creating a particle at

position r with spin projection σ , and crσ is the corresponding
annihilation operator. The field operators can be expressed

in terms of the standard fermionic creation and annihilation
operators c

†
n and cn associated with the basis |n〉 [43,44]:

c†rσ =
∑

n

φ∗
n(rσ )c†n, (2a)

crσ =
∑

n

φn(rσ )cn. (2b)

Note that in this expression, φn(rσ ) and φ∗
n(rσ ) are matrix

elements of the basis transformation |rσ 〉 ↔ |n〉: φn(rσ ) =
〈rσ |n〉 and φ∗

n(rσ ) = 〈n|rσ 〉. They are therefore complex s.p.
wave functions dependent on the position vector r and spin
coordinate σ . The inverse relations are

c†n =
∫

d3r
∑

σ

φn(rσ )c†rσ , (3a)

cn =
∫

d3r
∑

σ

φ∗
n(rσ )crσ . (3b)

For complete bases, relations (2a), (2b), (3a), and (3b) allow
us to express the relations between the two representations,
ρ(rσ, r ′σ ′) and ρmn, of the density matrix.

The density matrix, Eq. (1), can be regarded as the matrix
element of an operator ρ̂(rσ, r ′σ ′) acting in the spin space.
Any such operator can be expressed in terms of the Pauli
matrices σ and the identity matrix. This leads to a spin-scalar
ρ̂(r, r ′) and a spin-vector field ŝ(r, r ′). These two fields are
the fundamental building blocks of the nuclear DFT.

B. Skyrme energy functional

The contribution to the total energy of the system coming
from the Skyrme interaction reads

ESkyrme =
∑
t=0,1

∫
d3r

{
H(even)

t (r) + H(odd)
t (r)

}
, (4)

where t = 0 and t = 1 correspond to isoscalar and isovector
components, respectively. In this article, we do not consider
proton-neutron mixing [18]. Using the standard notation for
the local densities and currents [17,18], the part of the energy
density that depends on time-even fields can be written as

H(even)
t (r) = C

ρ
t ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρt τt + CJ
t

↔
J

2

t

+C∇J
t ρt∇ · J t , (5)

while the part depending on time-odd fields is

H(odd)
t (r) = Cs

t s2
t + C�s

t st · �st + CT
t st · T t + C

j
t j2

t

+C
∇j
t st · (∇ ∧ j t ). + CF

t st · Ft , (6)

All densities and currents entering Eqs. (5) and (6) can be
related to the particle density ρ(r, r ′), the spin density s(r, r ′),
and their derivatives [17,18]. In the present work, we do not
consider tensor interactions and therefore we set CF

t = 0.
Here, we discuss several versions of the functional, depend-

ing on how the time-odd coupling constants are determined.

(i) Native version, which corresponds to all time-odd
coupling constants being determined by the underlying
Skyrme interaction [18].
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(ii) Gauge version, which corresponds to the subset of
time-odd coupling constants being determined through
the gauge-invariance conditions [18,21], namely, Cj

t =
−Cτ

t , CT
t = −CJ

t , and C
∇j
t = C∇J

t , with all other
time-odd coupling constants set to zero.

(iii) Landau version, which is based on the gauge version,
where the subset of time-odd coupling constants Cs

t and
CT

t is reset through the Landau parameters [23]:

g0 = N0
(
2Cs

0 + 2CT
0 βρ

2/3
0

)
,

g1 = −2N0C
T
0 βρ

2/3
0 ,

(7)
g′

0 = N0
(
2Cs

1 + 2CT
1 βρ

2/3
0

)
,

g′
1 = −2N0C

T
1 βρ

2/3
0 ,

where β = (3π2/2)2/3, 1/N0 = π2h̄2/2m	kF , and, ad-
ditionally, C�s

t = 0 for t = 0, 1. Because the Landau
prescription only sets CT

t , the gauge condition is broken
because CT

t 	= −CJ
t anymore.

(iv) Time-even version, in which all time-odd coupling
constants in Eq. (6) are set equal to zero.

C. Hartree-Fock-Bogoliubov method

In the HFB theory, pairing correlations enter through the
pairing tensor κ , defined in coordinate representation as

κ(rσ, r ′σ ′) = 〈�|cr ′σ ′crσ |�〉 . (8)

(From a practical point of view, it is sometimes more
advantageous to use the pairing density ρ̃ [41,42].)

The starting point of the HFB theory is to assume that the
ground state of an even-even nucleus is a vacuum for q.p.’s
(βν, β

†
ν ). The latter are obtained from s.p. operators (cn, c

†
n)

associated with the s.p. basis states |n〉 by the Bogoliubov
transformation:

βν =
∑

n

U ∗
nνcn + V ∗

nνc
†
n, (9a)

β†
ν =

∑
n

Vnνcn + Unνc
†
n. (9b)

Matrices U and V are obtained from the HFB equations:(
ĥ − λ �̂

−�̂∗ −ĥ∗ + λ

)(
U

V

)
= E

(
U

V

)
, (10)

where λ is the chemical potential, ĥ is Hartree-Fock (HF)
potential, and �̂ the pairing potential. (From a practical
point of view, it is sometimes more advantageous to use the
pairing potential ˆ̃h [41,42].) The form of the HFB equations
in coordinate space is given in Refs. [41] and [42].

The density matrix and pairing tensor can be written as

ρmn = (V ∗V T )mn, (11a)

κmn = (V ∗UT )mn. (11b)

The coordinate representation of the Bogoliubov transfor-
mation,

βν =
∫

d3r
∑

σ

{
U (ν)∗(rσ )crσ + V (ν)∗(rσ )c†rσ

}
, (12a)

β†
ν =

∫
d3r

∑
σ

{
V (ν)(rσ )crσ + U (ν)(rσ )c†rσ

}
, (12b)

can be expressed through lower and upper components of the
q.p. wave functions:

V (ν)(rσ ) =
∑

n

φ∗
n(rσ )Vnν, (13a)

U (ν)(rσ ) =
∑

n

φn(rσ )Unν. (13b)

Finally, the density matrix and pairing tensor in coordinate
space are

ρ(rσ, r ′σ ′) =
∑

0�Eµ�Emax

V (µ)∗(rσ )V (µ)(r ′σ ′), (14a)

κ(rσ, r ′σ ′) =
∑

0�Eµ�Emax

V (µ)∗(rσ )U (µ)(r ′σ ′). (14b)

It is assumed that the continuum of q.p. with E > −λ has been
discretized and all q.p. states with energy lower than some
cutoff energy Ecut are retained (see discussion in Ref. [41]).

D. The blocking prescription and the equal
filling approximation

In the HFB theory, the ground state of an odd nucleus is a
one-q.p. excitation, β†

µ0
, with respect to the q.p. vacuum. In the

configuration representation, the corresponding density matrix
and pairing tensor are [45–48]

ρB,µ0
mn = (V ∗V T )mn + Umµ0U

∗
nµ0

− V ∗
mµ0

Vnµ0 , (15a)

κB,µ0
mn = (V ∗UT )mn + Umµ0V

∗
nµ0

− V ∗
mµ0

Unµ0 . (15b)

In practice, one must adopt a prescription to be able to
determine, at each iteration, the index µ0 of the q.p. state
to be blocked [49]. In the present study, this has been done
according to the recipe described in Ref. [50]. In the first step,
the mean-field Hamiltonian ĥ is diagonalized:

ĥϕn = enϕn. (16)

Because in this work parity and y signature are assumed to
be self-consistent symmetries, every s.p. level en is uniquely
identified by its position in a given parity and y-signature
block. This unique identification allows us to pin down
the configuration of the blocking candidate n0. To connect
the s.p. state ϕn0 with a q.p. state to be blocked, we calculate
at each iteration the overlap between ϕn0 and both the upper
component Uµ and the time-reversed lower component Vµ̄ of
q.p. states around the Fermi level [50]. The largest overlap in
this set defines the index µ0 of the q.p. state to be blocked. In the
beginning of the iterative process, s.p. states of a neighboring
even-even nucleus are taken.

Within the EFA, the state µ0 and its time-reversal partner
µ̄0 enter the density matrix and pairing tensor with the same
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weights, which ensures time-reversal symmetry and, thereby,
degeneracy of µ0 and µ̄0 [48]:

ρEFA,µ0
mn = (V ∗V T )mn + 1

2 (Umµ0U
∗
nµ0

− V ∗
mµ0

Vnµ0

+ Umµ̄0U
∗
nµ̄0

− V ∗
mµ̄0

Vnµ̄0 ), (17a)

κEFA,µ0
mn = (V ∗UT )mn + 1

2 (Umµ0V
∗
nµ0

− V ∗
mµ0

Unµ0

+ Umµ̄0V
∗
nµ̄0

− V ∗
mµ̄0

Unµ̄0 ). (17b)

The HFB equations are then solved by replacing (ρB,µ0 , κB,µ0 )
with (ρEFA,µ0 , κEFA,µ0 ). For the justification of the EFA ansatz
by means of statistical density operators and for detailed
discussion of the procedure involved, we refer the reader to
Refs. [48] and [51].

In this work we point to another possible justification of
the EFA. We first note that the time-even parts of the blocked
density matrices given by Eqs. (15a) and (15b) are identical
to the time-even parts of the density matrices in the EFA,
Eqs. (17a) and (17b). Therefore, all time-even densities in
Eq. (5) are exactly the same in both variants. Consequently, in
the blocking and EFA approximations, the time-even part of the
functional (Sec. II B) yields exactly the same self-consistent
solution. This allows us to reinterpret EFA density matrices
as those corresponding to the time-even functional in which
the time-odd polarizations exerted by the odd particle are
dynamically switched off. Of course, the blocking prescription
and EFA give exactly the same average values of all time-even
observables (e.g., radii and multipole moments) but they differ
in the average values of time-odd observables (e.g., spin
alignments and magnetic moments).

E. Blocking, alignments, and symmetries

Although for the functionals restricted to time-even fields
(or within the EFA), the time-reversed q.p states |µ〉 = β†

µ|0〉
and |µ̄〉 = β

†
µ̄|0〉 are exactly degenerate, this is not true any

longer in the general case. Here, the blocking prescription
does depend on which of these two states, or which linear
combination thereof, is used in Eqs. (15a) and (15b). To discuss
this point, we introduce here the notion of an “alispin,” which
pertains to the unitary mixing of states |µ〉 and |µ̄〉. This is
in complete analogy with the standard notion of the isospin,
which involves the unitary mixing of proton and neutron
states.

An alivector V (µ) is defined as a set of two complex
numbers, a and b (|a|2 + |b|2 = 1):

V (µ) =
(

a

b

)
, (18)

which corresponds to the linear combination of states |µ〉 and
|µ̄〉: |vµ〉 = a|µ〉 + b|µ̄〉. Alivectors reside in SU(2) space;
therefore the alirotation by an angle φ(µ) is defined as

V (µ)′ =
(

a′
b′

)
= eiφ(µ)◦σ (µ)

(
a

b

)
, (19)

where the alivectors of Pauli matrices are denoted σ (µ), and
◦ denotes the scalar product of alivectors. To recall that the
alirotation pertains to a single pair of states, we use the
superscript (µ) throughout.

The blocked density matrix, Eq. (15a), corresponding to the
state V (µ) reads

ρB,(a,b)
mn = ρmn − {|a|2VnµV ∗

mµ + |b|2Vnµ̄V ∗
mµ̄ + a∗bVnµ̄V ∗

mµ

+ ab∗VnµV ∗
mµ̄} + {|a|2U ∗

nµUmµ + |b|2U ∗
nµ̄Umµ̄

+ a∗bU ∗
nµ̄Umµ + ab∗U ∗

nµUmµ̄}. (20)

If time-reversal symmetry is conserved, the different blocks of
the Bogoliubov matrices are related:

− V ∗
n̄µ = Vnµ̄ and V ∗

nµ = Vn̄µ̄, (21)

and ρ(a,b)
mn = ρ

(a,b)∗
m̄n̄ . These relations lead to

ρ(ab)
mn = ρmn − VnµV ∗

mµ + U ∗
nµUmµ (22)

or, equivalently,

ρ(ab)
mn = ρmn − Vnµ̄V ∗

mµ̄ + U ∗
nµ̄Umµ̄. (23)

Therefore, in this limit, the exact blocking density matrix
becomes independent of the coefficients (a, b) of the mixing,
that is, it is an aliscalar. Because

ρEFA
mn = 1

2

(
ρ(1,0)

mn + ρ(0,1)
mn

)
, (24)

the EFA density matrix also coincides with the exact blocking
density matrix; hence, it is an aliscalar as well.

In the general case where time-reversal symmetry is
not dynamically conserved, however, the blocking density
matrix is not aliscalar and the energy of the system may
change as a function of the mixing coefficients (a, b). To
analyze the consequences of blocking different alirotated
states V (µ0)′ , we introduce the (real) alignment vector J (µ) =
〈µ| Ĵ |µ〉 = −〈µ̄| Ĵ |µ̄〉 and the (complex) decoupling vector
D(µ) = 〈µ| Ĵ |µ̄〉 = 〈µ̄| Ĵ |µ〉∗ [52]. Together, they form the
matrix elements of the alignment vector-alivector Ĵ (µ):

Ĵ (µ) =
(

J (µ) D(µ)

D(µ)∗ −J (µ)

)
. (25)

Expanding this operator [acting on SU(2) alistates] in the basis
of Pauli matrices, we find

Ĵ µ

1 = +�Dµ, (26a)

Ĵ µ

2 = −�Dµ, (26b)

Ĵ µ

3 = +Jµ, (26c)

where indices k = 1, 2, 3 enumerate the components of alivec-
tors. From these considerations it follows that the alignment
vector-alivector Ĵ µ′

, which corresponds to the alirotated pair,
Eq. (19), is obtained by⎛

⎜⎜⎝
Ĵ µ′

1

Ĵ µ′
2

Ĵ µ′
3

⎞
⎟⎟⎠ = exp(i φµ ◦ Sµ)

⎛
⎜⎝
Ĵ µ

1

Ĵ µ

2

Ĵ µ

3

⎞
⎟⎠ , (27)

where Sµ are the standard spin-1 matrices [53], which are
generators of rotation in the vector representation. This shows
that the concept of alirotation (equivalent to changing the
mixing of the blocked state) translates into a change in the
alignment of the system.
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To illustrate how this works, let us examine the special case
where the states |µ〉 ≡ |µy〉 and |µ̄〉 ≡ |µ̄y〉 are eigenstates of
the R̂y signature operator. Because

R̂iR̂j =
∑

k

εijkR̂k, (28)

we can express the states |µy〉 and |µ̄y〉 in terms of R̂z

eigenstates:

( |µy〉
|µ̄y〉

)
=

⎛
⎜⎜⎝

+ 1√
2
e−iπ/4 + 1√

2
e−iπ/4

− 1√
2
e+iπ/4 + 1√

2
e+iπ/4

⎞
⎟⎟⎠

( |µz〉
|µ̄z〉

)
, (29)

which corresponds to the rotation of the system by the Euler
angles (α, β, γ ) = (0, π/2, π/2). Consequently, the alivector
V (µy ) is the vector V (µz) alirotated by the angles φ(µ) =
(α, β, γ ). Because (i) the blocked density matrix is not an
aliscalar, and (ii) alirotations are induced by rotations of the
coordinate system or, equivalently, a change of the symmetry
operators used to label s.p. and q.p. states, we must conclude
that the blocked density matrix may depend on the choice of
the symmetry operators that commute with the Hamiltonian.1

More generally, as all alignment properties of the system
are embedded in the vector-alivector operator Ĵ , we also
see that the alirotation of states |µ〉 and |µ̄〉 corresponds to
HFB states having different alignment vectors. Therefore,
the latter can be used to tag blocked states. This is a very
convenient method, which can be applied not only in the
time-even version of the functional when the q.p. states |µ〉
and |µ̄〉 are degenerate, but also in the case of internally
broken time-reversal symmetry. The key to our considerations
of blocked states is the realization that blocking must depend
on the orientation of the alignment vector with respect to the
principal axes of the mass distribution. Therefore, the only
rigorous way to proceed would be for each q.p. excitation to
vary the orientation of the alignment vector with respect to the
principal axes of the system and retain the solution with the
lowest energy [54]. We give a pedagogical illustration of such
anisotropy of blocking in Sec. IV B3.

In many practical applications, however, one chooses a fixed
direction of alignment dictated by practical considerations. In
particular, the identification of blocked s.p. states n and q.p.
states µ0 is most conveniently carried out through the set of
conserved quantum numbers characteristic of the problem.
In all calculations performed in this work, nuclei are either
axially deformed or nearly axial, and they conserve reflection
symmetry. The corresponding symmetry group is DTD

2h ; hence,
signature r = ±i and parity π = ±1 are good quantum
numbers. In HFODD the signature is defined with respect to the

1Note that, in the particular case where the alivector is built
from the eigenstates |µy〉 and |µ̄y〉 of R̂y , the alirotation by
(0, π, 0) is equivalent to the R̂y symmetry and therefore, leaves,
the system invariant. This operation corresponds to (|µy〉, |µ̄y〉) →
(+|µ̄y〉,−|µy〉). Therefore, in this particular case, blocking state |µy〉
or state |µ̄y〉 gives exactly the same energy, even though time-reversal
symmetry is internally broken and the q.p. spectra do not exhibit the
Kramers degeneracy.

y axis of the reference frame [55]. In this way, the alignment
vector is restricted to having only the y component. To realize
the three possible alignments of the angular momentum along
the principal axes, it is sufficient to orient the longest, shortest,
or intermediate axis along the y axis. Because in most cases,
the configurations analyzed in this study are axial, only two
orientations suffice. We show in Sec. III A how to implement
such a scenario.

Equivalently, one could work with a good z-simplex basis
such as in Ref. [56]. In that case, the default alignment is along
the z axis, but the results still depend on the orientation of the
body. Only if the alignment vector were allowed to cover the
full solid angle would the physical properties of the system
not depend on the choice of the basis used to describe the odd
nucleus.

III. METHOD OF CALCULATION AND OPTIMIZATION
TECHNIQUES

This section briefly describes the DFT solvers used in this
work and discusses the choice of parameters entering our
calculations. We also outline various optimization techniques
that we have implemented to carry out large-scale DFT
calculations for one-q.p. states on leadership-class computers.

A. Numerical parameters

All calculations in this work are performed with the DFT
solvers HFBTHO [57] and HFODD [50,55,58]. Both codes solve
the Skyrme HFB problem in the configuration space by
means of the harmonic oscillator (HO) expansion technique.
In HFBTHO, the cylindrical HO basis is used, and both axial
and time-reversal symmetries are imposed. This implies that
the EFA must be used for blocking calculations. The three-
dimensional solver HFODD employs the Cartesian HO basis and
is symmetry unrestricted. This unique feature of HFODD makes
it a tool of choice for our study, as in the polarized nuclear
configurations many self-consistent symmetries are usually
broken. The blocking prescription is implemented exactly in
HFODD with all the time-odd fields taken into account. The two
codes have been benchmarked against one another and they
yield the same results within a few electronvolts for spherical
or axially deformed even-even nuclei [59].

As already mentioned, all nuclei considered in this work are
either axial or slightly triaxial, as well as reflection symmetric.
Therefore the y signature and parity are conserved and used
in HFODD to tag q.p. and s.p. states. However, this implies
that the total alignment is confined to the y axis. Because the
latter is not the quantization axis, one cannot easily associate
the s.p. spin � with the expectation value of the angular
momentum: the situation is analogous to the collective rotation
in high-spin physics. For the sake of identification of deformed
Nilsson orbitals, it is convenient, however, to reintroduce �

as a (nearly) good quantum number by orienting the angular
momentum along the z axis; the resulting alignment properties
correspond to the limit of noncollective rotation.

To this end, we need to associate the quantization axis with
the symmetry axis of the nucleus. This can be achieved via a
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Euler rotation of the body-fixed frame (by α = π/2, β = π/2,
γ = 0) or by imposition of constraints on the expectation
values of the quadrupole tensor Q̂2µ. After testing these
two options, we choose the Euler rotation: calculations for
even-even nuclei are performed in the standard y-signature
mode, then solutions are Euler-rotated and used to warm-start
calculations for odd nuclei. In this way, the Nilsson quantum
number � is computed from the expectation value of ĵy . This
technique turns out to be both stable and fast. Note that the
energies of a given blocked state in the Euler-rotated case and
original orientation are different, as discussed in Sec. II E. Only
a complete survey of all possible orientations of the alignment
vector, which would be a major computational endeavor, could
pin down the correct orientation.

As is well known, calculations for deformed nuclei con-
verge faster if the eigenstates are expanded on a stretched basis
that follows the geometry of the nuclear density. Unfortunately,
the stretched basis is not compatible with the Euler rotation of
the nucleus in space in HFODD. For that reason, all calculations
presented in this work have been carried out in a full spherical
basis of Nosc = 14 oscillator shells (the number of basis states
is Ns = 680). This choice guarantees stability of results for
the relatively modest deformations considered in this study.
The oscillator frequency was fixed at 1.2 × h̄ω0 [60] for
h̄ω0 = 41/A1/3 MeV.

In this work, we use three commonly used Skyrme
parametrizations: SIII [61], SkP [41], and SLy4 [62]. In
the pairing channel, we employ the density-dependent δ

interaction in the mixed variant [63]:

V (r, r ′) = V0

[
1 − 1

2

ρ(r)

ρ0

]
δ(r − r ′), (30)

where ρ0 = 0.16 fm−1 and V0 is the pairing strength (identical
for protons and neutrons). Note that the use of such a zero-
range interaction requires us to introduce a renormalization
(or regularization) procedure to avoid nonphysical divergences
[64,65]. We employ the standard value Ecut = 60 MeV.

For each Skyrme EDF, the pairing strength V0 has been
adjusted to reproduce the experimental proton odd-even mass
difference in the deformed nucleus 162Dy, �(3)

p = 0.60 MeV.
This choice has been motivated by the findings of Ref. [66] that,
by adjusting V0 to experimental data for a spherical semimagic
nucleus, one underestimates pairing correlations in deformed
systems having a lower s.p. level density around the Fermi
surface. Moreover, by considering the proton pairing gap, one
effectively takes into account the Coulomb contribution to
pairing [67]. The pairing strengths used in this work are V0 =
−314.406, −297.303, and −249.059 MeV for SLy4, SIII,
and SkP, respectively. In Sec. IV E, we also consider SkO,
V0 = −269.226 MeV, and SkM*, V0 = −297.875 MeV.

B. Parallelization and optimization

The advent of Teraflop and Petaflop supercomputers en-
ables large-scale surveys with symmetry-unrestricted DFT
solvers. To optimize resources, however, optimization of
the production codes is required. Starting from the original
published versions of HFODD and HFBTHO, we made a number
of improvements. First, a parallel interface using the standard

message passing interface (MPI) has been constructed to
allow the automated distribution of calculations over several
computing cores. Let us note that the standard nuclear DFT
calculations are “embarrassingly parallel.” Indeed, solving the
HFB equations for one nuclear configuration usually does not
take more than a few hours on a standard desktop computer.
Therefore, each computing core of a massively parallel system
can process a single HFB task corresponding to a particular
nucleonic configuration. Only in the limit of very large HO
bases, or for DFT solvers constructed in the coordinate space,
does the parallelization of the solvers become necessary.
The advantage of using massively parallel architectures is
that simultaneous calculations of hundreds or thousands of
different many-body configurations are possible in a very
reasonable time. Such a strategy makes it possible to extract
systematic trends, use standard statistical analysis toolboxes,
and ultimately develop nuclear EDFs of spectroscopic quality.

The scaling of a DFT problem with the number of
processors also implies that a simple master-slave parallel
architecture is sufficient for most applications, and this solution
is adopted here. All calculations in this study were performed
on the Cray XT3/XT4 Jaguar supercomputer at the National
Center for Computational Science at the Oak Ridge National
Laboratory and on the Cray XT3 Franklin supercomputer at the
National Energy Research Scientific Computing Center at the
Lawrence Berkeley National Laboratory. Typical production
runs have involved from 8000 to 12 000 computing cores per
run, and the typical calculation time was about 2 h.

The HFB equations represent a coupled system of nonlinear
equations for nucleonic densities. The nonlinearity enters
through the dependence of the mean fields on densities (self-
consistency). To diminish the number of iterations required to
attain a given precision, we employ the modified Broyden
method [68,69]. The method is based on the observation
that the convergence of the HFB process stops when the
characteristic variables in the problem, for example, the density
ρ, does not change any more from one iteration to the next:
||ρ(n+1) − ρ(n)|| ≈ 0. In other words, the HFB equations can be
viewed as a fixed-point problem, and iterations can therefore be
optimized by employing a quasi-Newton method. It was shown
that the computational cost (in units of number of iterations)
could be reduced substantially, by a factor of 3 to 4. Our
particular implementation of the modified Broyden method is
described in Ref. [69].

As mentioned earlier, HFODD solves the HFB problem by
expanding eigenvectors in the Cartesian HO basis. In terms
of speed, one of the major bottlenecks in HFODD is the
diagonalization of the HFB matrix. The latter is carried out
with the subroutine ZHEEVR of the LAPACK library. We found
that a significant gain in terms of speed, up to 30%–40% for
large HO bases with, for example, Nosc = 20 shells, could be
obtained by using machine-specific implementations of the
BLAS and LAPACK libraries, such as ATLAS.

C. Massively parallel calculations: Convergence improvements

Based on the experience gained in self-consistent calcula-
tions for odd-A nuclei, it appears that calculations involving
blocking are always less stable than those performed for
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even-even nuclei. Apart from the specific issue related to
finite-size instabilities addressed in Sec. IV E, these numerical
instabilities are related to the need to select, at each iteration,
the blocked q.p. state. The blocking procedure is outlined in
Sec. II D and the detailed justification is given in, for example,
Ref. [49]. The selection method implies that the blocked q.p.
state may change from one iteration to the next, in particular,
at the beginning of the calculation. This numerical noise is
the price paid for the full self-consistency, and it explains why
small differences in the initial conditions can actually affect
the convergence process.

When only a few nuclei are considered, and a small
number of blocked configurations near the ground state is
calculated, one can often find ways to converge calculations,
such as (i) changing the linear-mixing parameter of the
self-consistent scheme; (ii) starting from the unblocked, fully
paired state corresponding to an odd average particle number
(false vacuum) [70]; (iii) starting from the even-even nucleus
with one more particle for a particle-like blocked state and with
one particle less for a holelike blocked state, as implemented
in Ref. [49] (we also used this method in our calculation);
and (iv) using different values of the linear-mixing parameter
for time-even, time-odd, and/or pairing fields. Whenever a
blocking calculation fails to converge, one may repeat it by
using one or several of these tricks until a converged result is
obtained. This is what was done in previous studies involving
self-consistent calculations, and it was possible because these
studies were focused on ground-state properties and only a
minimum number of different configurations was considered.

In our case, however, we consider thousands of configura-
tions, and such a trial-and-error scheme, however helpful, is
simply impossible to implement. Instead, we have resorted to
a simple trick, namely, as the initial conditions do matter, we
artificially generate slightly different initial conditions for the
two signature partners that converge to practically the same
result.

The main idea here consists in adding a tiny rotational
frequency of about h̄ω = 0.001 MeV to break the degeneracy
of signature configurations. This improves the convergence
rate at the price of an insignificant numerical error of
about 1–2 keV, on average. We illustrate this fact by two
specific examples of blocked states in 163Tb (native ver-
sion, noncollective orientation) with different alignments.
For the blocked state [411]1/2, at h̄ω = 0 the total energy
equals −1322.279 268 MeV, while for h̄ω = +0.001 and
−0.001 MeV the total energies read −1322.279 480 MeV
(J‖ = −� = −1/2) and −1322.279 188 MeV (J‖ = +� =
+1/2), respectively. Similarly, for the blocked state [404]7/2,
the three corresponding energies are −1321.725 322 MeV,
−1321.725 538 MeV (J‖ = −� = −7/2), and −1321.726
010 MeV (J‖ = +� = +7/2). To make our point, we de-
liberately show these energies with far more digits than
are physically relevant. In these particular two examples,
the numerical precision of the calculation is 10 eV, which
is exceptionally good for odd nuclei. Therefore, the noted
differences can only be attributed to the effect of the cranking
term. Without this term, by blocking states µ0 and µ̄0 one
always obtains exactly the same HFB energy, Eµ0 = Eµ̄0 ,
because the full Skyrme functional is time-even.

IV. RESULTS

This section presents a number of Skyrme HFB results for
odd-mass nuclei. We begin by giving a detailed numerical
comparison of the EFA with the exact blocking prescription
in the limit of conserved time-reversal symmetry. The impact
of time-odd fields on the q.p. spectrum in the rare-earth region
is shown in Sec. IV B, with the native, gauge, and Landau
versions of SIII, SkP, and SLy4 functionals. The role of
the nuclear alignment vector on physical observables is also
studied. Results of calculations are compared with selected
experimental data in Sec. IV C. The triaxial polarization
induced by a blocked quasiparticle is discussed in Sec. IV D.
Finally, Sec. IV E mentions the problem of the intrinsic
instability of certain Skyrme functionals that appear when
time-odd terms are included.

A. Validation of the equal filling approximation

To demonstrate the numerical precision of our calculations,
Table I reports the results for four one-quasineutron states
in 121Sn obtained with HFBTHO (EFA) and HFODD (exact
blocking). They are selected based on the mean-field spectrum,
Eq. (16), of 120Sn. For the sake of this comparison, the
time-odd fields in HFODD have been switched off, thereby
enforcing the regime where the exact blocking procedure
is strictly equivalent to the EFA; see Sec. II D. Indeed, the
numerical differences obtained between the EFA and exact
blocking are extremely small, less than 1 keV for the four
cases reported in Table I. This can be entirely attributed to
various implementations adopted differently in the two codes
such as the method of computing the Coulomb potential. The
even-even core 120Sn is spherical in its ground state. The q.p.
blocking slightly polarizes the nuclear shape, inducing small
quadrupole deformations for some configurations.

Although the time-even observables obtained within the
EFA and exact blocking are strictly identical if the time-odd
fields are disregarded, this is not true for time-odd observables.
In Table I, this is illustrated by the values of alignments of
the blocked q.p.’s aligned parallel (J‖) or perpendicular (J⊥)
to the symmetry axis. Of course, without time-odd fields,
the direction of alignment does not influence the time-even
observables.

Rare-earth nuclei provide an excellent testing ground for
studies of deformed Nilsson orbits. Many of those nuclei are
well-deformed, near-axial rotors and the deformed mean-field
theory is particularly suitable to describe their structural
properties. Table II reports a comparison for several one-
quasiproton configurations in a well-deformed odd-proton
nucleus 163Tb. In HFBTHO, the determination of a blocking
candidate was made using the mean-field spectrum, Eq. (16),
of the even-even core 162Dy. In the case of HFODD, to improve
the speed and stability of the iterative process [49], blocking
candidates of a particle character (above the proton Fermi
level of 162Dy) were selected from the mean-field spectrum of
164Dy, while holelike levels were selected from that of 162Dy.
Of course, the final results do not depend on which particular
even-even nucleus has been used as a core.

The results reported in Table II show again that, without
time-odd fields, the full blocking procedure is equivalent to
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TABLE I. Comparison of EFA (HFBTHO) with exact blocking (HFODD) for four one-quasineutron configurations in 121Sn. Time-odd
fields are switched off. Quasiparticle energy Eqp, neutron chemical potential λn, neutron pairing energy En

pair, average neutron pairing gap
�n = Tr(�ρ)/N , total r.m.s. radius, axial quadrupole deformation β, total quadrupole moment Qtot, kinetic energy Ekin (for protons and
neutrons), total spin-orbit energy ESO, direct Coulomb energy Edir, and total energy Etot are listed. The last two lines show the HFODD

alignments of the blocked quasiparticles: J‖ was calculated in the noncollective orientation, and J⊥ in the collective orientation (see discussion
in Sec. IV B3). In the EFA total alignments are equal to 0 by construction. Orbits are labeled with the �j (�π ) quantum numbers. The SLy4
functional is used in the particle-hole channel and the density-dependent δ interaction with V0 = −285.634 MeV. Differences between HFBTHO

and HFODD results are in boldface.

d3/2(1/2+) d3/2(3/2+) h11/2(5/2−) g7/2(7/2+)

EFA Exact EFA Exact EFA Exact EFA Exact

Eqp (MeV) 1.0076 1.0080 1.1822 1.1820 1.4570 1.4570 2.2879 2.2880
λn (MeV) −7.7496 −7.7496 −7.7288 −7.7288 −7.9834 −7.9836 −7.6371 −7.6371
En

pair (MeV) −9.2949 −9.2948 −9.4411 −9.4410 −8.7145 −8.7147 −10.4041 −10.4036
�n (MeV) 1.0575 1.0575 1.0667 1.0667 1.0395 1.0395 1.1206 1.1206
r.m.s (fm) 4.6895 4.6895 4.6889 4.6889 4.6894 4.6894 4.6884 4.6884
β −0.0257 −0.0257 0.0131 0.0131 0.0099 0.0098 0.0340 0.0340
Qtot (b) −0.8627 −0.8624 0.4383 0.4383 0.3301 0.3351 1.1409 1.1409
En

kin (MeV) 1360.4385 1360.4384 1360.9970 1360.9970 1358.8995 1358.8980 1364.5696 1364.5680
E

p

kin (MeV) 827.3176 827.3177 827.3582 827.3582 827.1892 827.1890 828.1830 828.1830
Etot

SO (MeV) −50.4839 −50.4839 −50.8174 −50.8174 −49.5856 −49.5844 −54.6531 −54.6529
Edir (MeV) 365.7437 365.7437 365.7638 365.7638 365.7387 365.7386 365.9980 365.9979
Etot (MeV) −1024.7074 −1024.7073 −1024.6538 −1024.6538 −1024.3856 −1024.3855 −1023.4465 −1023.4465
J‖ (h̄) 0.00 0.50 0.00 1.50 0.00 2.50 0.00 3.50
J⊥ (h̄) 0.00 0.82 0.00 0.00 0.00 0.43 0.00 0.01

the EFA. It is worth noting that the difference in the total
energy is less than 1 keV for all of the excited states, and less
than 0.002 b for the quadrupole moments, regardless of the
quadrupole polarization exerted by a blocked state.

B. Effect of time-odd fields

This section illustrates the effect of the various prescriptions
for the time-odd channel, Eq. (6), of the functionals. Calcula-

TABLE II. Comparison of EFA (HFBTHO) with exact blocking
(HFODD) for 10 one-quasiproton configurations in 163Tb. Total energy
Etot and total quadrupole moment Qtot are listed. Orbits are labeled
with the asymptotic Nilsson quantum numbers [Nnz�]�π . The SIII
Skyrme functional is used in the particle-hole channel. Time-odd
fields are disregarded. Differences between HFBTHO and HFODD

results are in boldface.

Blocked state EFA (HFBTHO) Exact (HFODD)

Qtot (b) Etot (MeV) Qtot (b) Etot (MeV)

[411]3/2+ 18.514 −1323.495 18.514 −1323.495
[532]5/2− 17.759 −1322.648 17.759 −1322.647
[523]7/2− 18.554 −1322.415 18.555 −1322.414
[411]1/2+ 18.384 −1322.322 18.384 −1322.322
[413]5/2+ 18.654 −1322.151 18.654 −1322.151
[541]1/2− 20.138 −1321.771 20.136 −1321.773
[541]3/2− 17.291 −1321.357 17.290 −1321.357
[530]1/2− 17.034 −1320.762 17.032 −1320.762
[420]1/2+ 17.766 −1320.090 17.767 −1320.090
[404]9/2+ 19.266 −1319.851 19.266 −1319.851

tions were performed for all odd-proton nuclei with 63 � Z �
75 and 78 � N � 104. For each of them, 14 nondegenerate
blocked configurations around the Fermi level have been
considered. Altogether, 3822 independent one-quasiproton
states were studied.

1. Native functionals

Table III displays results for one-quasiproton states in
163Tb in the time-even, native, gauge, and Landau variants of
calculations. The alignment and elongation axes coincide with
the y axis of the reference frame. The time-even energies are
shown in the absolute scale. For other variants, displacements

TABLE III. Energies (MeV) of one-quasiproton configurations
in 163Tb calculated using the time-even, native, gauge, and Landau
variants of the SIII Skyrme functional; see Sec. II B. Results for the
time-even variant are shown in the absolute scale, while those for the
other variants are shown as shifts, Eq. (31).

Blocked state Time even Native Gauge Landau

[411]3/2+ −1323.495 −0.075 +0.042 −0.125
[532]5/2− −1322.647 −0.052 +0.029 −0.105
[523]7/2− −1322.410 −0.060 +0.039 −0.080
[411]1/2+ −1322.322 −0.043 +0.040 −0.118
[413]5/2+ −1322.151 −0.048 +0.062 −0.085
[541]1/2− −1321.773 −0.007 +0.055 −0.075
[541]3/2− −1321.357 −0.047 +0.036 −0.107
[530]1/2− −1320.762 −0.037 +0.017 −0.161
[420]1/2+ −1320.090 −0.127 +0.018 −0.231
[404]9/2+ −1319.851 −0.121 +0.036 −0.150

024316-8



ONE-QUASIPARTICLE STATES IN THE NUCLEAR . . . PHYSICAL REVIEW C 81, 024316 (2010)

FIG. 1. Cumulative histogram of energy differences, Eq. (31), for
one-quasiproton states in deformed rare-earth nuclei calculated with
SIII, SkP, and SLy4 EDFs. Dot-dashed open bins, native functionals;
filled bins, Landau functionals. The bin size is 5 keV.

with respect to the time-even case are shown:

�ETodd = ETodd=0
qp − ETodd 	=0

qp . (31)

In the particular example reported in Table III, the maximum
shift in one-q.p. levels owing to the time-odd terms of the native
functional is 127 keV. This is consistent with the earlier results
in Refs. [70] and [71] and overall smaller than in the relativistic
mean-field approach, where time-odd polarization corrections
seem to range from only a few dozen kiloelectronvolts in
deformed actinides up to half a megaelectronvolt in light
nuclei [36,37].

The overall impact of the time-odd fields on the energy
of one-quasiproton states in the deformed rare-earth nuclei
is summarized in Fig. 1, which shows the distribution of
�ETodd (31) for SIII, SkP, and SLy4 EDFs. When native
functionals are used, the total number of converged cases is
1404 (524 for SIII, 443 for SkP, and 437 for SLy4). The average
value of �ETodd is −50 keV, with a standard deviation of
42 keV.

The magnitude of the time-odd effect depends on the
choice of the EDF. To illustrate this point, Fig. 2 displays the
distribution of �ETodd for individual functionals. Focusing
in this section on the native functionals (dot-dashed open
bins), it is shown that the largest time-odd effect is predicted
for SIII, which also shows an appreciable spread in values
(configuration dependent). On the contrary, for the SkP
parametrization the distribution of �ETodd is fairly narrow,
centered around −40 keV.

By construction, Figs. 1 and 2 contain contributions from
ground-state configurations and from nearly lying excited
states. Because ground-state values are of particular impor-
tance, as they impact mass predictions, Fig. 3 shows �ETodd

for ground-state configurations only. The average value of the
ground-state time-odd displacement is only ∼50 keV. Most
of the few cases with |�ETodd

gs | > 150 keV in fact correspond
to a collapse of pairing correlations in one of the two sets of
calculations. It may be worth noting that the most recent HFB
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FIG. 2. Similar to Fig. 1 except for individual Skyrme functionals:
SIII (top), SkP (middle), and SLy4 (bottom).

mass formula based on the Skyrme BSk17 parametrization
yields a root mean square (r.m.s.) deviation of 581 keV [16].
The uncertainty associated with neglecting the time-odd fields
appears, therefore, to be smaller by an order of magnitude.

To discuss the configuration dependence of the time-odd
displacement, it is instructive to identify the s.p. orbits of
interest. To this end, Fig. 4 shows the evolution of the proton
s.p. energies, defined as the eigenvalues of the mean-field
operator, Eq. (16), in the nucleus 164Dy calculated with SLy4
as a function of the axial quadrupole deformation α20. This
Nilsson diagram has been obtained by carrying out a set of
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FIG. 3. Similar to Fig. 1 but for ground-state configurations only.

constrained HFB calculations along a one-dimensional 〈Q̂20〉
path.

Although the values of �ETodd are usually small, there are
a few cases where the displacement can amount to more than
100 keV. A detailed analysis of the blocked configurations
for all three interactions shows that the largest deviations
correspond essentially to the [420]1/2, [404]9/2, [400]1/2,
and [505]11/2 Nilsson orbitals. It is interesting to note that
the value of the s.p. angular momentum does not seem to
be crucial, as these states can be associated with both low-
and high-j spherical shells. In deformed rare-earth nuclei,
equilibrium deformations are α20 ∼ 0.25–0.30. As shown in
Fig. 4, in this deformation range, the orbital [420]1/2 is a
deep-hole state, while [404]9/2, [400]1/2, and [505]11/2
are highly excited particle states. All these one-quasiproton
excitations are strongly oblate driving. A similar result has
also been obtained for SLy4 and SkP.

2. Landau functionals

Traditionally, only the time-even channel of Skyrme func-
tionals has been adjusted to selected experimental data. That
is, the time-odd channel has usually not been constrained.

FIG. 4. Nilsson proton levels of SLy4 in 164Dy as a function of
the axial quadrupole deformation α20 (α22 = 0).

This is illustrated by the broad spread of the values of
the isoscalar Landau parameters g0 and g1 of the standard
Skyrme functionals [23,72]. In Ref. [23], a careful study
of Gamow-Teller resonances within the Skyrme EDF theory
yielded a set of “optimal” Landau parameters that could be
used to fix some of the coupling constants of the time-odd
channel of the functional (namely, Cs

t and CT
t ).

As reported in Table III, the time-odd polarization in the
Landau variant is greater than in the native variant, with
the largest shift growing to 231 keV. The time-odd shifts in
the gauge variant are generally smaller than for the native
and Landau parametrizations. They also have opposite sign
(time-odd polarization in the gauge variant decreases the
binding energy, while it is repulsive in the native and Landau
variants).

The black bins in Figs. 1–3 show �ETodd for Landau-
corrected functionals. The effect of this correction is signif-
icant, as it shifts the centroid of most histograms by about
100 keV for SIII and SkP and 50 keV for SLy4. When only
ground states are considered, the overall shift is of the order
of 50 keV.

To finish this section, let us recall that setting C�s
1 = 0 was

motivated in Ref. [23] to reproduce the energy and strength
of the GT resonance, although different conclusions about
the role of this term were obtained later, in Ref. [73]. In any
case, the isoscalar channel governed by the C�s

0 term is not
constrained by GT resonances, and in Refs. [6,13,23], and [72],
and these terms are set to zero essentially to ensure the stability
of the calculation. We briefly discuss this point in Sec. IV E.

3. Alignments and choice of the quantization axis

As discussed in Sec. II E, one of the characteristic features
of the treatment of odd nuclei in the blocking approximation
is the dependence of time-odd densities on the orientation
of the alignment vector with respect to the principal axes
or, equivalently, the choice of the self-consistent symmetries
and quantization axis. To measure this effect, we performed
two sets of calculations. The first variant (⊥) corresponds to
the alignment vector aligned along the y axis and the shape
symmetry axis aligned along the z axis. In the terminology of
the cranking model, this case represents “collective rotation”
perpendicular to the symmetry axis. In the second variant (‖),
the nucleus is rotated by 90o, as described in Sec. III A, so
that the alignment and symmetry axes coincide with the y axis
(“noncollective rotation”).

Note that in both situations the y signature and parity are
conserved: the identification of blocking configurations via the
position of the blocked state in a given signature/parity block
hence provides a very robust way of tracking configurations
before and after the Euler rotation, as it is independent of
the changes in other spatial characteristics of the q.p. wave
functions. As mentioned in Sec. III A, the original Nilsson
label of a q.p. state can be easily recovered in the noncollective
orientation by simply exchanging the roles of the z and y axes
in their computation.

In Fig. 5 we show the distribution of differences, �Ej =
E

‖
qp − E⊥

qp, for the 3822 cases presented in the previous section
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FIG. 5. Cumulative histogram of deviations �Ej = E‖
qp − E⊥

qp

between energies of one-quasiproton states calculated in the
noncollective-rotation (‖) and collective-rotation (⊥) variants. Dot-
dashed open bins, native variants; filled bins, Landau variants. The
bin size is 5 keV.

(only those well converged are included in the plot). It is shown
that the time-odd polarization owing to the orientation of q.p.
alignment gives an appreciable contribution to the time-odd
shift, with the average value of �Ej being about 50 keV in
the native variant. The orientation effect seems to be weaker
for Landau functionals. While the energy shift �Ej depends
on the actual configuration, the total energy in the collective
rotation scenario (⊥) is overall lower than in the noncollective
one (‖) when native functionals are used.

C. Experimental odd-proton spectra

In well-deformed nuclei, one-q.p. states can be related
to the rotational band-head configurations [74]. In rare-earth

nuclei, rich systematics of experimental data exist, and most
importantly, the customary assignments of Nilsson labels
[Nnz�]� are available [30,75]. Although these labels are
approximate, they facilitate the comparison between theory
and experiment.

In Fig. 6 we show the one-quasiproton spectra for the
Ho (Z = 67) isotopic chain predicted with SkP (upper-left
panel), SIII (lower-left panel), and SLy4 (lower-right panel)
functionals in the native variant. They are compared to
experimental data. We follow the convention of Refs. [30]
and [76], whereby the holelike excitations are plotted below
zero (representing the ground-state configuration), while the
particle-like states are plotted above zero.

The comparison with experiment suggests that the func-
tional parametrizations employed in our work are not of
spectroscopic quality for deformed nuclei. While the general
deformation trends are reproduced and most of the orbitals
found experimentally are indeed predicted to appear around
the Fermi level, the quantitative agreement with the data is not
particularly impressive. For example, the SLy4 parametriza-
tion fails to reproduce the observed [523]7/2 ground state of
Ho isotopes; this state is predicted to lie 300–500 keV above
the calculated [411]1/2 ground state. Surprisingly, the oldest
Skyrme parametrization SIII gives the best reproduction of
experimental band heads. The result in Fig. 6 is consistent with
the conclusions in Ref. [38]; they found that the agreement of
both spin and parity in the self-consistent models reaches about
40% for well-deformed nuclei regardless of the Skyrme force
used.

The three functionals used here have different isoscalar
effective masses; m∗ = 1, 0.707, and 0.7 for SkP, SIII, and
SLy4, respectively. The effect of m∗ on shell structure is
complex [7]; among others, it impacts the density of states
around the Fermi level. As shown in Fig. 6, the average
level density obtained with SkP is indeed close to the
experimental one. However, this does not necessarily mean
that the spectroscopic properties are better described with this

FIG. 6. (Color online) One-quasiproton
band-head energies: calculated with SkP (top
left), SIII (top right), and SLy4 (bottom left)
Skyrme functionals, and extracted from ex-
perimental data (bottom right), plotted versus
neutron number for Ho isotopes. Hole states
are plotted below the ground state (zero energy)
and particle states are plotted above. The time-
odd terms are included in the native variant.
Experimental data are taken from Refs. [30]
and [75].
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interaction: just as for SLy4, the ground state is incorrectly
assigned to the [411]1/2 orbital for all isotopes.

There are, indeed, many factors that may impact the order
of one-q.p. states. The recent analysis of spherical s.p. shell
structure [7] has demonstrated that the isoscalar coupling
constants in EDF have a large impact on the position of s.p.
energies and spin-orbit splitting. It was also shown that the role
of the effective-mass coupling constant cannot be reduced to
merely changing the overall density of states. In fact, effective
mass significantly influences relative positions of s.p. levels,
including the splitting of spin-orbit partners.

D. Triaxial shape polarization

Triaxial deformations of nuclear shape are enhanced at high
spins [77,78]. One spectacular example is the nuclear wobbling
motion, which is caused by the fast rotation of triaxially
deformed nuclei [74,79–81]. The phenomenon of nuclear
chirality is also tightly related to axial asymmetry [54,82,83].
Recently, a systematic study of ground-state nuclear shapes
in the framework of the macroscopic-microscopic model has
also pointed to regions of triaxial instability in the nuclear
chart [84].

In the deformed rare-earth region that we consider in this
work, the blocking of a q.p. built on intruder configurations
has a strong γ -driving effect [85–88]. Most of the studies
of this phenomenon are so far confined to high-spin states.
Our calculations offer the opportunity to assess the degree of
triaxiality in the ground-state configurations associated with
weakly spin-polarized states.

The calculated equilibrium deformations of one-
quasiproton configurations considered in our survey are dis-
played in Fig. 7. Time-odd terms are set to zero, so that results
can be compared with the time-even calculations performed
with HFBTHO that define the axial reference point. As is
apparent in Fig. 7, for the majority of configurations, triaxiality
is very small, with γ deformation typically less than 1◦.

FIG. 7. Distribution of equilibrium deformations in the (X, Y )
plane, X = β cos[γ + (π/6)] and Y = β sin[γ + (π/6)], where β

and γ are the standard Bohr quadrupole deformation parameters.
The figure corresponds to the 3822 different blocked configurations
considered in this study. Time-odd terms are set to zero.

TABLE IV. Equilibrium deformation of the [402]3/2 blocked
configuration in several odd-proton isotopes with the SLy4 interaction
(time-odd terms set to zero). �γ E represents the gain (keV) in energy
induced by the triaxiality.

Z N E∗ (MeV) β γ (deg) �γ E (keV)

69 90 1.506 0.21 7.7 −191
69 92 2.070 0.25 6.7 −187
69 94 2.471 0.28 5.9 −191
69 96 2.745 0.29 5.4 −184
69 98 2.955 0.30 4.0 −124
71 86 0.232 0.13 19.6 −233
71 88 0.647 0.17 11.8 −214
71 90 1.106 0.20 8.9 −195
73 88 0.442 0.16 8.1 −203
73 90 0.717 0.18 8.9 −205

Only a few highly excited states are characterized by a
sizable triaxial polarization: one such example is the state
[402]3/2, which originates from the spherical d3/2 orbital
from the N = 4 major shell and is pushed up into the N = 5
major shell because of deformation. In Table IV we report
the equilibrium deformations calculated with SLy4 for this
specific configuration in a number of isotopes. The excitation
energies of [402]3/2 range from 0.2 to 3 MeV. On average,
the net energy gain induced by the triaxial polarization of the
core is of the order of 200 keV in this extreme case.

As indicated, the results presented in Fig. 7 were obtained
by setting all time-odd fields to zero. When this constraint is
released, ground-state configurations remain overwhelmingly
axial, independently of the orientation of the alignment vector
(cf. discussion in Sec. II E). However, we do observe that in
the collective orientation limit, low-j intruder states, such as
[541]1/2 (from h9/2) and [550]1/2 (from h11/2), or high-j
intruder states, such as [505]11/2 (from h11/2), seem slightly
more unstable against γ polarization than in the noncollective
situation.

This overall axial stability is illustrated in Fig. 8, where
the distributions of the γ angles for well-deformed odd-proton
states in the rare-earth nuclei are plotted. For better legibility
of the figure, the very rare pronounced triaxial cases with
γ > 2◦ have been omitted; they have already been discussed,
and so have the many near-axial states with γ < 0.05◦. In the
lower panel corresponding to the collective orientation, the few
points beyond γ = 1◦ correspond to the γ -driving orbitals. If
the rotational frequency ωy is increased (cranking), we find
that the degree of triaxiality increases accordingly [85,87,89].

E. Finite-size instabilities of band-head calculations

It has been shown that some parametrizations of the Skyrme
energy functional could be prone to finite-size instabilities
[90–92]. In particular, the time-even C

�ρ
t ρt�ρt and time-odd

C�s
t st�st terms could, in some cases, lead to divergences

of the HFB iterative procedure. The size of these insta-
bilities depends on a number of factors, such as the EDF
parametrization, particle number, and specific implementation
of the DFT solver. The detailed analysis of EDF instabilities
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FIG. 8. Triaxiality (measured by the angle γ ) of well-deformed
odd-proton states (β > 0.1) in the rare-earth region calculated with
SIII, SkP, and SLy4 EDFs for the two orientations discussed in
Sec. IV B3: collective (top) and noncollective (bottom).

performed in Ref. [92] was based on the RPA response function
approach of Ref. [93] applied to Skyrme functionals [94,95].
Results were reported in 40Ca and 56Ni for the SkP and SLy5
parametrizations.

Finite-size instabilities governed by C�s
t terms are ampli-

fied in polarized systems such as odd-mass nuclei. Indeed,
these terms are only active when time-reversal symmetry
is broken. As shown in Sec. IV B, the impact of time-odd
components is weak, at least in the rare-earth region that
we study. It is therefore possible to scale these terms by
slightly varying the values of C�s

t , without impacting the
calculated properties significantly. By contrast, scaling the
coupling constants C

�ρ
t could result in totally nonphysical

solutions.
According to Ref. [92], the functionals employed in this

work, namely, SIII, SkP, and SLy4, should not be particularly
sensitive to spin instabilities. Indeed, the rate of convergence
in our calculations is of the order of 40%–50% for those three
cases. This is less than for even-even axially deformed nuclei,
but this rate can be tied to factors such as collapse of pairing,
level crossings, etc.

However, other Skyrme parametrizations may be prone to
severe and systematic divergences. To illustrate this point, we
have performed a set of calculations with three functionals:
SkO [96], SkP, and SkM* [97]. For each of those, we have used
the native variant of the time-odd terms; only C�s

0 is multiplied
by a scaling factor α ranging between 0 (no coupling) and 1
(standard coupling). A measure of stability of the iterative
process is the rate of convergence for a predefined set of one-
q.p. states. A result is deemed converged if the binding energy

FIG. 9. Convergence rate of HFB equations with SkP, SkO, and
SkM* functionals for one-quasiproton states in odd-A Ho isotopes
with 88 � N � 104 as a function of the scalar-isoscalar coupling
constant C�s

0 . See text for details.

does not change by more than 2 keV from one iteration to
the next for three consecutive iterations. We show in Fig. 9 the
evolution of this convergence rate as a function of α. Our set of
configurations consists of 24 different one-quasiproton states
in nine odd-A Ho isotopes with 88 � N � 104. Therefore, the
sample size used to define the convergence rate is 216.

According to Fig. 9, SkM* and SkP parametrizations are
stable with respect to variations of C�s

0 , but the SkO functional
exhibits a sharp drop in the convergence rate when α > 0.5,
that is, C�s

0 >∼ 35 MeV. Preliminary investigation of the RPA
response function [98] suggests that instabilities could occur
for transferred momenta q of the order of 2.2–2.5 fm−1 for
this particular value of C�s

0 . These results agree nicely with
the original findings in Ref. [92] and emphasize the need to
test EDFs against finite-size instabilities.

V. CONCLUSIONS

In this work, we have carried out a systematic theoretical
survey of one-quasiproton states in deformed rare-earth nuclei.
Our study is based on the symmetry-unconstrained Skyrme
HFB framework that fully takes into account time-odd polar-
ization effects.

We show that the EFA is equivalent to full blocking when
the time-odd fields are set to zero. In this case, an arbitrary
combination of time-reversed orbits can be used to define the
blocked orbit, and this can be nicely quantified by introducing
the notion of alispin. We emphasize the role of symmetries, in
particular, nuclear alignment properties, in the exact treatment
of the blocked state.

Our systematic survey indicates that, when native function-
als are employed, the contributions from time-odd fields to
the energy of the ground state and low-lying excited states
is rather small, about 50 keV on average, with a variation of
about 100–150 keV. Significant differences are found from
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one interaction to another, although the effect remains small
for the three interactions considered. Correcting the time-odd
channel (Landau functionals) increases the contribution of the
time-odd channel to the total energy by about 50%. For the
functionals in the gauge variant, the time-odd effects are weak
and opposite in sign.

By explicit calculations we have demonstrated that the
choice of the alignment orientation with respect to the
quantization axis does impact predicted time-odd polarization
energies. The resulting energy shifts are appreciable in the
scale of predicted time-odd displacements.

Standard parametrizations of the Skyrme interaction, such
as SIII, SkP, and SLy4, give a qualitative, but not quantitative,
description of experimental one-quasiproton spectra in the
rare-earth region. We find that the triaxial shape polarization
effects are generally small in the nuclei considered. Finally, we
point to the sensitivity of DFT calculations for one-q.p. states
to finite-size instabilities of the underlying EDF. A detailed
investigation of this effect is currently under way.

The weak impact of the time-odd fields on spectroscopic
properties implies that global studies with symmetry-restricted
HFB solvers such as HFBTHO could be very useful for

extracting information related to isovector properties, shell
structure, and shapes. For this purpose, time-odd fields may
be safely neglected.
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(2007).

024316-14



ONE-QUASIPARTICLE STATES IN THE NUCLEAR . . . PHYSICAL REVIEW C 81, 024316 (2010)

[39] J. R. Stone and P.-G. Reinhard, Prog. Part. Nucl. Phys. 58, 587
(2007).

[40] A. Bulgac, Preprint FT-194-1980, Central Institute of Physics,
Bucharest, 1980; arXiv:nucl-th/9907088.

[41] J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A422,
103 (1984).

[42] J. Dobaczewski, W. Nazarewicz, T. R. Werner, J.-F. Berger,
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